Почему при расчете фундамента на плоский сдвиг не учитывается действие активного давления грунта

Обновлено: 13.05.2024

Расчет оснований по несущей способности сводится к определению предельной нагрузки, при которой у сооружений, передающих основанию доминирующую сдвигающую нагрузку, происходит сдвиг, связанный с резко развивающимися прогрессирующими перемещениями с захватом части массива грунта основания или непосредственно по подошве (рис. 5,33, а); у сооружений, опирающихся на фундаменты мелкого заложения и передающих основанию доминирующую вертикальную нагрузку, происходит выпирание грунта основания из-под фундамента и связанное с этим резкое, прогрессирующее нарастание вертикальных перемещений (рис. 5.33, б); у сооружений, имеющих фундаменты глубокого заложения, нарастание осадок происходит одновременно с увеличением нагрузки (рис. 5.33, в).

Зависимости перемещений штампов от нагрузки, получаемые при штамповых испытаниях грунта, для указанных выше трех случаев представлены на рис. 5.33.

При потере несущей способности основания образуются поверхности скольжения, охватывающие всю подошву фундамента или сооружения. В каждой точке поверхности скольжения по теории прочности Мора-Кулона между нормальными σ и касательными τ напряжениями выполняется соотношение


(5.77)

где φ — угол внутреннего трения грунта; с — удельное сцепление грунта.

Зависимости горизонтальных и вертикальных перемещений штампов от нагрузки

Т — горизонтальная составляющая нагрузки на штамп (вертикальная составляющая — постоянная); N — вертикальная нагрузка на штамп (при T = 0)

Расчет оснований по несущей способности производится в следующих случаях:

  • – на основание передаются значительные горизонтальные нагрузки (горизонтальное давление грунта на подпорные стены, горизонтальная составляющая нагрузки на фундаменты распорных конструкций, сейсмические воздействия);
  • – сооружение расположено на откосе или вблизи откоса;
  • – основание сложено медленно уплотняющимися водонасыщенными глинистыми и заторфованными грунтами (при степени влажности Sr ≥ 0,85 и коэффициенте консолидации сv ≤ 10 7 см 2 /год);
  • – основание сложено скальными грунтами.

В первых двух случаях потеря несущей способности связана со значительными перемещениями, поэтому, если конструктивными мероприятиями (устройством полов в подвале здания, введением затяжек в распорные конструкции, жестким закреплением откоса, объединением фундаментов в единую систему пространственно жесткой надфундаментной конструкцией) исключена возможность смещения фундамента, расчет по несущей способности можно не производить.

Расчет по несущей способности производится из условия


(5.78)

где F — расчетная нагрузка на основание; Fu — сила предельного сопротивления основания; γc — коэффициент условий работы, принимаемый: для песков (кроме пылеватых) равным 1,0; для песков пылеватых в глинистых грунтов в стабилизированном состоянии — 0,9; для глинистых грунтов в нестабилизированном состоянии — 0,85; для скальных грунтов невыветрелых и слабовыветрелых — 1,0; выветрелых — 0,9; сильно выветрелых — 0,8; γn — коэффициент надежности по назначению сооружений, принимаемый для сооружений: I класса равным 1,2, II класса — 1,15 и III класса — 1,1.

Основания ленточных фундаментов проверяются на устойчивость только в направлении короткой стороны (ширины) фундамента, а прямоугольного, квадратного и круглого — в направлении действия момента либо направления горизонтальной составляющей нагрузки на фундамент; при этом необходимо учитывать, что потеря устойчивости в зависимости от соотношения вертикальной и горизонтальной составляющих нагрузок может иметь характер плоского сдвига по подошве или глубокого сдвига с захватом грунта основания. В некоторых случаях необходима проверка по обоим возможным вариантам разрушения.

Расчет оснований по первой группе предельных состояний (по несущей способности) при использовании вечномерзлых грунтов по принципу I является обязательным независимо от температурного состояния мерзлого грунта.

При однородном по составу вечномерзлом грунте принимают Ruf при средней по длине сваи (эквивалентной) температуре вечномерзлого грунта (см. рис. 8).


Рис. 8. Схема к определению несущей способности: а — столбчатого фундамента; 6 — одиночной висячей сваи

Значения расчетных температур грунта основания устанавливаются теплотехническим расчетом или определяются по формулам. Расчет фундаментов на устойчивость при действии значительных горизонтальных нагрузок проводят аналогично расчету фундаментов на немерзлых грунтах. При этом основное сопротивление будут оказывать не силы трения, а силы смерзания грунта с фундаментом по его подошве и боковым граням.

Расчет оснований фундаментов по первой группе предельных состояний (по несущей способности) производится исходя из условия


где F — расчетная нагрузка на основание; Fu — несущая способность основания, определяемая расчетом, а для оснований свайных фундаментов – дополнительно и по данным полевых испытаний свай и статического зондирования;

gn — коэффициент надежности по ответственности сооружения, принимаемый в соответствии с требованиями СП 22.13330.2011 в зависимости от вида и уровня ответственности сооружения, а для оснований опор мостов — согласно СНиП 2.05.03.

Несущая способность основания Fu, кН, вертикально нагруженной висячей сваи или столбчатого фундамента определяется по формуле


где gt — температурный коэффициент, учитывающий изменения температуры грунтов основания из-за случайных изменений температуры наружного воздуха;

gс — коэффициент условий работы основания;

R — расчетное сопротивление мерзлого грунта под нижним концом сваи или под подошвой столбчатого фундамента, кПа;

А — площадь подошвы столбчатого фундамента или площадь опирания сваи на грунт, м 2 , принимаемая для сплошных свай равной площади их поперечного сечения (или площади уширения), для полых свай, погруженных с открытым нижним концом, — площади поперечного сечения сваи брутто при заполнении ее полости цементно-песчаным раствором или грунтом на высоту не менее трех диаметров сваи;

Raf,i — расчетное сопротивление мерзлого грунта или грунтового раствора сдвигу по боковой поверхности смерзания сваи или столбчатого фундамента в пределах (i-го слоя грунта, кПа;

Аaf,i — площадь поверхности смерзания i-го слоя грунта с боковой поверхностью сваи, а для столбчатого фундамента — площадь поверхности смерзания грунта с нижней ступенью фундамента, м 2 ;

n — число выделенных при расчете слоев многолетнемерзлого грунта.

При расчете несущей способности основания столбчатого фундамента силы смерзания грунта, определяемые вторым слагаемым формулы (2), учитываются только при условии выполнения обратной засыпки пазух котлована влажным грунтом, что должно быть отмечено в проекте.

В случаях, когда слой сезонного промерзания — оттаивания не сливается с многолетнемерзлым грунтом, несущую способность свай в пределах немерзлого слоя грунта допускается учитывать по СП 24.13330.2011. При этом должны быть предусмотрены меры по стабилизации верхней поверхности многолетнемерзлого грунта, а расчетные сопротивления таликовых грунтов (кроме крупнообломочных и песков со степенью влажности не превышающей 0,8) вдоль боковой поверхности свай, принимаемые по нормативным таблицам СП 24.13330.2011, следует брать с понижающими коэффициентами: 0,8 — для глинистых грунтов, 0,9 — для песчаных водонасыщенных грунтов; для других грунтов понижающие коэффициенты определяют по опытным данным.

Расчетное давление на мерзлый грунт под подошвой фундамента R и расчетные сопротивления мерзлого грунта или грунтового раствора сдвигу по поверхности смерзания фундамента Raf устанавливаются по данным испытаний грунтов, проводимых в соответствии с ГОСТ 12248, с учетом коэффициента надежности по грунту gg и расчетных температур грунта основания Тm, Tz и Те, определяемых теплотехническим расчетом.

По результатам испытаний грунтов шариковым штампом или на одноосное сжатие расчетные значения R, кПа, вычисляются по формуле





где cn — нормативное значение предельно длительного сцепления, кПа, принимаемое равным: cn = cegn при испытаниях грунтов шариковым штампом и cn = 0,5Rcn — при испытаниях на одноосное сжатие, где cegn
и Rcn
— соответственно предельно длительное эквивалентное сцепление и сопротивление грунта одноосному сжатию;

gI — расчетное значение удельного веса грунта, кН/м 3 ; d — глубина заложения фундамента, м.

При расчетах несущей способности оснований значения R следует принимать: для свайных фундаментов — при расчетной температуре грунта Tz на глубине z, равной глубине погружения сваи; для столбчатых фундаментов — при расчетной температуре грунта Tm на глубине заложения подошвы фундамента.

Расчетные сопротивления сдвигу Raf,i следует принимать: для свайных фундаментов — при температуре грунта Tz на глубине середины i-го слоя грунта; для столбчатых фундаментов — при температуре грунта Tm на глубине, соответствующей середине нижней ступени фундамента.

При расчетах по формуле (2) значения Raf принимается при средней (эквивалентной) температуре грунта Те.

Для буроопускных свай расчетное сопротивление сдвигу необходимо принимать наименьшим из значений сдвига по поверхности смерзания сваи Raf и сдвига по грунту или буровому раствору Rsh; для буронабивных свай — по значению Rsh. При расчете несущей способности комбинированных свай (деревометаллических, сборно-монолитных и др.) значения Raf следует принимать с учетом неодинаковой прочности смерзания с грунтом их различных элементов.

Для свай (кроме бурозабивных), опираемых на песчано-щебеночную подушку высотой не менее трех диаметров скважины, при диаметре скважины не более полутора диаметров сваи, расчетное значение R допускается принимать для грунта подушки, а значение А — равным площади забоя скважины. При опирании свай на льдистые грунты с льдистостью i ³ 0,2 расчетные значения R следует принимать с понижающим коэффициентом ni = 1 — ii.

Для кратковременных нагрузок с временем действия t, равным или меньшим продолжительности перерывов между ними, расчетные значения Rи Raf допускается принимать с повышающим коэффициентом nt (кроме опор мостов) в соответствии с данными табл.1.

Таблица 1

Время действия нагрузки t, ч 0,1 0,25 0,5 1 2 8 24
Коэффициент nt 1,7 1,5 1,35 1,25 1,2 1,1 1,05


Коэффициент условий работы основания gc принимается по табл. 2 в зависимости от вида и способов устройства фундаментов (кроме опор мостов).

Таблица 2

Виды фундаментов и способы их устройства Коэффициент gс
Столбчатые и другие виды фундаментов на естественном основании 1,0
То же на подсыпках 0,9
Буроопускные сваи с применением грунтовых растворов, превышающих по прочности смерзания вмещающие грунты 1,1
То же при равномерной прочности грунтовых растворов и вмещающего грунта 1,0
Опускные и буронабивные сваи 1,0
Бурообсадные, забивные и бурозабивные сваи при диаметре лидерных скважин менее 0,8 диаметра свай 1,0
Бурозабивные при большем диаметре лидерных скважин 0,9


Значен p style=»text-align: center;»/emi/tdия коэффициента gс, приведенные в табл. 2, допускается увеличивать пропорционально отношению полной нагрузки на фундамент к сумме постоянных и длительных временных нагрузок, но не более чем в 1,2 раза, если расчетные значения деформаций основания при этом не будут превышать предельно допустимых значений.

Передача на фундаменты проектных нагрузок допускается, как правило, при температуре грунтов в основании сооружения не выше установленных на эксплуатационный период расчетных значений. В необходимых случаях следует/tr tr предусматривать мероприятия по предварительному (до загружения фундаментов) охлаждению пластичномерзлых грунтов до установленных расчетом значений температуры.

При соответствующем обосновании расчетом основания по деформациям допускается загружать фундаменты при температурах грунта выше расчетных, но не выше значений: Т = Тbf — 0,5 °С — для песчаных и крупнообломочных грунтов и Т = Тbf — 1 °С — для глинистых, где Tbf — температура начала замерзания грунта. Несущая способность основания Fu в этом случае должна определяться при расчетных температурах грунта, устанавливаемых без учета теплового влияния сооружения по формуле (8), принимая коэффициент gt по расчету.

Расчетные температуры грунтов Tm, Tz и Те определяются расчетом теплового взаимодействия сооружения с многолетнемерзлыми грунтами основания в периодически установившемся тепловом режиме с учетом переменных в годовом периоде условий теплообмена на поверхности, формы и размеров сооружения, глубины заложения и расположения фундаментов в плане, а также теплового режима сооружения и принятых способов и средств сохранения мерзлого состояния грунтов основания.

При расчетах многолетнемерзлых оснований по несущей способности и деформациям расчетные температуры грунтов Tm, Tz и Те следует принимать равными:

Тm — максимальной в годовом периоде температуре грунта в установившемся эксплуатационном режиме на глубине заложения фундамента zd, отсчитываемой от верхней поверхности многолетнемерзлого грунта;

Те — максимальной в годовом периоде средней по глубине заложения фундамента zd температуре многолетнемерзлого грунта в установившемся эксплуатационном режиме (эквивалентная температура грунта);

Tz — температура многолетнемерзлого грунта на данной глубине z от его верхней поверхности, принимаемой на момент установления температуры Те.

Для оснований свайных, столбчатых и других видов фундаментов сооружений с холодным (вентилируемым) подпольем, опор трубопроводов, линий электропередач, антенно-мачтовых сооружений, кроме оснований опор мостов, расчетные температуры грунтов Tm, Tz и Те допускается определять по формулам:


для оснований сооружений с холодным подпольем

под серединой сооружения
, (4)

под краем сооружения

под углами сооружения

для оснований опор линий электропередач, антенно-мачтовых сооружений и трубопроводов


где — расчетная среднегодовая температура на верхней поверхности многолетнемерзлого грунта в основании сооружения, °С, определяемая согласно обязательному приложению Д;

Tbf — температура начала замерзания грунта, °С; То — расчетная среднегодовая температура грунта, °С;

am, az и ae — коэффициенты сезонного изменения температуры грунтов основания, принимаемых по табл. 3 в зависимости от значения параметра , с 0,5 (ч 0,5 ), где z — глубина от поверхности многолетнемерзлого грунта, м;

cf — объемная теплоемкость, Дж/ (м 3 ×°С), и lf — теплопроводность мерзлого грунта, Вт/(м 3 ×°С);

k1, k2 и k3 — коэффициенты теплового влияния сооружения, принимаемые по табл. 7.4 в зависимости от отношений z/В и L/В, L и В — соответственно длина и ширина сооружения, м;

kts — коэффициент теплового влияния изменения поверхностных условий при возведении фундаментов линейных сооружений, принимаемый по табл. 5 в зависимости от вида и глубины заложения фундаментов z, м.

где и - суммы проекций на плоскость скольжения соответственно расчетных сдвигающих и удерживающих сил, определяемых с учетом активного и пассивного давления грунта на боковые грани фундамента; g c и g n - те же, что и в формуле (Ф.11.3).

Сумма удерживающих сил определяется из выражения

а сумма сдвигающихся сил равна:

где Fv - нормальная к плоскости скольжения составляющая расчетной нагрузки на фундамент (рис.Ф.11.7); U - гидростатическое противодавление (при уровне грунтовых вод выше подошвы фундамента); A - площадь подошвы фундамента; Fh - касательная к плоскости скольжения составляющая нагрузки на фундамент; Ep и Ea - равнодействующие пассивного и активного давлений грунта.

Рис.Ф.11.7. Схема к расчету фундамента на сдвиг по подошве: 1 - поверхность сдвига; 2 - направление выпора грунта

Равнодействующая пассивного давления грунта на вертикальную грань фундамента составляет

Равнодействующая активного давления

где d2- глубина заложения фундамента со стороны возможного выпора грунта; l p - коэффициент пассивного давления грунта

d1- глубина заложения фундамента со стороны противоположной возможному выпору грунта вверх; l a- коэффициент активного давления грунта

Величины приведенных высот за счет влияния сцепления в грунте

В ряде случаев для большей безопсности в формуле для пассивного давления не учитывается, т.е. считается, что =0.

Ф.11.8*. Имеются ли различия в расчете несущей способности оснований фундаментов с горизонтальной и наклонной подошвами?

Фундаменты с наклонной подошвой применяются вместо фундаментов с горизонтальной подошвой в тех случаях, когда для последних не выполняется второе условие Ф.11.6.

При определении предельного сопротивления основания фундаментов с наклонной подошвой применяют формулу Ф.11.5, но входящие в формулу коэффициенты Ng , Nq, Nc определяются с учетом угла a наклона подошвы фундамента к горизонту.

Все модули, оценки 4-5 пользуйтесь на здоровье
Модуль 2: тренинг 3, контроль 2 . Пользуйтесь на здоровье.

Кто нить нашел в инете курсовые по этому предмету??(подходящие по требованиям)поделитесь ссылками))Буду очень благодарен.

Модуль 2: тренинг 3, контроль 2 . Пользуйтесь на здоровье.

Аналогично, придется самому копаться! как сделаю выложу ответы

Модуль 2: тренинг 3, контроль 2 . Пользуйтесь на здоровье.

что не так в ответах не понял? Скачал посмотрел все модули есть

При более агрессивных водах до устройства глиняного замка поверхность защитной стенки и фундаментов покрывают:
Выберите один ответ:
Битумной мастикой и изоляцией из битумных рулонных материалов
Изоляцией из битумных рулонных материалов
Глиной
Битумной мастикой

В чем особенность расчета гибкого фундамента по методу прямолинейной эпюры?
Выберите один ответ:
Используется для предварительных расчетов
Уточнение метода Винклера
Используется для упругого полупространства
Используется для окончательных расчетов

Модуль 2: тренинг 3, контроль 2 . Пользуйтесь на здоровье.

слушайте!! недовольные. mad::mad::mad::mad::mad:
вы не охренели ли.
человек все модули выложил, всё сделал и один из них чуток не верный,
пораскиньте мозгами до делайте-исправьте и будьте добры выложить.
а они хаят тут!!
я бы на месте автора удалила уже всё! увидев такое отношение!!
:confused:

Все модули, оценки 4-5 пользуйтесь на здоровье.
В итоговом вопросы аналогичные.

автор конечно слукавил на счёт на 4 и 5 сдано. на твердую 3 90% модулей и есть даже на 2 один скорее всего.


1 модуль
не верно 3 ответа


1 В каких случаях применяются плитные фундаменты?
2 Какая вертикальная гидроизоляция делается для стен подвалов при отсутствии грунтовых вод?
3 Когда применяют столбчатые фундаменты в зданиях?

ответы просто можно угадать!)

1 В каких грунтах можно применять цементацию?
2 Для закрепления лессового грунта используют:
3 Какая влажность называется оптимальной:
4 Какие фундаменты можно отнести к гибким конструкциям?
5 В чем особенность однорастворного метода силикатизации:
6 Для чего применяются песчаные сваи?

3 модуль 4 ошибки но реально 7 три было исправлено во время выполнения или больше

1 В чем отличие висячей сваи от сваи-стойки?
2 Расчетная нагрузка, допускаемая на сваю, - это:
3 По какому предельному состоянию рассчитывается свайный фундамент при определении числа свай?
4 Из чего состоит свайный фундамент?

4 модуль 5 ошибок (на самом деле больше (исправляла во время сдачи некоторые))

При производстве работ по выполнению стены в грунте траншея заполняется
При проектировании фундамента под машину с динамическим воздействием задаются:
Форма вертикальных сечений монолитных опускных колодцев:
Что вызывает забивка свай в глинистых грунтах?
Из сборных опускных колодцев наибольшее распространение получили:

5 модуль 2 ошибки и 4 где-то исправила в процессе (т.к. логически ответы не сходились!)
а может и не в этом модуле!))

Выберете условия проверки слабого подстилающего слоя грунта под подошвой фундамента:
Для чего применяются песчаные сваи:

6 модуль 6 ошибок, может больше.!

Какая форма металлического шпунта не применяется:
Глубина котлована с вертикальными стенками без крепления в супесях:
Длина деревянных шпунтин:
Глубина котлована с вертикальными стенками без крепления в суглинках и глинах:
Траншеями называют:
При создании противофильтрационных завес не используют:

7 модуль 1 ошибка (не помню исправляла ли что-то, скорее да и ошибка не одна!)

Относительная просадочность не зависит от:

8 модуль 5 ошибок, одну или две точно исправила в процессе.

Для элювиальных грунтов отношение $$frac>> $$ принимают:
Основания, сложенные элювиальными грунтами, должны проектироваться с учетом:
Принципы проектирования при строительстве на подрабатываемых территориях:
Основания, сложенные элювиальными грунтами, должны проектироваться с учетом:
В конгломератовых грунтах закладывают:
Что такое скальный грунт?

9 модуль 2 ошибки ( всего 2)))

Что означает выполнение условий расчета P ≤ R?
Какие конструкции зданий наиболее чувствительны к неравномерным осадкам?

10 модуль 4 ошибки

Экcплуaтaциoнныe пoкaзaтeли здaния – это: (исправила во время прохождения их было 2 одинаковых вопроса!)
Битумизацию не применяют для закрепления: (выдало в ошибках)
Ошибки проектирования: (исправила во время прохождения)
Какие причины деформаций и повреждений фундаментов не относятся к производственные ошибкам? (выдало в ошибках)

в итоговом все те же вопросы. новых нет. на сегодняшний день! 19 июля 2014г.

Модудь 2 ошибки в ответах:
Какие фундаменты можно отнести к гибким конструкциям?
В чем особенность расчета гибкого фундамента по методу прямолинейной эпюры?
В каких грунтах можно применять цементацию?
При более агрессивных водах до устройства глиняного замка поверхность защитной стенки и фундаментов покрывают:
Толщина грунтовой подушки:
Что такое дренаж?
Для чего применяются песчаные сваи?
В чем особенность однорастворного метода силикатизации:
Для закрепления лессового грунта используют:

+ исправлял по ходу:
для чего преднозначена гидроизоляция
что такое пластовый дренаж

Расчет фундамента на сдвиг по его подошве или по подошве грунтовой подушки производится при действии горизонтальной составляющей нагрузки на фундамент в случае нестабилизированного состояния грунтов основания, а также и стабилизированного, если не выполняется условие (5.83).

При расчете на плоский сдвиг применяется формула


(5.92)

где ΣFsr и ΣFsa — суммы проекций на плоскость скольжения расчетных сил, соответственно удерживающих и сдвигающих.

Сумма удерживающих сил


(5.93)

и сумма сдвигающих сил


(5.94)

где Fv — нормальная к плоскости скольжения составляющая расчетной нагрузки на фундамент; u — гидростатическое противодавление (при уровне грунтовых вод выше подошвы фундамента); А — площадь подошвы фундамента; Fh — касательная к плоскости скольжения составляющая нагрузки на фундамент; Ep и Ea — равнодействующие пассивного и активного давления грунта.

Равнодействующая пассивного давления грунта на вертикальную грань фундамента определяется по формуле


,


(5.95)

где d — глубина заложения фундамента со стороны возможного выпора грунта; λp — коэффициент пассивного давления грунта; λp = tg 2 (45° + φI/2) .

Равнодействующая активного давления вычисляется по выражению


,


(5.96)


где d1 — глубина заложения фундамента со стороны, противоположной возможному выпору грунта; λa — коэффициент активного давления грунта; λa = tg 2 (45° – φI/2) ; .

Пример 5.19. Требуется рассчитать фундамент распорной системы по схеме плоского сдвига по подошве. Грунт основания — супесь; IL = 0,5; е = 0,65; сn = 6 кПа; φn = 24°; γI = 17 кН/м 3 . Расчетные нагрузки на уровне подошвы фундамента Fv = 240 кН; Fh = 110 кН. Глубина заложения фундамента от уровня планировки d = 1 м, от уровня пола d1 = 1,5 м. Сооружение III класса. Размеры фундамента получены из расчета по деформациям; b = 1,5 м; l = 1 м.

Решение. Расчетные значения прочностных характеристик грунта основания

Проверяем выполнение условия (5.83). По формуле (5.82)

tgδ = 110/240 = 0,46; δ = 25°;

sin22° = 0,375; tgδ > sinφI ,

т.е. условие (5.83) не выполняется и формула (5.82) в рассматриваемом случае неприменима. Расчет следует производить по схеме плоского сдвига (рис. 5.39). Для грунтов засыпки принимаем:

c'I = 0,5cI = 0,5 · 4 = 2 кПа;

Расчет фундамента по схеме плоского сдвига по подошве

Для вычисления равнодействующих активного и пассивного давления по формулам (5.96) и (5.95), предварительно определяем коэффициенты λa и λp , а также hc :

λa = tg 2 (45° – 20°/2) = 0,49;

λp = tg 2 (45° + 20°/2) = 2,04;


м.


кН;


кН.

Вычисляем суммы удерживающих и сдвигающих сил по формулам (5.93) и (5.94):

ΣFsr = (240 – 0)tg22° + 1,5 · 1 · 4 + 22 = 124 кН;

ΣFsa = 110 + 3,8 = 113,8 кН.

Проверяем условие (5.92):

Устойчивость фундамента против сдвига по подошве не обеспечена. Увеличение размеров подошвы в рассматриваемом случае практически не дает эффекта (в связи с небольшим удельным сцеплением с), поэтому целесообразнее устройство фундамента с наклонной подошвой или подушки с наклонной подошвой (с проверкой возможности сдвига по контакту «фундамент-подушка»).

5.6.4. Графоаналитический метод расчета несущей способности основания (метод круглоцилиндрических поверхностей скольжения)

Графоаналитические методы оценки несущей способности используются при сложных расчетных схемах системы «фундамент-основание», для которых аналитические методы не разработаны.

Несущая способность основания определяется графоаналитическим методом с построением круглоцилиндрических поверхностей скольжения в следующих случаях:

  • – основание сложено неоднородными грунтами (кроме случая двухслойного основания, рассмотренного выше);
  • – пригрузка со стороны, противоположной возможному выпору грунта основания, больше 0,5 R (где R — расчетное сопротивление грунта основания);
  • – фундаменты расположены на откосе, вблизи откоса или под откосом;
  • – возможно возникновение нестабилизированного состояния грунтов основания (кроме случаев, для которых имеются аналитические методы расчета).

В методе круглоцилиндрических поверхностей скольжения значение предельной нагрузки на основание не определяется, а вычисляется коэффициент устойчивости k , значение которого для всех возможных поверхностей скольжения должно быть не менее 1,2. Коэффициент устойчивости ленточного фундамента для принятой поверхности скольжения вычисляется по формуле, в которой моменты даны на 1 м длины фундамента:


,


(5.97)

где ΣMsa и ΣMsr — суммы моментов сдвигающих и удерживающих сил относительно центра вращения; r — радиус поверхности скольжения; b — ширина элементарных вертикальных полос, на которые делится сдвигаемый массив; рi — средняя (в пределах ширины полосы) ордината эпюры давлений на грунт от сооружения без учета противодавления воды, определяемая по формуле для внецентренного сжатия; hi — средняя высота i -й полосы грунта; γIi — расчетное значение удельного веса грунта в пределах i -й полосы, принимаемое с учетом взвешивающего действия воды; φIi — расчетное значение угла внутреннего трения грунта по площадке скольжения в пределах рассматриваемой полосы; αi — угол между вертикалью и нормалью к i -й площадке скольжения; сIi — расчетное значение удельного сцепления грунта по площадке скольжения в пределах i -й полосы; Em — равнодействующая активного давления m -го слоя грунта на боковую грань фундамента, определяемая по формуле (5.93); lm — расстояние от линии действия силы Em до горизонтали, проходящей через центр поверхности скольжения; Fv — равнодействующая вертикальных нагрузок на уровне подошвы фундамента; а — расстояние от центра поверхности скольжения до линии действия силы Fv .

Произведение γIihi sinαi в формуле (5.97) для нисходящей части кривой скольжения принимается со знаком «+», а для восходящей — со знаком «–».

Положение центра и радиус наиболее опасной круглоцилиндрической поверхности при отсутствии связей фундамента с конструктивными элементами здания определяются следующим образом (рис. 5.40). В окрестности центра предполагаемой поверхности скольжения проводим горизонтальную линию I—I. На этой линии отмечаем несколько положений предполагаемых центров О1, О2, О3, … поверхностей скольжения и вычисляем для них коэффициент устойчивости. Через точку А, соответствующую минимальному значению коэффициента устойчивости, проводим вертикальную прямую II—II и на ней отмечаем новые предположительные положения центров О'1, О'2, О'3, . Для каждого из этих центров вновь проводим расчет по формуле (5.97). Полученное минимальное значение k сравниваем с его допустимым значением. Если k меньше допустимого, следует увеличить размеры фундамента или устроить подушку из более прочного грунта.

Расчет несущей способности оснований по методу круглоцилиндрических поверхностей скольжения

Рис. 5.40. К расчету несущей способности оснований по методу круглоцилиндрических поверхностей скольжения

При наличии связей фундамента с конструктивными элементами зданий (перекрытиями, анкерами и др.) за центр поверхности скольжения может приниматься точка опирания фундамента.

Пример 5.20. Следует оценить несущую способность основания методом круглоцилиндрических поверхностей скольжения. Фундамент (ленточный) является стеной подвала. Размеры фундамента, нагрузки и грунтовые условия приведены на рис. 5.41. В точке A фундамент связан с междуэтажным перекрытием. Верхний слой грунта толщиной 2,3 м — суглинок с γI = 18 кН/м 3 ; φI = 20° и cI = 15 кПа; подстилающий грунт глина с γ = 18,5 кН/м 3 ; φI = 6°; cI = 19 кПа; грунт обратной засыпки (выполняется на всю высоту из суглинка) имеет характеристики γ'I = 0,95γI = 0,95 · 18 = 17 кН/м 3 ; φ'I = 0,9φI = 0,9 · 20° = 18°; c'I = 0,5сI = 0,5 · 15 = 7,5 кПа. Вертикальная нагрузка N = 200 кН/м приложена с эксцентриситетом e = 0,25 м. Ширина подошвы фундамента, полученная расчетом по деформациям, равна 2 м. Для уменьшения размеров фундамента применена песчаная подушка толщиной 0,5 м с характеристиками γI = 17 кН/м 3 ; φI = 34°; cI = 1 кПа. Ширина подошвы в этом случае принята равной 1,5 м. Вес 1 м длины фундамента G = 98 кН.

Оценка несущей способности основания методом круглоцилиндрических поверхностей скольжения

Решение. Поскольку фундамент загружен внецентренной наклонной нагрузкой и следует принимать во внимание активное давление грунта, расчет по несущей способности основания является необходимым. Формула (5.79) в данном случае неприменима в силу неоднородности основания, поэтому расчет выполняем методом круглоцилиндрических поверхностей скольжения по формуле (5.97). Учитывая, что фундамент в верхней части имеет неподвижную опору, за центр поверхности скольжения принимаем точку А. Радиус поверхности скольжения r = АВ = 4,2 м. Величины краевых напряжений под подошвой фундамента: рmax = 331 кПа; рmin = 65 кПа.

Разбиваем массив грунта, ограниченный предполагаемой поверхностью скольжения, на восемь полос шириной b = 0,5 м.

Значения параметров и их произведения, входящие в формулу (5.97), сводим в табл. 5.33.

Для определения равнодействующей активного давления грунта Ea с использованием формулы (5.96) необходимо предварительно вычислить λa и hc для слоя суглинка:

λa = tg 2 (45 – 18/2) = 0,53;


м.


кН.

Подставляя результаты вычислений в формулу (5.97), получаем:


Устойчивость фундамента обеспечена.

5.6.5. Несущая способность оснований, сложенных медленно уплотняющимися водонасыщенными пылевато-глинистыми и биогенными грунтами, а также илами

Несущая способность медленно уплотняющихся водонасыщенных глинистых и заторфованных грунтов оснований (при степени влажности Sr ≥ 0,85 и коэффициенте консолидации cv ≤ 10 7 см 2 /год) определяется, как правило, с учетом нестабилизированного состояния грунтов; условие прочности имеет вид:


(5.98)

где σ — полное нормальнее напряжение в рассматриваемой точке, слагающееся из напряжений в скелете грунта и избыточного давления в поровой воде u .

Избыточное давление в поровой воде определяется методами теории фильтрационной консолидации грунтов с учетом скорости увеличения нагрузки на основание в период строительства и эксплуатации сооружений.

При высоких темпах возведения сооружения или его нагружения эксплуатационными нагрузками, а также при отсутствии в основании дренирующих слоев или специальных дренирующих устройств несущую способность оснований, сложенных медленно уплотняющимися водонасыщенными грунтами, допускается определять в запас надежности без учета угла внутреннего трения грунтов ( φ = 0) или принимать значения φI и cI , соответствующими нестабилизированному состоянию грунтов основания. В этих случаях предельная нагрузка на однородное основание, простирающееся ниже подошвы фундамента на глубину не менее 0,75 b , при отсутствии более слабого подстилающего слоя для вертикальной составляющей силы предельного сопротивления основания ленточного фундамента (на 1 м длины) определяется по формуле


(5.99)

где α — угол, рад:


;


(5.100)

здесь Fh — горизонтальная составляющая внешней нагрузки на 1 м длины фундамента; q — пригрузка со стороны предполагаемого выпора грунта (с учетом веса пола подвала или технического подполья).

Кроме расчета по формуле (5.99) необходима проверка устойчивости фундамента по схеме плоского сдвига по подошве по формуле (5.92). Размеры фундамента при этом определяются по менее благоприятному варианту расчета.

При отсутствии горизонтальной составляющей нагрузки на фундамент ( Fh = 0) формула (5.99) для ленточного фундамента принимает вид:

Читайте также: