Высота сжатой зоны бетона

Обновлено: 05.05.2024

При расчетах бетонных и железобетонных конструкций по второй группе предельных состояний, в частности при определении прогибов, необходимо знать модуль упругости E (модуль Юнга) бетона при сжатии. При этом следует различать начальный Eb и приведенный Eb1 модули упругости.

Факторы, влияющие на значение расчетного модуля упругости

Более подробно сущность модуля упругости, предела пропорциональности, предела прочности, нормальных напряжений, деформаций и других понятий рассматривается отдельно. Здесь лишь отметим, что для материалов, у которых предел пропорциональности незначительно меньше предела текучести, можно использовать линейную деформационную модель. Т.е. предполагать деформации прямо пропорциональными нормальным напряжениям.

Примером таких материалов являются стали различных марок. А вот бетон к таким материалам не относится. Более того, у бетона нет ярко выраженного предела пропорциональности и предела текучести. Диаграмма напряжений бетона при постепенном загружении выглядит приблизительно так:

диаграмма напряжений бетона

Рисунок 324.1

Однако это далеко не единственная из возможных диаграмм напряжений бетона, так как на значение деформаций ε будут влиять не только нормальные напряжения σ, возникающие в поперечных сечениях, но и множество других факторов:

1. Класс бетона

Начальный модуль упругости бетона зависит от класса бетона. Значение начального модуля упругости можно определить по следующей таблице:

Таблица 1. Начальные модули упругости бетона (согласно СП 52-101-2003)

модули упругости бетона по новым нормам

2. Время приложения нагрузки

При кратковременном действии нагрузки деформации бетона почти прямо пропорциональны напряжениям, кроме того такие деформации остаются упругими. При расчетах на кратковременное действие нагрузки (до 1-2 часов) значение приведенного модуля упругости на участках без трещин определяется по формуле:

где φb1 = 0.85 - для тяжелых, мелкозернистых и легких бетонов на плотном мелком заполнителе; = 0.7 - для поризованных и легких бетонов на пористом мелком заполнителе.

При длительном действии нагрузки того же значения, деформации начинают увеличиваться до некоторого предела, например при σ = Rb - до точки 1 на диаграмме напряжений. После снятия нагрузки пластические деформации εпл останутся (потому они пластическими и называются), а при повторном загружении до указанного предела деформации будут прямо пропорциональны напряжениям. Процесс нарастания пластических деформаций с течением времени при постоянных нормальных напряжениях называется ползучестью бетона.

Так как при длительном действии нагрузки диаграмма напряжений стремится к показанной на рисунке 324.1, то при расчетах необходимо учитывать нелинейность изменения деформаций при линейно изменяющихся напряжениях. К тому же в изгибаемых элементах нелинейному изменению деформаций препятствует сам материал. Напомню, нормальные напряжения в поперечных сечениях изгибаемых элементов прямо пропорциональны расстоянию от центра тяжести сечения, через который проходит нейтральная линия, до рассматриваемой точки. Таким образом различные слои бетона, работающие совместно, приводят к частичному перераспределению деформаций по высоте элемента, при этом перераспределенную эпюру деформаций можно условно рассматривать как линейную:

изменение деформаций по высоте сечения

Рисунок 324.2

На рисунке 324.2 показана некоторая высота сжатой зоны сечения у, при которой нормальные напряжения σ будут прямо пропорциональны расстоянию от центра тяжести до рассматриваемой точки, это соответствует работе бетона в области условно упругих деформаций. При этом изменение деформаций можно рассматривать по зависимости, показанной на рисунке 324.2.а) или 324.2.б). Часто расчетами на прочность допускается наличие в сжатой области пластического шарнира, при котором изменяется эпюра напряжений и соответственно увеличивается значение деформаций:

изменение деформаций при пластическом шарнире

Рисунок 324.3

На основании этого для упрощения расчетов обычно принимается двухлинейная (рис. 324.3. а) или трехлинейная (рис. 324.3.б) диаграмма состояния сжатого бетона. Согласно СП 52.101.2003 трехлинейная диаграмма выглядит так:

трехлинейная диаграмма состояния сжатого бетона

Рисунок 324.4

Еb1 - при кратковременном действии нагрузки принимается равным Eb, а при длительном действии нагрузки определяется по следующей формуле:

где φb,cr - коэффициент ползучести бетона, определяемый в зависимости от класса бетона и влажности окружающей среды. Таким образом учитывается третий фактор, влияющий на модуль упругости бетона:

3. Влажность воздуха

Значение коэффициента ползучести определяется по следующей таблице:

Таблица 2. Коэффициенты ползучести бетона

коэффициент ползучести бетона

а значения деформаций εbo и εb2 при необходимости (если нормальные напряжения больше 0.6Rb,n) определяются по таблице 3:

Таблица 3. Относительные деформации бетона (согласно СП 52-101.2003)

относительные деформации бетона при длительной нагрузке

4. На значение модуля упругости бетона также влияют температура окружающей среды и интенсивность радиоактивного излучения.

Значение начальных модулей упругости, приведенных в таблице 1, соответствует температуре окружающей среды +20±5 о С и нормальному радиационному фону. При изменении температуры в пределах ±20 от указанного значения влияние температуры на модуль упругости можно не учитывать. А при больших изменениях температуры следует учитывать еще и температурные деформации бетона. В целом уменьшение температуры приводит к увеличению модуля упругости, но и к повышению хрупкости материала, а увеличение температуры - к уменьшению модуля упругости и к увеличению пластичности материала.

А теперь попробуем выяснить, как все эти теоретические цифры можно применить на практике.

Определение значения модуля упругости

Имеется железобетонная прямоугольная плита перекрытия - шарнирно опертая бесконсольная балка размерами h = 20 см, b = 100 см; ho = 17.3 см; пролетом l = 5,6 м; бетон класса В15 (начальный модуль упругости Еb = 245000 кгс/см 2 ; Rb,ser (Rb,n) = 112 кгс/см 2 , Rb = 85 кгс/см 2 ); растянутая арматура класса А400 (Es= 2·10 6 кгс/см 2 ) с площадью поперечного сечения As = 7.69 cм 2 (5 Ø14); полная равномерно распределенная нагрузка q = 7,0 кг/см, сумма постоянных и длительных нагрузок ql = 6.5 кгс/см

1. Сначала выясним, какими будут параметры сечения при расчетном модуле упругости Еb1. Согласно формулы (324.3) и таблицы 2, при классе бетона В15 и при влажности 40-75%:

Eb1 = 245000/(1 + 3.4) = 55681 кгс/см 2

2. Тогда высоту сжатой части приведенного сечения посредине балки можно найти, решив следующее уравнение:

у 3 = 3As(ho - y) 2 Es/bEb1 (321.2.4)

Решение этого уравнения для рассматриваемой плиты даст уl/2 = 8.61 см.

Тогда приведенный момент сопротивления при такой высоте сжатой зоны сечения составит:

W = 2by 2 /3 = 2·100·8.61 2 /3 = 4942.14 см 3

3. Определим значение максимальных нормальных напряжений. Так как увеличение деформаций следует учитывать только при действии постоянных и длительных нагрузок, то значение момента от таких нагрузок составит:

σ = M/W = qll 2 /8W = 6.5·560 2 /(8·4942.14) = 51.56 кгс/см 2 < 0.6Rb,n = 0.6·112 = 67.2 кгс/см 2 (321.3.1)

Это означает, что для дальнейших расчетов плиты на действие длительных нагрузок можно использовать полученное значение модуля упругости бетона без каких-либо дополнительных поправок.

4. Расчетный момент инерции составит

Ip = W·y = 4942.14·8.61 = 42551.8 см 4 (321.5)

5. Значение прогиба при действии постоянных и длительных нагрузок составит

f = k5ql 4 /384Eb1Ip = 0.93·5·6.5·560 4 /(384·55681·42551.8) = 3.27 см (321.6)

где k = 0.93 - коэффициент, учитывающий изменение высоты сжатой зоны поперечного сечения по длине балки. На первый взгляд это кажется странным, ведь когда мы определяли прогиб по начальному модулю упругости бетона и использовали коэффициент k = 0.86, то пригиб составлял 3.065 см, т.е. при использовании коэффициента k = 0.93 прогиб был бы даже больше и составлял 3.31 см. Однако ничего странного в этом нет. Объясню, почему.

При определении прогиба по начальному модулю упругости мы искусственно занизили значение высоты сжатой зоны из-за нарастания пластических деформаций в результате превышения расчетного сопротивления. В данном же случае уменьшение модуля упругости бетона означает увеличение высоты сжатой зоны, а кроме того, значение нормальных напряжений, как показал расчет, не превышает 0.6Rb,n.

В связи с этим разницу при определении приблизительного прогиба по начальному и расчетному модулям упругости бетона можно считать не существенной. Т.е. при определении приблизительного значения прогиба расчет можно выполнять как по начальному значению модуля упругости бетона, так и с учетом его изменения в результате действия длительной нагрузки. Вот в в принципе и все.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье "Записаться на прием к доктору"

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины - номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).

1) при выполнении условия кси предельным случаем разрушения сечения является пластическое разрушение ж/б с достижением в растянутой арматуре напряжений текучести и постепенным разрушением сжатой зоны по бетону;
2) при кси>кси-р в предельном состоянии растянутая арматура недонапряжена и разрушение происходит хрупко, по бетону сжатой зоны?

Извините, если вопрос cлишком очевиден, подзабыл этот момент.(

Вы вопрос-то дочитайте, пожалуйста. Я понимаю, что Байков-ЖБК. Если б там впрямую был дан ответ, я б не тратил Вашего времени.

1) при выполнении условия кси

Да, вы правильно понимаете.
А относительная высота сжатой зоны физического смысла, в принципе, не имеет - только сравнивается с граничной.

А относительная высота сжатой зоны физического смысла, в принципе, не имеет - только сравнивается с граничной.

Противоречия нет. арматура может достигнуть предельного значения (использовать свою прочность) только в случае, когда "плечо": центр сжатой зоны бетона - центр арматура будет максимально возможным, исходя из условия граничной зоны. т.е. не будет переармированным.


Но на следующей странице наоборот написано!

На мой взгляд правильно как раз тут.

----- добавлено через ~2 мин. -----

Противоречия нет. арматура может достигнуть предельного значения (использовать свою прочность) только в случае, когда "плечо": центр сжатой зоны бетона - центр арматура будет максимально возможным, исходя из условия граничной зоны. т.е. не будет переармированным.

Оно не будет переармированным, согласен. Но ведь как раз, когда сечение НЕ переармировано - в предельном состоянии несущая способность арматуры считается исчерпанной, другими словами напряжения в арматуре превышают расчетное сопротивление.

Оно не будет переармированным, согласен. Но ведь как раз, когда сечение НЕ переармировано - в предельном состоянии несущая способность арматуры считается исчерпанной.

Как раз для того, чтобы бетон и арматура полностью использовали свою прочность (сечение было рациональным), составляются уравнения статики и выводится значение граничной высоты сжатой зоны бетона для каждого случая соотношения бетон-арматура.

----- добавлено через ~4 мин. -----
Здесь как раз должно присутствовать понимание физики железобетона. как двухкомпонентной среды.

Как раз для того, чтобы бетон и арматура полностью использовали свою прочность (сечение было рациональным), составляются уравнения статики и выводится значение граничной высоты сжатой зоны бетона для каждого случая соотношения бетон-арматура.

Это я понимаю. Но как из условия кси меньше кси-р может следовать, что напряжения в арматуре меньше предельных? Ведь в п. 4.1.22 именно это написано.

Увеличается "плечо" между арматурой и бетоном.

Никак не следует. Напряжения в арматуре в этом случае равно предельному (расчётному сопротивлению). При этом её деформация (что гораздо важнее) не будет превышать предельную.

Если кси<кси р разрушение происходит из-за перенапряжения арматуры ( добавь еще арматуры, сечение понесет больше), при кси>кси р происходит хрупкое разрушение по бетону, при это напряжение в растянутой арматуре меньше или равно Ry, а дальнейшее увеличение площади растянутой арматуры, приводит только к уменьшению напряжения в ней (влияет на 2 предельное состояние), а не увеличению несущей способности всего сечения.

Добрый вечер.Подскажите ,пожалуйста,я запутался.В изгибаемом элементе прямоугольного сечения с одиночной арматурой если,например, получилось X

Прямоугольные сечения по белорусским нормам считаются так:

Однако с этой формулой возникают какие-то непонятки.

Для начала поясню условные обозначения:
Msd, Mrd - действующий и несущий момент соответственно;
a - коэффициент длительности нагрузки и неблагоприятного ее приложения;
fcd - расчетное сопротивление бетона на сжатие;
bw - ширина сечения;
xeff - эффективная высота условной сжатой зоны сечения;
fyd - расчетное сопротивление арматуры;
As1,As2 - площадь соответственно растянутой и сжатой арматуры;
d - расстояние от грани сжатого бетона до центра тяжести растянутой арматуры;
c1 - расстояние от грани сжатого бетона до центра тяжести сжатой арматуры.

Во-первых отмечу что множитель fyd при значениях площади арматуры As1 и As2 идет без индекса. Можно подумать что эти площади умножаются на одно и тоже значение расчетного сопротивления. Однако, надо думать, эти площади все же следует умножать на соответствующее расчетное сопротивление fyd1 и fyd2. Но это мелочь. Из формулы определения xeff видно что это значение может получиться отрицательным, вслучае если сжатой арматуры у нас больше чем растянутой. Каким в этом случае нужно принимать в расчете xeff - ничего не сказано. Допустим что в этом случае xeff будет равно нулю.

А теперь посчитаем простое сечение. Размеры его 300х400h. Расстояние до центра тяжести растянутой и сжатой арматуры - по 40 мм. Армируем сечение внизу 3 диаметра 10 класса АIII, вверху 3 диаметра 6 класса AI. Бетон - В15. Рассчитав видим - нижний несущий момент сечения (это когда у нас растянута нижняя арматура) - 2.97 т*м, верхний несущий момент (когда растянута верхняя арматура) - 2.77 т*м. Цифры практически одинаковы, хотя по логике верхний момент должен был бы быть значительно меньше. Почему так получается? Обратившись к формулам видно, что при расчете верхнего несущего момента xeff становится отрицательным и несущая способность сечения в этом случае определяется мощностью сжатой арматуры. а так как у нас там 10 диаметр AIII - то и получается такое высокое значение несущей способности.

Может быть в случаях, когда xeff больше чем расстояние от сжатой грани бетона до центра тяжести сжатой арматуры - нужно принимать эту арматуру действительно сжатой, а когда xeff выпрыгивает выше (либо и вовсе становится отрицательным) - тогда и нижняя и верхняя арматура должна считаться как растянутая?

Черт. 95. Армирование изделий переменных размеров
а — стенок балки сеткой с группами поперечных стержней одной длины; б ѕ то же, раздельными прямоугольными сетками; в ѕ то же, прямоугольной сеткой с разрезкой ее по наклонной линии и добавлением окаймляющих стержней; г ѕ сварными сетками для плит переменной ширины, получаемыми разрезкой прямоугольной сетки
Закладные детали и строповочные устройства (петли, трубки и т. п.) допускается крепить к пространственному каркасу при условии обеспечения требуемой точности расположения. Если при этом отклонения от проектного положения закладных деталей могут снизить несущую способность стыков железобетонных изделий, следует предусматривать крепление этих деталей к форме.
5.27. При образовании пространственных каркасов с применением гнутых плоских сеток рекомендуется предусматривать гнутые сетки с очертанием по типу приведенных на черт. 96, а и получаемые на серийном гибочном оборудовании. При этом должны соблюдаться следующие требования:
длина сеток должна быть не более 6 м (при согласовании с заводом-изготовителем допускается до 9 м);


Черт. 96. Примеры очертания гнутых сварных сеток
а ѕ рекомендуемые (сетки изготовляются на серийном оборудовании); б ѕ допускаемые (требующие специального оборудования или приспособления); в — при пакетировании гнутых элементов пространственных каркасов для хранения и транспортирования (расположение прямых продольных стержней показано условно)
длина отгибаемого участка (см. черт. 97, е) ѕ не менее 60 мм и не менее 8d,
диаметр отгибаемых стержней ѕ не более 12 мм (по согласованию с заводом-изготовителем ѕ до 32 мм).
При массовом изготовлении по согласованию с заводом-изготовителем допускаются гнутые сетки и других очертаний, например по типу приведенных на черт. 96, б, изготовление которых требует специального оборудования или приспособлений.
Пространственные каркасы, подлежащие транспортированию или хранению, рекомендуется проектировать из элементов, поддающихся плотному пакетированию (черт. 96, в).
Диаметры стержней гнутых сварных сеток, радиусы и углы загиба, расположение продольных стержней следует назначать с учетом классов применяемой стали в соответствии с черт. 97.



Черт. 97. Параметры гнутых сварных сеток
а, б — место загиба сетки удалено от продольных стержней (параметры загиба принимаются по табл. 37); в — место загиба сетки совпадает с продольным стержнем, расположейным с внутренней стороны сетки (диаметр D принимается по табл. 37 с увеличением на 2d), г ѕ место загиба сетки совпадает с продольным стержнем, расположенным снаружи; д ѕ место загиба сетки совпадает с продольным стержнем большего диаметра, расположенным внутри сетки; е ѕ концевые участки гнутого стержня сетки; d — диаметр сгибаемого стержня; d1 - диаметр продольного стержня; D — диаметр условного круга загиба стержня

и)

к)

Черт. 99. Примеры конструкций пространственных каркасов линейных элементов, изготовляемых с применением контактной точечной сварки
а ѕ из двух сеток и соединительных стержней, привариваемых к продольной арматуре сеток; б ѕ из гнутых сеток и соединительных стержней; в ѕ с навивкой спиральной поперечной арматуры на продольную арматуру; г ѕ из ранее согнутых и сваренных хомутов, нанизанных на продольные стержни; д ѕ из сетки, согнутой до получения замкнутого контура; е — из четырех плоских сеток; ж — из двух сеток и монтажных стержней, перпендикулярных плоскости изгиба и привариваемых к поперечной арматуре сеток (в балках, не работающих на кручение, и в колоннах при общем насыщении продольной арматурой не более 3 %); и ѕ пространственный каркас из нескольких гнутых и плоских сеток и соединительных стержней, привариваемых с помощью сварочных клещей; к ѕ пространственные каркасы при насыщении продольной арматурой до 1 % в виде двух диагонально расположенных плоских сеток; 1 ѕ плоская сетка; 2 ѕ соединительный стержень; 3 ѕ гнутая сетка; 4 ѕ точечная сварка
5.30. Пространственные каркасы линейных элементов могут быть изготовлены без применения контактной точечной сварки следующими способами:
а) соединением сеток с помощью скоб и дуговой сваркой их с хомутами (черт. 100, а). В колоннах, в балках, работающих на кручение, а также в сжатой зоне балок с учитываемой в расчете сжатой арматурой длина односторонних сварных швов l должна быть не менее 6d (где d ѕ диаметр хомута), а монтажных соединений — 3d;
б) соединением плоских сеток с помощью шпилек с вязкой всех пересечений (черт. 100, б), при этом должна быть обеспечена монтажная жесткость каркаса приваркой стержней, планок и т. п.;
в) соединением плоских сеток между собой с помощью дуговой сварки продольных стержней (черт. 100, в) возле всех мест приварки хомутов. Длина швов l должна быть не менее 5d (где d — диаметр хомутов). Такие соединения допускаются при насыщении сечения сжатой арматурой не более 3 %;
г) из продольных стержней и гнутых хомутов с вязкой пересечений (черт. 100, г) и присоединением элементов жесткости (вязаные каркасы);
д) из одной или нескольких гнутых или плоских сеток и соединительных стержней диаметрами не более 6 мм огибанием продольных стержней сеток концами соединительных стержней с образованием замкнутой петли с помощью гибочных ключей (черт. 100, д). Способ рекомендуется при наличии специальных кондукторов, обеспечивающих надежную фиксацию каркасов. При наличии сжатых продольных стержней требования к расстояниям между соединительными стержнями такие же, как к расстояниям между сварными хомутами (см. п. 5.59).
а)

6)

Предельно воспринимаемый момент изгибаемого элемента любой симметричной формы с одиночной арматурой определяется из условия равновесия моментов внешних сил и внутренних усилий, относительно любой точки, рассматриваемого сечения.



Условие прочности нормального сечения

М ≤ Мсеч, М - момент от внешних нагрузок определяется из статического расчета элемента, Мсеч- момент внутренних усилий, определяемый относительно любой точки поперечного сечения элемента. Составим выражения для Мсеч относительно точек 1 и 2.

Mсеч = Nszb = RsAszb = RsAs(h0 – 0,5x)

Mсеч = Nbzb = RbAbzb = Rbbx(h0 – 0,5x)

Положение нейтральной оси

Определяется из условия равенства нулю проекций всех сил на продольную ось элемента.

Отсюда находится высота сжатой зоны «х»

Граничная высота сжатой зоны

Под граничной высотой сжатой зоны xR понимают такую высоту сжатого бетона, при которой происходит исчерпание несущей способности бетона сжатой зоны и растянутой арматуры одновременно (ξR=xR/h0).

Граничную высоту сжатой зоны определяют экспериментально. Для элементов без предварительного напряжения арматуры ξR находят по формуле

Для элементов с предварительным напряжением арматуры ξR определяется по формуле

εs,el – относительная деформация в растянутой арматуре при достижении в этой арматуре расчетного сопротивления:

для арматуры с физическим пределом текучести

для арматуры с условным пределом текучести

εs,el = (Rs + 400 - σsp)/Es,

σsp- напряжения предварительного натяжения арматуры, принимается с учетом всех потерь при коэффициенте γsp= 0,9,

εb,2 – предельная о деформация сжатого бетона

εb,2 = 0,0035, Rb, Es, σsp – в МПа.

Если соблюдается условие ξ = х / h0 ≤ ξR расчетное сопротивление напрягаемой арматуры Rs допускается увеличивать путем умножения на коэффициент условий работы

γs3 = 1,25 – 0,25 ξ/ ξ R ≤ 1,1.

Если ξ/ ξ R αR требуется увеличить сечение или повысить класс бетона или установить сжатую арматуру. Если не поможет попытаться выполнить первую, вторую и третью рекомендации одновременно.

Практический расчет прочности нормальных сечений при ξ = х / h0 ≤ ξR

Выполняется статический расчет и определяются усилия М, Q, N.

Вычисляется табличный коэффициент αm.

αm= А0= М / Rbbh02

56. Можно ли к напрягаемой арматуре присоединять другую арматуру?

Ни в коем случае. Во-первых, это дополнительная нагрузка, которая оттягивает напрягаемую арматуру и увеличивает в ней усилие натяжения. Во-вторых, в случае приварки дополнительной арматуры, в месте сварки произойдет разупрочнение высокопрочной стали. Все это может привести к обрыву напрягаемой арматуры.

3. ПРОЧНОСТЬ ПРИ ПОПЕРЕЧНОМ ИЗГИБЕ

57. Почему прочность изгибаемых элементов рассчитывают по нормальным и наклонным сечениям?

Это связано с направлением главных напряжений sm: там, где действуют только изгибающие моменты М, а поперечные силы Q отсутствуют или ничтожно малы, направления sm совпадают с направлениями нормальных напряжений sx – на этих участках образуются нормальные трещины, а расчетными являются нормальные сечения; где Q велики, там sm направлены под углом к оси элемента – на этих участках под воздействием главных растягивающих напряжений smt образуются наклонные трещины, а расчетными являются наклонные сечения (рис. 27).

58. В чем суть условия прочности?

Суть в том, чтобы несущая способность сечения была не ниже усилия от внешней нагрузки, например, при изгибе М ≤ Мu, где М – изгибающий момент в нормальном сечении от внешней нагрузки, Мu – расчетный изгибающий момент, который может воспринять это сечение.

3.1. Нормальные сечения

59. Как обеспечивается несущая способность нормального сечения на изгиб?

Обеспечивается моментом Мu внутренней пары сил. Одна из них – равнодействующая растягивающих усилий в арматуре Ns, другая – равнодействующая сжимающих усилий в бетоне (и в сжатой арматуре – если таковая имеется) Nb. Чем больше эти силы или чем больше расстояние между ними z (плечо внутренней пары), тем больший изгибающий момент М может выдержать сечение, тем выше его несущая способность: Мu= Nbz. Отсюда следует, что с увеличением армирования или рабочей высоты сечения h0 растет его несущая способность (рис. 28).

60. Можно ли неограниченно увеличивать расход растянутой арматуры для повышения несущей способности нормального сечения?

Нет, нельзя. Ведь при увеличении Ns автоматически увеличивается и Nb, иначе не соблюдается условие статики Nb = Ns. В свою очередь, величина Nb = RbAb может увеличиваться либо за счет повышения прочности бетона Rb, либо за счет увеличения площади сжатой зоны сечения Аb, а последняя имеет свои пределы, которые определяются граничной высотой сжатой зоны хR. Если фактическая высота сжатой зоны х выйдет за пределы граничной высоты хR, то растянутая арматура S начинает работать неэффективно и увеличение ее расхода пользы не принесет.

61. Что такое граничная высота сжатой зоны?

Это такая высота (абсолютная хR или относительная xR = xR / ho), при которой в предельной по прочности стадии, т.е. перед разрушением, напряжения в сжатом бетонеsb и в растянутой арматуре ss одновременно достигают своих предельных значений (расчетных сопротивлений) Rb и Rs – такое сечение называют нормально армированным. Если армирование уменьшить, то высота сжатой зоны тоже уменьшится и станет меньше граничной, т.е. х xR – такое сечение называют переармированным. Разумеется, названия эти условные и в нормативной литературе отсутствуют, однако они настолько кратки и понятны, что уже много десятилетий употребляются в научном и инженерном обиходе.

62. Как работают слабо-, нормально- и переармированные сечения?

Еще раз отметим, что по условиям статики Nb = Ns, или RbAb = RsAs. Отсюда видно, что с увеличением Аs увеличивается и Аb, а значит, увеличивается и х. С помощью схем на рис. 29 рассмотрим, как деформируются бетон и арматура перед разрушением нормального сечения в зависимости от степени армирования.

Граничная высота сжатой зоны

В сечениях, нормальных к продольной оси элементов,— изгибаемых, внецентренно сжатых, внецентренно растянутых при двузначной эпюре напряжений характерно одно и то же напряженно-деформированное состояние. В расчетах прочности усилия, воспринимаемые сечением, нормальным к продольной оси элемента, определяют по расчетным сопротивлениям материалов с учетом коэффициентов условий работы. При этом принимают следующие исходные положения: бетон растянутой зоны не работает — сопротивление Rbt равно нулю; бетон сжатой зоны испытывает расчетное сопротивление Rb — эпюра напряжений прямоугольная; продольная растянутая арматура испытывает напряжения, не превышающие расчетное сопротивление; продольная арматура в сжатой зоне сечения испытывает напряжение osc. В общем случае условие прочности при любом из перечисленных внешних воздействий формулируется в виде требования о том, чтобы момент внешних снл не превосходил момента внутренних усилий. Для расчета прочности внецентренно сжатых элементов в нормах приводится другая упрощенная зависимость по определению граничной высоты сжатой зоны. Таким образом, в общем случае расчет прочности сечения, нормального к продольной оси, производится в зависимости от значения относительной высоты сжатой зоны.

Напряжения высокопрочной арматуры as в предельном состоянии могут превышать условный предел текучести.

6. Что такое усадка бетона?

Это свойство бетона самопроизвольно уменьшаться в объеме (укорачиваться во всех направлениях) в процессе твердения и набора прочности в воздушной среде. Усадке подвергается не весь бетон, а только цементный камень. Уменьшаясь в объеме, он сжимает встречающиеся препятствия (крупный заполнитель, арматуру), от которых, в свою очередь, получает реакции противодействия. Следовательно, в препятствии возникают сжимающие, а в цементном камне растягивающие напряжения. Последние приводят к появлению усадочных трещин. Чем меньше защитный слой бетона и чем больше диаметр арматуры, тем больше вероятность образования усадочных трещин на поверхности бетона (вот, кстати, еще одна причина, почему толщина защитного слоя зависит от диаметра арматуры). Если в обычной арматуре усадка вызывает сжимающие напряжения, то в преднапряженной приводит к уменьшению (потерям) растягивающих напряжений.

7. Почему различают призменную и кубиковую прочность бетона при сжатии?

Призменная прочность Rbнаиболее точно соответствует реальной прочности бетона в конструкциях, ее определяют испытанием стандартных призм размерами 150150600 мм. Однако изготовление призм требует вчетверо больше расхода бетона, чем изготовление кубов, а их испытание – дело очень трудоемкое (много времени отнимает центрирование призмы на прессе) и требующее дополнительных приборов. Поэтому в строительной практике призмы заменены кубами размерами 150150150 мм, хотя их прочностьR на 33. 37 % выше, чемRb(вызвано это, главным образом, влиянием сил трения между плитами пресса и опорными гранями куба).RbиRсвязаны между собой эмпирической зависимостью:Rb = (0,77– 0,001R)R.

8.Как можно увеличить сопротивление бетона сЖатию?

Разрушение бетонных призм происходит вследствие поперечных деформаций, вызывающих продольные трещины (рис. 7,а). Если призму стянуть поперечными хомутами, то поперечные деформации уменьшатся, продольные трещины появятся позже, разрушение произойдет при более высокой нагрузке – сработает эффект обоймы. Роль внешних хомутов с успехом может выполнить и поперечная (косвенная) арматура в виде сеток или спиралей. Растягиваясь под влиянием поперечных деформаций бетона, арматура сопротивляется и сама воздействует на бетон в виде сжимающих сосредоточенных сил поперечного направления (рис. 7,б).



9. В чем различие между марками и классами бетона по прочности на сжатие?

Марка М– это средняя кубиковая прочность бетонаRв кг/см2; в про­екти­ровании железобетонных конструкций с 1986 г. не применяется, но в строительной практике по-прежнему имеет хождение. КлассВ– это кубиковая прочность в МПа с обеспеченностью (доверительной вероятностью) 0,95. Как и любой другой материал, бетон обладает неоднородной прочностью – отRminдоRmax. Если изменчивость прочности представить в виде кривой нормального распределения (рис. 8), гдеn – число испытаний, то маркаМбудет соответствовать ее вершине, а классВчисленно соответствует 0,0764М(при коэффициенте вариации 0,135). Например,В30примерно соответствуетМ400.

10. Что такое “мягкая” и “твердая” арматурная сталь?

“Мягкая” арматура (классы А-I, A-II, A-III) на диаграмме растяжения (рис. 9,а) имеет три главных участка: упругие деформации (здесь действует закон Гука), площадку текучести при напряжениях pl(предел текучести) и упруго-пластические деформации (криволинейный участок). При проектировании конструкций используют первый и второй участки. Текучесть стали в той или иной степени учитывают в расчетах нормальных сечений на изгиб (при слабом армировании, при многорядном расположении арматуры и т.д.), в расчетах статически неопределимых конструкций по методу предельного равновесия и в других случаях. Третий участок в расчетах не участвует – деформации там столь велики, что в реальных условиях они соответствуют уже разрушению конструкций.

“Твердая”, или высокопрочная арматура (классы А-IV, Ат-IVи выше, B-II, Bp-II, K-7, K-19) не имеет физического предела текучести (рис. 9,б), она деформируется упруго до предела пропорциональности, а далее диаграмма постепенно искривляется. В качестве границы безопасной работы принят условный предел текучести02, при котором остаточные, т.е. пластические удлинения составляют 0,2 %. У “твердых” сталей прочность выше, чем у “мягких”, но зато меньше удлинения при разрыве, т.е. у них хуже пластические свойства, они более хрупкие. “Мягкая” и “твердая” сталь – понятия, разумеется, условные и в официальных документах отсутствуют, но они очень удобны в обиходе, потому их широко используют в научно-технической литературе.

Читайте также: