Фундамент на опускных колодцах

Обновлено: 27.04.2024

Очертание и габаритные размеры опускного колодца в плане определяются формой и размерами поперечного сечения над фундаментной части сооружения на уровне обреза фундамента, а также несущей способностью грунта, на который намечается опереть колодец.

Фундаменты из опускных колодцев для опор мостов имеют, как правило, вытянутую в плане прямоугольную форму (рис. 9.3,а,б), либо форму, близкую к прямоугольной, но отличающуюся от нее закруглениями в углах (рис. 9.3,в,г), либо вытянутую форму с короткими сторонами в виде полуокружности (рис. 9.3,д); применяют также круглые колодцы (рис. 9.3,е).

Прямоугольные колодцы проще в изготовлении, но погружать их в грунт тяжелее, чем колодцы с очертаниями в плане, показанными на рис. 9.3,в — е. В связи с этим колодцы прямоугольного очертания в плане применяют, в основном, в случаях, когда надо преодолеть слой легкопроходимого грунта толщиной не более 10 м.

На уровне верха опускного колодца (на уровне обреза фундамента) устраивают уступы во всех направлениях шириной не менее 1/50 глубины погружения колодца и не менее 40 см. Это позволяет обеспечить проектное положение над фундаментной части опоры при возможных смещениях верха колодца в плане.

От горизонтального давления грунта в наружных стенах колодца возникают изгибающие моменты. Уменьшения этих моментов достигают устройством внутренних стен (рис. 9.3,6 — д). Расстояния в свету между стенами (размеры шахт) должны быть достаточными для нормальной работы землеройных снарядов. При грейферной разработке грунтов размеры шахт должны минимум на 0,5 м превышать размер грейфера в раскрытом состоянии. Размеры шахт в плане обычно принимают от 2 до 5 м.

Рис. 9.3. Формы опускных колодцев в плане а — прямоугольная; б — прямоугольная с внутренней стеной; в, г — прямоугольные с закруглениями в углах; д — вытянутая с короткими сторонами в виде полуокружности; е — круглая

При погружении колодцев на глубину 8—10 м их наружные поверхности делают вертикальными (рис. 9.4,а). В случаях погружения колодцев на большую глубину приходится преодолевать значительные силы трения, возникающие между наружными поверхностями колодцев и грунтом. Для обеспечения погружения колодцев в этих случаях их наружные поверхности делают с одним или несколькими уступами (рис. 9.4,6) шириной не менее 10 см, из которых первый располагают на высоте 2—4 м от низа колодца. Иногда вместо уступов наружным поверхностям придают наклоны, сохраняя вертикальность этих поверхностей лишь в пределах нижней части колодцев высотой 3—4 м (рис. 9.4,в).

При развитии уступов или увеличении наклонов наружной поверхности колодца облегчается его погружение в грунт, но в то же время колодец в процессе погружения становится менее устойчивым, легче кренится и смещается в стороны, что затрудняет обеспечение его проектного положения. В связи с этим развитие уступов и наклоны наружных поверхностей колодцев ограничивают прямыми, имеющими наклоны не более 20 : 1.

Толщину наружных стен железобетонного колодца обычно принимают равной 0,7—1,5 м, а внутренних 0,5—1 м. Принятая толщина стен должна обеспечить вес колодца, достаточный для преодоления сил трения грунта о колодец, препятствующих его погружению.

Резкого снижения сил трения грунта о колодец удается достичь применением тиксотропной рубашки. В этом случае колодец изготовляют с одним уступом шириной до 15 см, расположенным в его нижней части, и вертикальной боковой поверхностью независимо от размеров и глубины погружения колодца в грунт. Тиксотропная рубашка образуется из глинистого раствора, нагнетаемого через специальную трубу (в процессе погружения колодца) в пространство между наружной поверхностью колодца и грунтом. Применение тиксотропных рубашек позволяет снизить толщину стен колодцев до 0,4—0,6 м.

Стены колодцев армируют горизонтальной и вертикальной арматурой. Площадь сечения арматуры определяют, как правило, расчетом на усилия, возникающие в процессе погружения колодцев.


Рис. 9.5. Нижняя часть опускного колодца а — с банкеткой; б —с заостренным ножом; 1 — наружная стена; 2 — внутренняя стена; 3 — штрабы; 4 — обшивка из металла

Нижние части наружных стен (консоли) колодцев устраивают переменного сечения по высоте. Консоли, как правило, заканчиваются стальными ножами с горизонтальной площадкой (банкеткой) шириной 0,15—0,20 м (рис. 9.5,а) или заостренными (рис. 9.5,6).

Выше консоли (на расстоянии не менее чем 2,2 м от низа колодца) в наружных и внутренних стенах колодцев устраивают штрабы глубиной 25—30 см и высотой 80— 100 см (см. рис. 9.5), обеспечивающие надежную связь между стенами колодца ибетоном заполнения, а также возможность в случае крайней необходимости устройства потолка для превращения опускного колодца в кессон.

Опускной колодец опирают на толщу грунта, обладающего достаточной несущей способностью. Поверхность этой толщи не бывает строго горизонтальной, поэтому для обеспечения опирания на нее колодца по всей подошве его заводят в эту толщу на 1—2 м. В соответствии с этим назначают отметку подошвы фундамента.

После назначения отметок обреза и подошвы фундамента устанавливают форму и размеры опускного колодца в плане на уровне обреза. При этом обычно исходят из формы и размеров сооружения, опирающегося на колодец, и минимальных величин уступов. С учетом указанных выше замечаний устанавливают очертания наружной поверхности колодца (делают ее вертикальной или наклонной, с уступами или без них), после чего определяют форму и размеры подошвы фундамента, а также его несущую способность по грунту. Определение последней производят аналогично фундаментам мелкого заложения или по результатам полевых испытаний.

Затем в соответствии с требованиями, изложенными далее в § 57, производят расчет фундамента, значения которого должны удовлетворять условиям прочности грунта под фундаментом. Если в результате расчета окажется, что условия не удовлетворяются, то необходимо увеличить размеры опускного колодца в плане или понизить отметку заложения его подошвы. После этого расчет фундамента производят заново.

Кроме указанных выше расчетов колодца, производят также расчет достаточности его веса для опускания и расчет прочности колодца на разрыв.

Если интенсивность сил трения грунта о стены колодца в верхних слоях больше, чем в нижних, то в горизонтальных сечениях колодца при его погружении может возникнуть растягивающее усилие. По этому усилию подбирают сечение вертикальной арматуры, чем обеспечивают прочность колодца на разрыв.

По опыту построенных сооружений расход бетона на изготовление колодцев в общем объеме кладки фундаментов изменяется от 10% для колодцев-оболочек, заполняемых сплошь бетоном, до 90% для толстостенных колодцев без бетонного заполнителя. Расход арматуры на 1 м3 кладки колодцев изменяется от 50 кг. для массивных конструкций до 300 кг для колодцев-оболочек, принудительно погружаемых в грунт.

В зависимости от конструктивных особенностей сооружений, объемов работ и местных условий бетонные и железобетонные колодцы изготовляют из монолитного или сборного железобетона. Целесообразность применения того или другого вида колодцев определяется исходя из результатов сравнения стоимости работ и затрат труда.

В фундаментах опор мостов применяют преимущественно железобетонные колодцы; бетонные колодцы используют для фундаментов площадью до нескольких десятков квадратных метров при глубине заложения до 20 м.

При небольших объемах работ монолитные, бетонируемые на месте погружения колодцы применяют более часто, так как доставка сборных конструкций или их изготовление вблизи объекта во многих случаях связаны с необходимостью значительных дополнительных затрат средств и времени.

В подавляющем большинстве случаев фундаменты мостов сооружают из одного колодца монолитной и очень редко сборно-монолитной конструкции. Два колодца и больше в одном фундаменте в настоящее время встречаются при сборных конструкциях, например, колодцах-оболочках, погружаемых в грунт принудительно.

На фундаменты из одного колодца ориентируются, как правило, при необходимости опускания, бетонируемых на месте колодцев, под действием собственного веса. На сооружение таких фундаментов затрачивается меньше времени по сравнению с фундаментами из нескольких колодцев.

В построенных фундаментах из нескольких колодцев-оболочек расход бетона уменьшен в 2—4 раза по сравнению с фундаментами из одиночных колодцев, заполненных бетоном. При таком сокращении объема кладки экономически оправданно и целесообразно широкое применение конструкции из сборного железобетона. Поскольку резко уменьшаются суммарные объемы и вес элементов одного фундамента, то соответственно снижаются затраты труда, стоимость изготовления и монтажа колодцев-оболочек по сравнению с толстостенными колодцами больших размеров. Возможно их принудительное заглубление в разные грунты вибропогружателями.

По данным опыта сооружения мостов в нашей стране и за рубежом установлено, что применение колодцев-оболочек, способствуя значительному сокращению объемов работ, обеспечивает при хорошо освоенной технологии снижение на 10—25% стоимости фундаментов и уменьшение трудоемкости в 1,5—3 раза.

Скажите, много ли из вас, кто знает (или помнит) такую технологию возведения фундаментов, как метод "опускного колодца"? Думаю многие помнят, но много людей либо забыли давно что это такое, либо и не знали никогда.

А теперь давайте поразмышляем сколько людей реально видели применение этой технологии в современном строительстве или сами применяли в проектах или стройке? Думаю, тут будут единицы процентов, если вообще кто-то с этим сталкивался воочию.

А вот мы активно применяли и применяем данную технологию и сегодня я расскажу почему она актуальна до сих пор и, зачастую, даже незаменима в определенных ситуациях на строительстве объектов.

Что собой представляет метод "опускного колодца"?

Метод опускного колодца - это древняя методика опускания какой либо конструкции замкнутого в горизонтальной плоскости сечения на глубину.

Сначала эту технологию начали применять для организации колодцев, шахт, чтобы не обваливался грунт - оболочка колодца была естественным барьером для обвала. А в дальнейшем, увидев возможности, которые представляет данная технология, стали применять ее уже и для возведения фундаментов.

Вот упрощенная схема последовательности применения данной технологии.

Сразу оговорю, что речь сегодня пойдет о применении данной технологии именно в промышленном и гражданском строительстве зданий, потому что в гидротехническом строительстве и прочих узких сферах эти технологии непрерывно применяются и позиции сдавать не собираются. Поэтому о них особого смысла рассказывать нет.

Так, спросите вы: для чего нужна эта технология в банальном гражданском и промышленном строительстве зданий? Если раньше, понятно, данная технология упрощала сложные процессы, так как экскаваторов тогда не было, был ручной труд и т.д., то сейчас то зачем?

Поясню наглядно и просто на 3-х конкретных примерах из нашей практики проектирования. Причем, по факту, в данных случаях альтернативы этому древнему методу не было вообще. Он был незаменим. Поехали.

Случай №1. Возведение фундаментов в стесненных условиях при наличии грунтовых слоев культурного наследия.

Заказчик поставил следующую задачу: необходимо возведение нескольких памятников массивной конструкции на набережной реки нашего города.

Вроде задача тривиальная и простая: минимальный фундамент и сверху памятники поставить. Но все оказалось сложнее.

Осложняющими факторами были:

  • мощный слой грунта, который числился, как слой культурного наследия (ну, так как центр города, древняя крепость какая-то была и т.д.);
  • вдоль всей набережной аккурат почти под памятниками идут 3 ветки напорной канализации с половины города (диаметр 800-1200мм).

Что делать то??

Над канализацией ставить нельзя - будет, если что, канализацию не вскрыть для ремонта, да, и в случае если ее прорвет, памятнику хана будет - завалится.

Ок. Решаем делать буронабивные сваи по 9 шт под каждый постамент с отметками ниже канализационных коллекторов.

Однако анализ расположения коллекторов привел к тому, что и это решение было невозможным, так как не соблюдалось расстояние от крайних свай куста до коллектора. А до кучи негатива добавили археологи, которые сказали: ок, делаете сваи? Ну не забудьте обеспечить нам доступ к грунту на всю глубину этих свай. т.е. 6м.

Так тогда какой смысл от свай, если, де-факто, все-равно надо копать котлован? Даже не котлован, а котлованище, который нарушит все вокруг, да и вообще никто его копать не даст и уж точно не оплатит.

Сели думать. Если копать сильно нельзя из-за коллектора и археологов, но фундамент нужно опустить ниже коллектора, а сваи буронабивные не проходят по расстояниям и над душой стоят археологи. Вроде клин из которого нет выхода?

Вот тут и пришла на помощь старая технология, которая и решила одним махом все проблемы.

Вы только посмотрите, как красиво все получилось, когда мы применили метод "опускного колодца":

  • мы приняли в качестве фундамента бетонную сваю, которая заливалась в бетонные кольца диаметром 1м, опущенные на глубину 6м;
  • во время опускания колец археологи спокойно и без какого либо риска смогли обследовать все слои грунта по ходу опускания колодца;
  • была обеспечена минимально возможная земляная работа - задействован был только грунт непосредственно вынимаемый из ствола колодца;
  • заказчик сэкономил безумные деньги, применив предложенную нами технологию, потому что археологи стоят очень много денег и очень долго работают;
  • работы проводились при минимальном нарушении окружающего ландшафта парка вдоль реки в центре города;
  • не пришлось загонять никакие большие машины (краны, буровые и т.д.) для реализации проекта - все было привезено на обычном небольшом грузовике с манипулятором.

Случай №2. Возведение фундаментов в условиях высоких грунтовых вод.

Частный дом. Нужно сделать фундамент, но вода стоит на уровне поверхности земли. Грунт на 1-1.5м ужасный (плывун). Откачивать воду некуда (да и дебет такой, что не откачать будет). Загнать буровую возможности нет (участок стесненный).

Принимаем решение делать 6 колодцев под здание глубиной 2.5м до нормального грунта из колец 1м диаметром, заполняемых бетоном.

По выполненным столбам из колец с бетоном делаем железобетонную монолитную ленту и возводим 3 этажа здания. Затраты минимальные, никакой сложной техники.

Случай №3. Пристройка вплотную к существующему многоэтажному зданию.

Об этом объекте я рассказывал в одном из предыдущих материалов. Посмотреть подробно можно по этой ССЫЛКЕ.

Здесь же вкратце изложу суть. Есть существующее здание многоэтажное. К нему нужно пристроить новое. А у заказчика особые требования:

  • свайные фундаменты не хочет - от этого варианта заказчик отказался сразу;
  • классический шпунт не хочет - этот вариант заказчик так же отмел, т.к. вплотную шпунт не задавить, а нам нужно 50мм между существующим и пристраиваемым зданием.

Что мы делаем? Правильно: мы берем наши любимые метровые кольца и закапываем их последовательно вдоль всего существующего фундамента.

Большинство описанных в интернете технологий укладки бетонных колодезных колец предполагает использование автокрана или иного подъемного механизма. Это дорого. Те, кто пытаются сбросить поставленное на стенку кольцо, рискуют тем, что оно расколется или ляжет неправильно. Опускной колодец – бетонная обсадка шахты источника, которая монтируется без применения спецтехники и без риска понести убытки.

Как устроен опускной колодец

Опускные колодцы представляют собой вертикальную цилиндрическую конструкцию из железобетона. Она сборная и пустотелая. Преимущество метода опускных колодцев в том, что для монтажа обсадки шахты достаточно веса самих колец. Конструкция наращивается по мере углубления нижнего элемента в грунт. Главная особенность – конструкция нижнего кольца, а точнее, кругового резца.

Опускные колодцы представляют собой вертикальную цилиндрическую конструкцию из железобетона. Она сборная и пустотелая. Преимущество метода опускных колодцев в том, что для монтажа обсадки шахты достаточно веса самих колец. Конструкция наращивается по мере углубления нижнего элемента в грунт. Главная особенность – конструкция нижнего кольца, а точнее, кругового резца.

Это тоже железобетонное тонкостенное кольцо, стенки которого в нижней части имеют скосы в форме ножа в разрезе.

Работы выполняются следующим способом:

  • Кольцо-резец ложится на поверхность земли.
  • Грейфер выбирает грунт, который осыпается по мере заглубления конструкции.
  • После ее утопления ниже горизонта, устанавливается следующий элемент.
  • Процедура выполняется до момента, пока в шахте не будет достаточного количества воды.

Это должна быть восполняемая (прибывающая) грунтовая вода из водоносных пластов грунта. Чтобы колодец со временем не уходит под землю под собственным весом в шахте монтируют кессон, и заливают бетон по периметру резца, чтобы сформировать прочную основу.

Где применяются опускные колодцы

Технология погружения колодцев с тиксотропных рубашках предполагает, что конструкция утапливается в грунте, разрыхляя породу собственным весом. Поэтому для скалистых пластов этот способ не применим. Но если это глина, суглинок или песчаник, такой способ самый простой, так как не требует использования специализированной техники. Это дает возможность сэкономить на рытье колодца.

Понимая, что это – погружной колодец, несложно определить, где технологию можно применить в быту. Такие конструкции используются для монтажа абиссинского колодца, смотровых шахт на трассе закопанного трубопровода, колодцев дренажных систем и т.д. Кроме того, так каждый собственными руками может смонтировать сооружение для оголовка скважины. Для выполнения работ потребуется два человека, грейфер, пара труб или прочных ломов. Это чтобы выработать грунт и установить кольцо.

Вам была полезна эта статья? Ставьте палец вверх!
Подпишитесь на мой канал и давайте общаться в комментариях!

Фундаменты на опускных колодцах применяют, если прочный грунт залегает на относительно небольшой глубине, но фундаменты мелкого заложения при этом будут слишком дорогостоящими, а свайные фундаменты нецелесообразны из-за недостаточной глубины забивки свай. Опускные колодцы используют также под пилоны висячих и вантовых мостов, при больших нагрузках, в сложных условиях русел рек и морских проливов – во всех случаях при глубине заложения до

70 м. Наиболее просто опускание колодцев осуществляется в мягких грунтах без твердых включений и валунов при глубине до 20 м.

В первой половине ХХ века в России опускные колодцы были широко распространены. В настоящее время, по статистике, примерно 1% мостов в Московском регионе имеют фундаменты на опускных колодцах.

В качестве конструктивных материалов для колодцев используют монолитный и сборный железобетон и бетон, а также сталь. Размеры и форма колодцев зависят от конструкции надфундаментной части и величины расчетного сопротивления грунта несущего слоя.

Поскольку колодец является фундаментом на естественном основании, проводиться проверка прочности грунта основания на стадии эксплуатации.

На стадии погружения колодец рассчитывают на «затирание»: P≥T, где P вес колодца, Т силы трения. Колодец должен опускаться под действием собственного веса, преодолевая боковое трение, в среднем имеющее значение в зависимости от вида грунта:

Бóльшие значения соответствуют более плотным и сухим грунтам.

Вес колодца во всех случаях должен быть на 25% больше, чем силы трения по боковой поверхности. Кроме этого, рассчитывают прочность конструкции стенок колодца на всех стадиях производства работ.

Методы и последовательность работ по опусканию колодцев зависят от местных природных и производственных условий. Наиболее распространены следующие схемы (рис. 1.14):

Схема 1. С поверхности грунта на сухом месте (для пойменных опор).

Схема 2. С искусственных островков в русловой части моста.

Схема 3. С подачей наплавного колодца по воде буксирами при достаточной глубине водотока.

Схема 4. С доставкой на оси опор плавучими кранами большой грузоподъемности.

Колодцы в зависимости от условий опускания могут быть массивными, со сплошными стенками (при опускании с поверхности грунта или с искусственного островка по схемам 1 и 2) или облегченными (при опускании на плаву по схеме 3). Искусственные островки отсыпают из песка или гравия (глинистые, торфянистые и прочие слабые грунты не допускаются).

Массивные колодцы изготавливают из монолитного или сборного железобетона или бетона, если растягивающие напряжения в стенках при погружении не будут превосходить расчетного сопротивления бетона растяжению.

Наружные стенки колодцев рекомендуется устраивать с наклоном не менее 1/100 или с уступами.

Нижний конец колодца должен быть защищен в соответствии с крепостью грунта специальным ножом из железобетона или металла. Размеры землечерпательных шахт принимают не меньше габаритных размеров рабочих органов землеройных машин, например, грейферов.

Как правило, колодцы опускают под действием собственного веса. В исключительных случаях в стенки колодцев закладывают подмывные трубки, в которые при погружении подается вода под давлением до 6 кг/см2 для снижения сил трения при погружении.

Наплавные колодцы изготавливают из стали или тонкостенного сборного железобетона. К месту погружения колодцы доставляют буксирами (схема 3, рис. 1.14).

Колодец может доставляться на ось опоры плавучими кранами большой грузоподъемности (схема 4, рис. 1.14). Например, сборный железобетонный опускной колодец фундамента пилона вантового моста в Южной Корее весил 2400 т.

На сухой местности (см. схема 1, рис. 1.14) после планировки площадки место предполагаемого опускания колодца обследуют бурением (не менее двух скважин на колодец). После проведения подготовительных работ возведение колодца проводят в пять основных стадий (рис. 1.15).





Рис. 1.15. Технология работ по стадиям возведения опускного колодца:

1 первый, «ножевой», блок колодца; 2 временные подкладки; 3 грейфер;

4 труба с бункером для бетонирования методом ВПТ;

5 бетонолитная труба; 6 крышка

Стадия 1. Сооружение нижней части колодца:

• подготавливают достаточно прочное грунтовое основание и укладывают специальные подкладки для равномерного распределения веса первых секций колодца на грунт, устраивают ножевую часть;

• бетонируют первую секцию в опалубке с минимальной шероховатостью (строганые доски, фанера, пластик), колодец

снимается с подкладок.

Стадия 2. Разработка грунта и опускание колодца:

• разрабатывают грунт в шахтах равномерно, как правило, грейферами без водоотлива (целесообразно применять 4х лопастной грейфер); при опускании не допускается глубокая подборка грунта (более 2 м) ниже ножа (при очень слабых грунтах подборка грунта ниже ножа не производится).

Увеличение давления на грунт под ножом достигают путем дополнительной кладки самого колодца или с помощью специального пригруза (плитами, блоками). Не допускают понижения уровня воды в шахтах.

Постоянно контролируют вертикальность погружения колодца. Исправление перекосов производят односторонней выемкой грунта или односторонним подмывом.

После достижения проектной отметки при отсутствии воды производят освидетельствование грунта основания на глубину не менее 2 м ниже ножа. В случае скальных грунтов поверхность будущей подошвы фундамента очищают водяной струей с отсосом образовавшейся пульпы эжектором. В нижней части устраивается подушка из щебня или гравия толщиной не менее 20 см.

Стадия 3. Бетонирование нижней плиты:

• при наличии воды в колодце нижнюю тампонажную плиту бетонируют способом подводного бетонирования только в огражденное пространство, хорошо защищенное от действия текущей воды.

Подводное бетонирование производят методом ВПТ через трубы Ø30 см, всегда погруженные своим нижним концом в массу укладываемого бетона и перемещаемые только в вертикальном направлении. Подводное бетонирование должно проводиться без перерывов и с максимально возможной интенсивностью. По мере повышения уровня укладываемого бетона труба поднимается (перемещение труб в горизонтальном направлении не допускается). Нижнее отверстие трубы должно располагаться не меньше чем на

1 м ниже поверхности укладываемого бетона. Труба на всю свою высоту должна быть постоянно заполнена бетонной смесью. Радиус действия трубы принимается не более 3…3,5 м, в соответствии с чем должно быть назначено количество бетонолитных труб. Для подводного бетонирования применяют пластичную смесь (ОК=12 см) с повышенным (не менее 350 кг/м3) содержанием цемента.

Стадия 4. Заполнение колодца:

• после набора прочности нижней плиты воду откачивают и бетонируют насухо внутренние полости шахт колодца.

Стадия 5. Устройство верхней крышки колодца, на которую в дальнейшем будет передано давление от тела опоры. Крышка может быть выполнена в сборном или монолитном варианте.


Опускной колодец представляет собой открытую сверху и снизу железобетонную (реже стальную и бетонную) конструкцию (рис. 9.1), стены которой в нижней части имеют заострения (консоли), обычно усиленные металлом (ножи). Опускные колодцы погружаются в грунт под действием собственного веса по мере разработки и удаления грунта, расположенного в полости колодца и ниже его ножа.


Рис. 9.1. Опускной колодец а — погружение колодца.; б — фундамент в виде опускного колодца; 1 — консоли; 2 — стенки колодца; 3 — над фундаментная часть опоры; 4 — железобетонная плита; 5 —бетон, уложенный насухо; 6 — подводный бетон; 7 — прочный грунт; 8 — слабый грунт

Стены колодцев либо сооружают сразу на полную высоту, либо наращивают по мере погружения колодцев в грунт (рис. 9.1,а).

Погружение опускных колодцев в грунт производят с откачкой или без откачки воды из их полости.

После достижения опускным колодцем проектной глубины заложения фундамента полость колодца целиком (рис. 9.1,6) или частично заполняют бетонной смесью сначала подводным способом, а затем насухо. В верхней части колодца сооружают распределительную железобетонную плиту, на которой впоследствии ведут кладку над фундаментной части опоры; в некоторых случаях такую плиту не делают.

Опускные колодцы применяют в случаях расположения грунтов с достаточной несущей способностью на больших (более 5—8 м) глубинах, когда сооружение фундаментов в открытых котлованах из-за сложности крепления их стен экономически нецелесообразно или технически неосуществимо. Так как в подобных случаях кроме опускных колодцев можно применять фундаменты из свай или оболочек, выбор типа фундамента производят на основе технико-экономического сравнения вариантов. Достоинством фундаментов из опускных колодцев является возможность их погружения без использования сложного технологического оборудования. Недостатками их являются большой объем кладки и значительные трудности, возникающие при встрече колодцев в водонасыщенных грунтах с препятствиями в виде крупных валунов, скальных прослоек, топляков и т. п. Устранение таких препятствий возможно лишь после откачки воды из колодцев, что при водонасыщенных грунтах не всегда удается сделать. Трудности, связанные с необходимостью осушения колодца, возникают и при посадке его на скальный грунт, поверхность которого не бывает строго горизонтальной и нуждается в планировке для возможности опирания на него колодца по всему периметру.


Рис 9.2. Кессон а — погружение кессона; б — кессонный фундамент; 1 — консоль; 2 — над кессонная кладка; 3 — трубы для сжатого воздуха; 4 — компрессорная станция; 5 — центральная шлюзовая камера; 6 — прикамерки; 7 — шахтные трубы; 8 — потолок кессона; 9 — нож; 10 — рабочая камера кессона; 11 — кладка над фундаментной части опоры; 12—бетон заполнения шахты; 13 — бетон заполнения рабочей камеры; 14 — прочный грунт; 15 — слабый грунт

Указанные трудности преодолеваются, если фундамент сооружают с применением кессона (рис. 9.2). Кессон (рис. 9.2,а) представляет собой открытую снизу железобетонную или стальную конструкцию, состоящую из потолка и боковых стен. Толщина стен кессона книзу уменьшается и они заканчиваются консолью со стальным ножом. Полость в нижней части кессона называют рабочей камерой. В ней производят разработку грунта, по мере которой кессон опускается под действием собственного веса, а также веса надкессонной кладки, возводимой из бетона над потолком в процессе погружения кессона в грунт. Подачей в рабочую камеру сжатого воздуха обеспечивают отжатие из нее воды, что позволяет вести разработку грунта насухо.

Сжатый воздух вырабатывается компрессорной станцией и подается по трубам как в рабочую камеру кессона, так и в шлюзовой аппарат. Последний состоит из центральной шлюзовой камеры и двух прикамерков — один для рабочих, второй для материалов. Шлюзовой аппарат устанавливают на две шахтные трубы, которые собирают из отдельных металлических звеньев и используют для подъема и спуска рабочих, а также вертикального транспорта материалов и грунта.

Спуск рабочих в камеру кессона производят в следующем порядке. Из пассажирского прикамерка выпускают сжатый воздух, что позволяет открыть вовнутрь наружную дверь прикамерка, в которую входят рабочие. Дверь закрывают и в прикамерок из центральной шлюзовой камеры подают сжатый воздух. Когда давление воздуха в прикамерке станет равным давлению воздуха в центральной шлюзовой камере, открывают дверь между ними и рабочие переходят в эту камеру, а потом по металлической лестнице, установленной в шахтной трубе, спускаются в камеру кессона. Подъем рабочих в центральную шлюзовую камеру и выход их наружу осуществляют в обратном порядке.

Изменение давления от нормального к повышенному (процесс шлюзования) и от повышенного к нормальному (процесс вышлюзовывания) в пассажирском прикамерке необходимо производить так, чтобы рабочие могли постепенно приспособиться к новым условиям. Время, потребное для шлюзования, тем больше, чем выше давление воздуха в кессоне.

Для возможности отжатия воды из рабочей камеры кессона избыточное (сверх нормального) давление воздуха в ней должно несколько превышать гидростатическое давление на уровне низа ножа кессона.

Наибольшее избыточное давление, при котором разрешается работать людям в кессоне, равно 400 кПа. Это определяет максимальную глубину погружения кессона от уровня воды в 40 м.

После достижения проектной глубины заложения фундамента камеру кессона заполняют бетонной смесью (рис. 9.2,6). Затем демонтируют шлюзовой аппарат и шахтные трубы; вертикальную шахту заполняют бетонной смесью. В результате получается массивный фундамент глубокого заложения, на котором возводят кладку над фундаментной части опоры.

Преимущество кессонов по сравнению с другими типами фундаментов заключается в том, что они позволяют возводить фундамент глубокого заложения в любых гидрогеологических условиях. В рабочей камере кессона возможно освидетельствование и даже испытание грунта основания, что весьма ценно.

Кессоны имеют и существенные недостатки, к которым в первую очередь следует отнести вредное воздействие сжатого воздуха на организм рабочих, большой объем бетонной кладки в массивной конструкции фундамента, не индустриальность конструкции и высокую стоимость кессонных работ. Если под избыточным давлением до 175 кПа разрешается находиться не свыше 7 ч в сутки, то под давлением в 350—400 кПа максимальное время пребывания составляет только 2 ч, из которых 1 ч затрачивается на процессы шлюзования и только 1 ч используется на полезную работу. В связи с этим стоимость кессонных работ резко возрастает с увеличением глубины погружения кессона в грунт.

Читайте также: