Правила армирования фундамента для насоса

Обновлено: 27.04.2024

Здравствуйте! Кто знает, подскажите пожалуйста, справедлив ли минимальный процент армирования, указанный в разделе Конструктивные требования СП, для массивных железобетонных фундаментов? Возникают споры и сомнения, какой же диаметр арматуры назначать для фундамента толщиной приметно 2м под ГПА, по минимальному проценту армирования получается 25 арматура с шагом 200мм, в СНиПе фундаменты с динамическими нагрузками указано просто-не менее d12. Уже весь и-нет перерыла в поисках литературы на эту тему, ничего не нахожу.

Проектирование гидротехнических сооружений

Раз фундамент массивный, армирование наверняка не расчётное? А если так - ставите д12 по СНиПу на фундаменты с динамическими нагрузками, обзываете это конструктивным армированием (проще говоря от растрескивания), а сам фундамент обзываете БЕТОННЫМ вместо железобетонного. Тогда на него требование о минимальном проценте армирования не распространяется.

Считали мы как то такой фундамент, 2х4х3, в НИИЖБе порекомендовали арматуру подбирать по СНиП гидротехнические сооружения , вообщем считать по напряжениям в бетоне, так и пришлось моделировать куб объемниками и вычислять напряжения.

Проектирование гидротехнических сооружений

Считали мы как то такой фундамент, 2х4х3, в НИИЖБе порекомендовали арматуру подбирать по СНиП гидротехнические сооружения , вообщем считать по напряжениям в бетоне, так и пришлось моделировать куб объемниками и вычислять напряжения.

ну и какие напряжения получились?
что-то мне кажется, что конструктивная арматура д12 с шагом 200х200 окажется в несколько раз толще, чем требуется по расчёту объёмниками

Учитывали конечно и конструктивную и расчетную, присутствовал и 16 диаметр насколько помню, от нагрузки зависит ведь тоже . Считали несколько лет назад, в микрофе, напряжения конечно не помню, все же не каждый день такое считаешь.

Проектирование гидротехнических сооружений

Учитывали конечно и конструктивную и расчетную, присутствовал и 16 диаметр насколько помню, от нагрузки зависит ведь тоже . Считали несколько лет назад, в микрофе, напряжения конечно не помню, все же не каждый день такое считаешь.

Это какие же должны быть нагрузки, чтобы в массивном бетонном блоке размерами 2х4х3м возникли такие усилия, чтоб арматура 16 по расчёту вылезла. На сжатие бетон такого сечения имеет совершенно невероятную несущую способность. Значит на изгиб? - Если 3х4 это длина и ширина, а 2м - толщина, то при арматуре д16 получается момент в сечении порядка 60-70тм должен быть. С 4м длины плиты, на упругом основании, такой момент получить не могу представить.
но если говорите что было - значит наверное возможно

Сергей Юрьевич
Обычно в таких случаях говорят, сказанул как в лужу п-л.
Они бы еще ВНИГовскую методику добавили, по охлаждению блоков.

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

Моменты были не помню какие, но большие. Помню только что на верх блока была установлена металическая подпорка под углом, которая передавала до 300т сдвигающей силы, для этого и были установлены на фундаментную плиту эти кубы из бетона с контрфорсами для равномерного распределения нагрузки по плите.

DDlis
Не шути так, для кубика 3х4м толщиной 2 м, больших моментов не будет, даже при нагрузке в 300 тн.

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

Ну армирование считал не я, помню только эту нагрузку. Может и процент армирования брали, давно было. Ну а если не просто разговаривать, а отвечать на четко поставленый вопрос, на который начал отвечать только Сергей Юрьевич, то могу сказать то что уже писал, ННИЖБ отослал к гидротехническому СНиПу считать по напряжениям, так же на всякий случай спросили у техсофта как искать арматуру в объемниках, считали в микрофе, тоже порекомендовали этот же СНиП , благо ребята там сидят грамотные, так что расчет по напряжениям и конечно как сказал Сергей Юрьевич, процент армирования.

Здравствуйте! Кто знает, подскажите пожалуйста, справедлив ли минимальный процент армирования, указанный в разделе Конструктивные требования СП, для массивных железобетонных фундаментов? Возникают споры и сомнения, какой же диаметр арматуры назначать для фундамента толщиной приметно 2м под ГПА, по минимальному проценту армирования получается 25 арматура с шагом 200мм, в СНиПе фундаменты с динамическими нагрузками указано просто-не менее d12. Уже весь и-нет перерыла в поисках литературы на эту тему, ничего не нахожу.

При проектировании массивных фундаментов оборудования пользуйтесь руководством по проектированию фундаментов оборудования, в котором указаны диаметры нижней сетки и верхней, диаметр верхней зависит от диаметра анкерных болтов.

Во наговорили-то.
Поверхности в любом случае надо армировать, хотя бы из предположения того, что сверху слона уронят или кто-нить молотком тюкнет. Так же температурка повлияет не в лучшую сторону.
Рабочее армирование, присоединяюсь к многим отписавшим, скорее всего не потребуется.

П.С. арматуру вообще то всегда подбирают по напряжениям, для тонкостенных элементов справедлива теория плоских сечений, на которой и основан СНИПовский расчет, и поэтому никто не заморачивается. НООООО. Это частный случай работы упругого тела, на котором жизнь не заканчивается.

Ну ну, а какая арматура обычно применяется, для армирования массивных блоков ГЭС?
Уж не та ли про которую Серега говорил?

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

Ну ну, а какая арматура обычно применяется, для армирования массивных блоков ГЭС?
Уж не та ли про которую Серега говорил?

А причем тут это? Проверка моих знаний? Так это пустое, то что там видел на одном чертеже для одного блока одной ГЭС для одного напора, вовсе не значит что все такие.

Ну я то по более видел.
Просто в основном для внутренних блоков и стен в основном шла однотипная арматура, конструктивная.

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

пытаюсь быть инженером

Ну я то по более видел.
Просто в основном для внутренних блоков и стен в основном шла однотипная арматура, конструктивная.

и снова,а как назначить эту конструктивную арматуру?
по СНиП, СП на железобетон (как то не понятно. )?
какое сечение бетонного элемента брать? какой процент армирования?

3.6. Расстояние в свету между арматурными стержнями по высоте и ширине сечения должно обеспечивать совместную работу арматуры с бетоном и назначаться с учетом удобства укладки и уплотнения бетонной смеси.

Расстояние в свету между стержнями для немассивных конструкций следует принимать в соответствии с требованиями СНиП 2.03.01-84.

В массивных железобетонных конструкциях расстояния в свету между стержнями рабочей арматуры по ширине сечения определяются крупностью заполнителя бетона, но не менее 2,5d где d — диаметр рабочей арматуры.

3.7. Толщину защитного слоя бетона следует принимать:

не менее 30 мм для рабочей арматуры и 20 мм для распределительной арматуры и хомутов в балках и плитах высотой до 1м, а также в колоннах с меньшей стороной до 1 м:

не менее 60 мм и не менее диаметра стержня для рабочей и распределительной арматуры массивных конструкций с минимальным размером сечения более 1 м.

Толщину защитного слоя бетона в железобетонных конструкциях морских гидротехнических сооружений необходимо принимать:

для рабочей арматуры стержневой — не менее: 50 мм:

для распределительной арматуры и хомутов — не менее 30 мм.

Для сборных железобетонных элeмeнтoв заводского изготовления при применении бетона класса по прочности на сжатие В15 и выше толщина защитного слоя может быть уменьшена на 10 мм против указанных выше величин.

При эксплуатации железобетонных конструкций в условиях агрессивной среды толщину защитного слоя необходимо назначать с учетом требований СНиП 2.03.11-85.

3.8. В массивных нетрещиностойких железобетонных плитах и стенах сечением высотой 60 см и более с коэффициентом армирования при надлежащем обосновании допускается многорядное расположение арматуры по сечению элемента, способствующее уменьшению максимальной ширины раскрытия трещин по высоте сечения.

3.9. Если стержни арматуры размещаются в два и более ряда, то диаметры стержней рядов должны отличаться друг от друга не более чем на 40 %.

3.10. Из условия долговечности гидротехнических сооружений без предварительного напряжения диаметр арматуры следует принимать для рабочей стержневой арматуры из горячекатаной стали не менее 10 мм, для спиралей и для каркасов и сеток вязаных или изготовленных с применением контактной сварки — не менее 6 мм.

3.11. Продольные стержни растянутой и сжатой арматуры должны быть заведены за нормальное или наклонное к продольной оси элемента сечение, где они не требуются по расчету, в соответствии с требованием СНиП 2.03.01-84.

3.12. Распределительную арматуру для элементов, работающих в одном направлении, следует назначать в размере не более 10% площади рабочей арматуры в месте наибольшего изгибающего момента.

3.13. При выполнении сварных соединений арматуры следует выполнять требования СНиП 2.03.01-84.

3.14. В конструкциях, рассчитываемых на выносливость, в одном сечении должно стыковаться, как правило, не более половины стержней растянутой рабочей арматуры. Применение стыков внахлестку (без сварки и со сваркой) для растянутой рабочей арматуры в этих конструкциях не допускается.

3.15. В изгибаемых элементах при высоте сечения более 700 мм у боковых граней следует устанавливать конструктивные продольные стержни. Расстояние между ними по высоте должно быть не более 400 мм, площадь поперечного сечения — не менее 0,1 % площади сечения бетона со следующими размерами: высота элемента равна расстоянию между стержнями, ширина — половине ширины элемента, но не более 200 мм.

3.16. У всех поверхностей железобетонных элементов, вблизи которых ставится продольная расчетная арматура, необходимо предусматривать также поперечную арматуру, охватывающую крайние продольные стержни. Расстояние между поперечными стержнями у каждой поверхности элемента должно быть не более 500 мм и не более удвоенной ширины грани элемента.

3.17. Во внецентренно сжатых линейных элементах, а также в сжатой зоне изгибаемых элементов при наличии учитываемой в расчете сжатой продольной арматуры необходимо устанавливать хомуты.

Расстояние между хомутами следует принимать в вязаных каркасах не более 15d, в сварных — не более 20d где d - наименьший диаметр сжатой продольной арматуры. В обоих случаях расстояние между хомутами должно быть не более 500 мм. Конструкция поперечной арматуры должна обеспечивать закрепление сжатых продольных стержней от бокового выпучивания в любом направлении. В местах стыковки рабочей арматуры внахлестку без сварки или если общее насыщение элемента продольной арматуры составляет более 3 % хомуты следует устанавливать на расстоянии не более 10d и не более 300 мм.

В массивных внецентренно сжатых элементах, рассчитанных без учета сжатой арматуры, расстояние между конструктивными поперечными связями (хомутами) допускается увеличивать до двух высот (ширин) элемента.

3.18. Расстояние между вертикальными поперечными стержнями в элементах, не имеющих отогнутой арматуры, и в случаях, когда поперечная арматура требуется по расчету, необходимо принимать:

а) на приопорных участках (не менее 1/4 пролета) при высоте сечения менее или равном 450 мм — не более h/2 и не более 150мм;

при высоте сечения более 2000 мм - не более 3/4h и не более 500 мм;

при высоте сечения, равной или более 2000 мм — не более h/З:

б) на остальной части пролета при высоте сечения 300—2000 мм — не более 3/4h м не более 500 мм;

при высоте сечения более 2000 мм — не более 3/4h.

3.19. В элементах, работающих на изгиб с кручением, вязаные хомуты должны быть замкнутыми с перепуском их концов на 30 диаметров хомута, а при сварных каркасах все поперечные стержни обоих направлений должны быть приварены к угловым продольным стержням, образуя замкнутый контур.

3.20. Отверстия в железобетонных элементах следует располагать в пределах ячеек арматурных сеток и каркасов.

Отверстия с размерами, превышающими размеры ячеек сеток, должны окаймляться дополнительной арматурой. Суммарная площадь ее сечения должна быть не менее сечения прерванной рабочей арматуры того же направления.

3.21. При проектировании сталежелезобетонных конструкций, в которых обеспечивается совместная работа арматуры и стальной оболочки, толщину последней следует принимать минимальной по условиям монтажа и транспортирования.

3.22. Арматура железобетонных конструкций должна предусматриваться в виде армоферм, армопакетов, сварных каркасов и сеток.

Типы армоконструкций следует назначать с учетом принятого способа производства работ. Они должны обеспечивать возможность механизированной подачи бетона и тщательной его проработки. Установку арматуры в железобетонных конструкциях необходимо производить индустриальными методами при максимальной экономии металла на конструктивные элементы для закрепления ее в блоке бетонирования.

Увеличение площади сечения арматуры, определенной расчетом на эксплуатационные нагрузки, для восприятия нагрузок строительного периода не допускается.

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

Добрый день! Прошу помощи конструкторов по армированию железобетонных конструкций. Необходимо сделать фундамент под насос "Насос ЦНС 180-297-массой 3670 кг"
1.подскажите подойдет армирование фундамента по приложенной схеме. (на оформление чертежа не обращайте внимание)
2. Для подъема фундамента данного типа подойдут петли влитые в тело фундамента диаметром 16 мм, (если есть узлы пришлите пж чертеж, фото)
"Насос ЦНС 180-297-массой 3670 кг"

----- добавлено через ~1 мин. -----
Ошибочка, фундамент монолитный))))

Для этого фундамента действительно не требуется рабочей арматуры, только конструктивная против усадочных трещин, думаю, можно как у вас - d12 но с шагом 200мм, и сверху ее добавить.

да, я бы тоже так сделал
болты - смотрите пособие и гост по анкерным болтам, или можно (проще и лучше) заложить щпильку на хим.анкер.
решение в шапке темы трудноосуществимо, надо же фиксировать их пространственное положение

"Тогда может сетку снизу вообще не стоит делать, а лучше сверху ее уложить?"
Помнится при СССР было нормой "класть конструктивную арматуру по открытым поверхностям, не соприкасающимся с грунтом"
где именно, не вспомнить. Сегодня Коллеги кладут везде. так им легче, и никто не в обиде. И помощь местной сталилитейной
кстати, отчего б не зафигачить на грунт и синтетическую? этим тоже надо жить

__________________
Если не видите ответа на заданный мне вопрос, то это не значит, что ответ не был опубликован.

Не совсем понял вы предлагаете не делать такую большую бетонную конструкцию? Насос в работе с двигателем постоянно круглые сутки 365 дней в году да и весом в 3,6 тн не слабовато ли будет под него заливать плиту толщиной 300 мм ?

----- добавлено через ~2 мин. -----

А шпильки М16 отлетят точно к чертям, в цеху агресивная воздушная среда сероводорода, они через пол года сгниют(

С учётом постоянной вибрации я бы всё же все грани заармировал сеткой. Можно не из д12, а из д4-6 какой-нибудь с шагом 100. Продаются уже готовые

Насос в работе с двигателем постоянно круглые сутки 365 дней в году да и весом в 3,6 тн не слабовато ли будет под него заливать плиту толщиной 300 мм ?

Тут определяющим будет основание под фундаментом. Просядет или не просядет. 300 мало, но и полтора метра выглядяд избыточными. Разве что для балласта. Или для выведения в нужную отметку.

Тогда М200 слабоват бетон. Не пожалейте на В30 хотя бы. И ещё покрытие ему можно какое-нибудь предусмотреть. Как и металлу.

Покрытие для металла предусмотренно, а вот для бетона нет! Что посоветуете?

----- добавлено через ~3 мин. -----
Касательно геометрических параметров, то информации особо не нашёл, только лишь предположения что вес фундамента должен быть больше веса насосного агрегата в 4-5 раз. Поэтому из этих предположений и планирую строить данный фундамент.

Да их полно. Позвоните в Зику, у них целая куча разных СикаГардов, СикаЛастиков и прочего. Или в Басф. Там тоже разных МастерСилов хватает. Да и вообще дефицита защитных покрытий на рынке не наблюдается - только деньги плати. Но для вашего объёма, не думаю, что будет проблемой купить 5 литров хорошего материала.

Имеет смысл пообщаться с производителем насосов. Они должны дать требования, предъявляемые к фундаменту.
Но они могут ограничиться общими фразами про прочность и горизонтальность в пределах 0,1 градуса например.
Тогда и возникнет вопрос расчёта.

Не совсем понял вы предлагаете не делать такую большую бетонную конструкцию? Насос в работе с двигателем постоянно круглые сутки 365 дней в году да и весом в 3,6 тн не слабовато ли будет под него заливать плиту толщиной 300 мм ?

300 мало, но и полтора метра выглядяд избыточными. Разве что для балласта. Или для выведения в нужную отметку.

Ну хорошо 300мм будет мало (я погорячился) с чем то я с вами согласен, хотя может быть если реально расчет провести то и этой толщины будет достаточно.

Касательно геометрических параметров, то информации особо не нашёл, только лишь предположения что вес фундамента должен быть больше веса насосного агрегата в 4-5 раз. Поэтому из этих предположений и планирую строить данный фундамент.

Вес фундамента должен быть больше чем насос но 4-5 раз как-то многовато, сделайте 0,4-0,5м и у вас фундамент будет весить допустим на 1т или 1,5тонны больше насоса но это потолок толщины такого фундамента, смысл 1.6м делать? По армированию как вы говорите фундамент под насосом будет постоянно в вибрации от двигателя, то нужно просто по всему сечению за армировать его, то есть верхняя/нижняя сетка из 12 шаг 150мм + пешки по боковым граням тоже из 12 ну или 10, и так сделать в двух направлениях фундаментной плиты. По сечению где ширина 1100мм, лучше вместо сетки и двух пешек по краям сделать такие две детали арматурные в виде клюшек которые между собой в нахлесте и создают обрамление граней бетона фундамента. 12 диаметра арматуры с головой тут хватит, так как этот насос через вот такие в основании двутавры или швеллеры которые обрамляют основание насоса не будут передавать на такую плиту большой площади, такой линейной нагрузки, и таких изгибающих моментов, да и фундамент на основании стоит а не в воздухе работает как балка там усилия копеечные, при которой бы этот фундамент трещал, но арматуры все таки надо дать по всем граням, чтобы перехватывать эти вибрации 365 дней в году (да и может быть под эти полосы из швеллеров или двутавров в основании может надо делать какие-то резиновые полосы уплотнители, чтобы прям на сам бетон не передавать удары вибрации). Да и если среда агрессивная то и бетон взять минимум В30 что в посте №10 советуют. Сделать гидроизоляцию всех поверхностей. По шпилькам если говорите что они отлетят или сгниют, так и ваши болты тогда тоже сгниют даже если они и заведены в бетон на 1.4м, что мешает верхушке сгнить (ничего), тоже как-то обработать. Если вы эти 6 болтов объедините через уголки в анкерный блок в двух направлениях, тогда это будет сплошная конструкция и дополнительная анкеровка через эти уголки объединения в теле бетона и ничего не вырвет уже, и проектное положение будет зафиксированное. Удачи.

Первоначально изучить и обеспечить требования СП 26.13330.
Затем СП 22.13330 и СП 63.13330.
А то форумчане понапишут всячину.

Тут у вас два варианта либо лить тумбу эту и армировать конструктивно 0,1% от площади сечения бетона, думаю по такому большому сечению бетона у вас также будет 12 арматура с шагом 150-200 по периметру (тогда как раз и есть смысл в экономии, чтобы сделать меньше толщину фундамента и использовать эту 12 арматуру по максимуму, чтобы не лить столько бетона). Это фундамент, он по любому изгибающие усилия воспринимает и нужно соблюдать конструктивные требования. Ну и второй вариант толщину такую подобрать чтобы у вас также получилось 12мм арматура но уже действительно работала в сечении бетонном от этих усилий которые будут создавать, но как я писал выше там усилия копеечные будут. Как правило инженеры такие фундаменты считают на коленке ну или тупо по запасу подбирают по логике и опыту.

Ну по основанию там ничего не должно проседать, если грамотно выполнить земляные работы, напряжения под подошвой от расчетных нагрузок не больше 0.3кгс/см2, просто нужно грамотно его подготовить, утрамбовать и по бетонной подготовке толщиной 80-100мм залить и все. Также там уже есть существующие фундаменты которые уже за все время работы так уплотнили этот грунт и упрочнили его, что просто сверху сделать песчано-гравийную смесь до определенной отметки, утрамбовать, уплотнить и заливать.

Предлагаю не делать.

Ну хорошо 300мм будет мало (я погорячился) с чем то я с вами согласен, хотя может быть если реально расчет провести то и этой толщины будет достаточно.

Вес фундамента должен быть больше чем насос но 4-5 раз как-то многовато, сделайте 0,4-0,5м и у вас фундамент будет весить допустим на 1т или 1,5тонны больше насоса но это потолок толщины такого фундамента, смысл 1.6м делать? По армированию как вы говорите фундамент под насосом будет постоянно в вибрации от двигателя, то нужно просто по всему сечению за армировать его, то есть верхняя/нижняя сетка из 12 шаг 150мм + пешки по боковым граням тоже из 12 ну или 10, и так сделать в двух направлениях фундаментной плиты. По сечению где ширина 1100мм, лучше вместо сетки и двух пешек по краям сделать такие две детали арматурные в виде клюшек которые между собой в нахлесте и создают обрамление граней бетона фундамента. 12 диаметра арматуры с головой тут хватит, так как этот насос через вот такие в основании двутавры или швеллеры которые обрамляют основание насоса не будут передавать на такую плиту большой площади, такой линейной нагрузки, и таких изгибающих моментов, да и фундамент на основании стоит а не в воздухе работает как балка там усилия копеечные, при которой бы этот фундамент трещал, но арматуры все таки надо дать по всем граням, чтобы перехватывать эти вибрации 365 дней в году (да и может быть под эти полосы из швеллеров или двутавров в основании может надо делать какие-то резиновые полосы уплотнители, чтобы прям на сам бетон не передавать удары вибрации). Да и если среда агрессивная то и бетон взять минимум В30 что в посте №10 советуют. Сделать гидроизоляцию всех поверхностей. По шпилькам если говорите что они отлетят или сгниют, так и ваши болты тогда тоже сгниют даже если они и заведены в бетон на 1.4м, что мешает верхушке сгнить (ничего), тоже как-то обработать. Если вы эти 6 болтов объедините через уголки в анкерный блок в двух направлениях, тогда это будет сплошная конструкция и дополнительная анкеровка через эти уголки объединения в теле бетона и ничего не вырвет уже, и проектное положение будет зафиксированное. Удачи.

----- добавлено через ~2 мин. -----

Тут у вас два варианта либо лить тумбу эту и армировать конструктивно 0,1% от площади сечения бетона, думаю по такому большому сечению бетона у вас также будет 12 арматура с шагом 150-200 по периметру (тогда как раз и есть смысл в экономии, чтобы сделать меньше толщину фундамента и использовать эту 12 арматуру по максимуму, чтобы не лить столько бетона). Это фундамент, он по любому изгибающие усилия воспринимает и нужно соблюдать конструктивные требования. Ну и второй вариант толщину такую подобрать чтобы у вас также получилось 12мм арматура но уже действительно работала в сечении бетонном от этих усилий которые будут создавать, но как я писал выше там усилия копеечные будут. Как правило инженеры такие фундаменты считают на коленке ну или тупо по запасу подбирают по логике и опыту.

Ну по основанию там ничего не должно проседать, если грамотно выполнить земляные работы, напряжения под подошвой от расчетных нагрузок не больше 0.3кгс/см2, просто нужно грамотно его подготовить, утрамбовать и по бетонной подготовке толщиной 80-100мм залить и все. Также там уже есть существующие фундаменты которые уже за все время работы так уплотнили этот грунт и упрочнили его, что просто сверху сделать песчано-гравийную смесь до определенной отметки, утрамбовать, уплотнить и заливать.

----- добавлено через ~5 мин. -----

Предлагаю не делать.

Ну хорошо 300мм будет мало (я погорячился) с чем то я с вами согласен, хотя может быть если реально расчет провести то и этой толщины будет достаточно.

Вес фундамента должен быть больше чем насос но 4-5 раз как-то многовато, сделайте 0,4-0,5м и у вас фундамент будет весить допустим на 1т или 1,5тонны больше насоса но это потолок толщины такого фундамента, смысл 1.6м делать? По армированию как вы говорите фундамент под насосом будет постоянно в вибрации от двигателя, то нужно просто по всему сечению за армировать его, то есть верхняя/нижняя сетка из 12 шаг 150мм + пешки по боковым граням тоже из 12 ну или 10, и так сделать в двух направлениях фундаментной плиты. По сечению где ширина 1100мм, лучше вместо сетки и двух пешек по краям сделать такие две детали арматурные в виде клюшек которые между собой в нахлесте и создают обрамление граней бетона фундамента. 12 диаметра арматуры с головой тут хватит, так как этот насос через вот такие в основании двутавры или швеллеры которые обрамляют основание насоса не будут передавать на такую плиту большой площади, такой линейной нагрузки, и таких изгибающих моментов, да и фундамент на основании стоит а не в воздухе работает как балка там усилия копеечные, при которой бы этот фундамент трещал, но арматуры все таки надо дать по всем граням, чтобы перехватывать эти вибрации 365 дней в году (да и может быть под эти полосы из швеллеров или двутавров в основании может надо делать какие-то резиновые полосы уплотнители, чтобы прям на сам бетон не передавать удары вибрации). Да и если среда агрессивная то и бетон взять минимум В30 что в посте №10 советуют. Сделать гидроизоляцию всех поверхностей. По шпилькам если говорите что они отлетят или сгниют, так и ваши болты тогда тоже сгниют даже если они и заведены в бетон на 1.4м, что мешает верхушке сгнить (ничего), тоже как-то обработать. Если вы эти 6 болтов объедините через уголки в анкерный блок в двух направлениях, тогда это будет сплошная конструкция и дополнительная анкеровка через эти уголки объединения в теле бетона и ничего не вырвет уже, и проектное положение будет зафиксированное. Удачи.

то есть верхняя/нижняя сетка из 12 шаг 150мм + пешки по боковым граням тоже из 12 ну или 10, и так сделать в двух направлениях фундаментной плиты. По сечению где ширина 1100мм, лучше вместо сетки и двух пешек по краям сделать такие две детали арматурные в виде клюшек которые между собой в нахлесте и создают обрамление граней бетона фундамента.
Можно какой нибудь простецк.эскиз для лучшего понимания.

Здравствуйте! Кто знает, подскажите пожалуйста, справедлив ли минимальный процент армирования, указанный в разделе Конструктивные требования СП, для массивных железобетонных фундаментов? Возникают споры и сомнения, какой же диаметр арматуры назначать для фундамента толщиной приметно 2м под ГПА, по минимальному проценту армирования получается 25 арматура с шагом 200мм, в СНиПе фундаменты с динамическими нагрузками указано просто-не менее d12. Уже весь и-нет перерыла в поисках литературы на эту тему, ничего не нахожу.

Проектирование гидротехнических сооружений

Раз фундамент массивный, армирование наверняка не расчётное? А если так - ставите д12 по СНиПу на фундаменты с динамическими нагрузками, обзываете это конструктивным армированием (проще говоря от растрескивания), а сам фундамент обзываете БЕТОННЫМ вместо железобетонного. Тогда на него требование о минимальном проценте армирования не распространяется.

Считали мы как то такой фундамент, 2х4х3, в НИИЖБе порекомендовали арматуру подбирать по СНиП гидротехнические сооружения , вообщем считать по напряжениям в бетоне, так и пришлось моделировать куб объемниками и вычислять напряжения.

Проектирование гидротехнических сооружений

Считали мы как то такой фундамент, 2х4х3, в НИИЖБе порекомендовали арматуру подбирать по СНиП гидротехнические сооружения , вообщем считать по напряжениям в бетоне, так и пришлось моделировать куб объемниками и вычислять напряжения.

ну и какие напряжения получились?
что-то мне кажется, что конструктивная арматура д12 с шагом 200х200 окажется в несколько раз толще, чем требуется по расчёту объёмниками

Учитывали конечно и конструктивную и расчетную, присутствовал и 16 диаметр насколько помню, от нагрузки зависит ведь тоже . Считали несколько лет назад, в микрофе, напряжения конечно не помню, все же не каждый день такое считаешь.

Проектирование гидротехнических сооружений

Учитывали конечно и конструктивную и расчетную, присутствовал и 16 диаметр насколько помню, от нагрузки зависит ведь тоже . Считали несколько лет назад, в микрофе, напряжения конечно не помню, все же не каждый день такое считаешь.

Это какие же должны быть нагрузки, чтобы в массивном бетонном блоке размерами 2х4х3м возникли такие усилия, чтоб арматура 16 по расчёту вылезла. На сжатие бетон такого сечения имеет совершенно невероятную несущую способность. Значит на изгиб? - Если 3х4 это длина и ширина, а 2м - толщина, то при арматуре д16 получается момент в сечении порядка 60-70тм должен быть. С 4м длины плиты, на упругом основании, такой момент получить не могу представить.
но если говорите что было - значит наверное возможно

Сергей Юрьевич
Обычно в таких случаях говорят, сказанул как в лужу п-л.
Они бы еще ВНИГовскую методику добавили, по охлаждению блоков.

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

Моменты были не помню какие, но большие. Помню только что на верх блока была установлена металическая подпорка под углом, которая передавала до 300т сдвигающей силы, для этого и были установлены на фундаментную плиту эти кубы из бетона с контрфорсами для равномерного распределения нагрузки по плите.

DDlis
Не шути так, для кубика 3х4м толщиной 2 м, больших моментов не будет, даже при нагрузке в 300 тн.

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

Ну армирование считал не я, помню только эту нагрузку. Может и процент армирования брали, давно было. Ну а если не просто разговаривать, а отвечать на четко поставленый вопрос, на который начал отвечать только Сергей Юрьевич, то могу сказать то что уже писал, ННИЖБ отослал к гидротехническому СНиПу считать по напряжениям, так же на всякий случай спросили у техсофта как искать арматуру в объемниках, считали в микрофе, тоже порекомендовали этот же СНиП , благо ребята там сидят грамотные, так что расчет по напряжениям и конечно как сказал Сергей Юрьевич, процент армирования.

Здравствуйте! Кто знает, подскажите пожалуйста, справедлив ли минимальный процент армирования, указанный в разделе Конструктивные требования СП, для массивных железобетонных фундаментов? Возникают споры и сомнения, какой же диаметр арматуры назначать для фундамента толщиной приметно 2м под ГПА, по минимальному проценту армирования получается 25 арматура с шагом 200мм, в СНиПе фундаменты с динамическими нагрузками указано просто-не менее d12. Уже весь и-нет перерыла в поисках литературы на эту тему, ничего не нахожу.

При проектировании массивных фундаментов оборудования пользуйтесь руководством по проектированию фундаментов оборудования, в котором указаны диаметры нижней сетки и верхней, диаметр верхней зависит от диаметра анкерных болтов.

Во наговорили-то.
Поверхности в любом случае надо армировать, хотя бы из предположения того, что сверху слона уронят или кто-нить молотком тюкнет. Так же температурка повлияет не в лучшую сторону.
Рабочее армирование, присоединяюсь к многим отписавшим, скорее всего не потребуется.

П.С. арматуру вообще то всегда подбирают по напряжениям, для тонкостенных элементов справедлива теория плоских сечений, на которой и основан СНИПовский расчет, и поэтому никто не заморачивается. НООООО. Это частный случай работы упругого тела, на котором жизнь не заканчивается.

Ну ну, а какая арматура обычно применяется, для армирования массивных блоков ГЭС?
Уж не та ли про которую Серега говорил?

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

Ну ну, а какая арматура обычно применяется, для армирования массивных блоков ГЭС?
Уж не та ли про которую Серега говорил?

А причем тут это? Проверка моих знаний? Так это пустое, то что там видел на одном чертеже для одного блока одной ГЭС для одного напора, вовсе не значит что все такие.

Ну я то по более видел.
Просто в основном для внутренних блоков и стен в основном шла однотипная арматура, конструктивная.

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

пытаюсь быть инженером

Ну я то по более видел.
Просто в основном для внутренних блоков и стен в основном шла однотипная арматура, конструктивная.

и снова,а как назначить эту конструктивную арматуру?
по СНиП, СП на железобетон (как то не понятно. )?
какое сечение бетонного элемента брать? какой процент армирования?

3.6. Расстояние в свету между арматурными стержнями по высоте и ширине сечения должно обеспечивать совместную работу арматуры с бетоном и назначаться с учетом удобства укладки и уплотнения бетонной смеси.

Расстояние в свету между стержнями для немассивных конструкций следует принимать в соответствии с требованиями СНиП 2.03.01-84.

В массивных железобетонных конструкциях расстояния в свету между стержнями рабочей арматуры по ширине сечения определяются крупностью заполнителя бетона, но не менее 2,5d где d — диаметр рабочей арматуры.

3.7. Толщину защитного слоя бетона следует принимать:

не менее 30 мм для рабочей арматуры и 20 мм для распределительной арматуры и хомутов в балках и плитах высотой до 1м, а также в колоннах с меньшей стороной до 1 м:

не менее 60 мм и не менее диаметра стержня для рабочей и распределительной арматуры массивных конструкций с минимальным размером сечения более 1 м.

Толщину защитного слоя бетона в железобетонных конструкциях морских гидротехнических сооружений необходимо принимать:

для рабочей арматуры стержневой — не менее: 50 мм:

для распределительной арматуры и хомутов — не менее 30 мм.

Для сборных железобетонных элeмeнтoв заводского изготовления при применении бетона класса по прочности на сжатие В15 и выше толщина защитного слоя может быть уменьшена на 10 мм против указанных выше величин.

При эксплуатации железобетонных конструкций в условиях агрессивной среды толщину защитного слоя необходимо назначать с учетом требований СНиП 2.03.11-85.

3.8. В массивных нетрещиностойких железобетонных плитах и стенах сечением высотой 60 см и более с коэффициентом армирования при надлежащем обосновании допускается многорядное расположение арматуры по сечению элемента, способствующее уменьшению максимальной ширины раскрытия трещин по высоте сечения.

3.9. Если стержни арматуры размещаются в два и более ряда, то диаметры стержней рядов должны отличаться друг от друга не более чем на 40 %.

3.10. Из условия долговечности гидротехнических сооружений без предварительного напряжения диаметр арматуры следует принимать для рабочей стержневой арматуры из горячекатаной стали не менее 10 мм, для спиралей и для каркасов и сеток вязаных или изготовленных с применением контактной сварки — не менее 6 мм.

3.11. Продольные стержни растянутой и сжатой арматуры должны быть заведены за нормальное или наклонное к продольной оси элемента сечение, где они не требуются по расчету, в соответствии с требованием СНиП 2.03.01-84.

3.12. Распределительную арматуру для элементов, работающих в одном направлении, следует назначать в размере не более 10% площади рабочей арматуры в месте наибольшего изгибающего момента.

3.13. При выполнении сварных соединений арматуры следует выполнять требования СНиП 2.03.01-84.

3.14. В конструкциях, рассчитываемых на выносливость, в одном сечении должно стыковаться, как правило, не более половины стержней растянутой рабочей арматуры. Применение стыков внахлестку (без сварки и со сваркой) для растянутой рабочей арматуры в этих конструкциях не допускается.

3.15. В изгибаемых элементах при высоте сечения более 700 мм у боковых граней следует устанавливать конструктивные продольные стержни. Расстояние между ними по высоте должно быть не более 400 мм, площадь поперечного сечения — не менее 0,1 % площади сечения бетона со следующими размерами: высота элемента равна расстоянию между стержнями, ширина — половине ширины элемента, но не более 200 мм.

3.16. У всех поверхностей железобетонных элементов, вблизи которых ставится продольная расчетная арматура, необходимо предусматривать также поперечную арматуру, охватывающую крайние продольные стержни. Расстояние между поперечными стержнями у каждой поверхности элемента должно быть не более 500 мм и не более удвоенной ширины грани элемента.

3.17. Во внецентренно сжатых линейных элементах, а также в сжатой зоне изгибаемых элементов при наличии учитываемой в расчете сжатой продольной арматуры необходимо устанавливать хомуты.

Расстояние между хомутами следует принимать в вязаных каркасах не более 15d, в сварных — не более 20d где d - наименьший диаметр сжатой продольной арматуры. В обоих случаях расстояние между хомутами должно быть не более 500 мм. Конструкция поперечной арматуры должна обеспечивать закрепление сжатых продольных стержней от бокового выпучивания в любом направлении. В местах стыковки рабочей арматуры внахлестку без сварки или если общее насыщение элемента продольной арматуры составляет более 3 % хомуты следует устанавливать на расстоянии не более 10d и не более 300 мм.

В массивных внецентренно сжатых элементах, рассчитанных без учета сжатой арматуры, расстояние между конструктивными поперечными связями (хомутами) допускается увеличивать до двух высот (ширин) элемента.

3.18. Расстояние между вертикальными поперечными стержнями в элементах, не имеющих отогнутой арматуры, и в случаях, когда поперечная арматура требуется по расчету, необходимо принимать:

а) на приопорных участках (не менее 1/4 пролета) при высоте сечения менее или равном 450 мм — не более h/2 и не более 150мм;

при высоте сечения более 2000 мм - не более 3/4h и не более 500 мм;

при высоте сечения, равной или более 2000 мм — не более h/З:

б) на остальной части пролета при высоте сечения 300—2000 мм — не более 3/4h м не более 500 мм;

при высоте сечения более 2000 мм — не более 3/4h.

3.19. В элементах, работающих на изгиб с кручением, вязаные хомуты должны быть замкнутыми с перепуском их концов на 30 диаметров хомута, а при сварных каркасах все поперечные стержни обоих направлений должны быть приварены к угловым продольным стержням, образуя замкнутый контур.

3.20. Отверстия в железобетонных элементах следует располагать в пределах ячеек арматурных сеток и каркасов.

Отверстия с размерами, превышающими размеры ячеек сеток, должны окаймляться дополнительной арматурой. Суммарная площадь ее сечения должна быть не менее сечения прерванной рабочей арматуры того же направления.

3.21. При проектировании сталежелезобетонных конструкций, в которых обеспечивается совместная работа арматуры и стальной оболочки, толщину последней следует принимать минимальной по условиям монтажа и транспортирования.

3.22. Арматура железобетонных конструкций должна предусматриваться в виде армоферм, армопакетов, сварных каркасов и сеток.

Типы армоконструкций следует назначать с учетом принятого способа производства работ. Они должны обеспечивать возможность механизированной подачи бетона и тщательной его проработки. Установку арматуры в железобетонных конструкциях необходимо производить индустриальными методами при максимальной экономии металла на конструктивные элементы для закрепления ее в блоке бетонирования.

Увеличение площади сечения арматуры, определенной расчетом на эксплуатационные нагрузки, для восприятия нагрузок строительного периода не допускается.

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

ФУНДАМЕНТЫ МАШИН С ДИНАМИЧЕСКИМИ НАГРУЗКАМИ

Foundations for machines with dynamic loads

Дата введения 2013-01-01

Сведения о своде правил

1 ИСПОЛНИТЕЛЬ - Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им.Н.М.Герсеванова (НИИОСП) ОАО "НИЦ "Строительство"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики

4 УТВЕРЖДЕН приказом Министерства регионального развития Российской Федерации (Минрегион России) от 27 декабря 2011 г. N 609 и введен в действие с 1 января 2013 г.

Информация об изменениях к настоящему своду правил публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минрегион России) в сети Интернет

ВНЕСЕНА опечатка (сайт ФАУ "ФЦС" по состоянию на 24.10.2014)

Опечатка внесена изготовителем базы данных

Изменение N 1 внесено изготовителем базы данных

Введение

Актуализация настоящих норм проведена НИИОСП им.Н.М.Герсеванова (руководители темы: д-р техн. наук, проф. В.П.Петрухин, канд. техн. наук И.В.Колыбин, д-р техн. наук, проф. В.И.Шейнин; исполнители: д-р техн. наук, проф. Л.Р.Ставницер, кандидаты техн. наук М.Л.Холмянский, В.С.Поляков). В работе использованы предложения А.Е.Бабского, Е.Г.Бабского, И.Н.Масько (СПбАЭП), А.И.Сердобольского (Главгосэкспертиза России), О.М.Финагенова, Б.В.Цейтлина (ВНИИГ им.Б.Е.Веденеева) и других специалистов.

Изменения N 1 к СП 26.13330.2012 разработано авторским коллективом: руководители темы канд. техн. наук И.В.Колыбин, д-р техн. наук, проф. В.И.Шейнин; исполнитель канд. техн. наук М.Л.Холмянский (НИИОСП им.Н.М.Герсеванова).

1 Область применения

1.1 Настоящие нормы распространяются на проектирование фундаментов машин с динамическими нагрузками, в том числе фундаментов: машин с вращающимися частями (включая турбомашины мощностью до 100 МВт), машин с кривошипно-шатунными механизмами, кузнечных молотов, формовочных машин для литейного производства, формовочных машин для производства сборного железобетона, копрового оборудования бойных площадок, дробильного, прокатного, прессового оборудования, мельничных установок, металлорежущих станков и вращающих печей.

Примечание - Далее наряду с термином "фундаменты машин с динамическими нагрузками" используются термины "фундаменты машин" и "фундаменты".

1.2 Настоящие нормы не распространяются на проектирование фундаментов машин в районах со сложными инженерно-геологическими условиями, в сейсмических районах, на подрабатываемых территориях, на предприятиях с систематическим воздействием повышенных (более 50°С) технологических температур, агрессивных сред и в других особых условиях.

2 Нормативные ссылки

В настоящих нормах приведены ссылки на следующие нормативные документы:

ГОСТ Р 56353-2015 Грунты. Методы лабораторного определения динамических свойств дисперсных грунтов

ГОСТ 12.1.012-2004 ССБТ. Вибрационная безопасность. Общие требования

ГОСТ 263-75 Резина. Метод определения твердости по Шору А

ГОСТ 2695-83* Пиломатериалы лиственных пород. Технические условия

ГОСТ 8486-86* Пиломатериалы хвойных пород. Технические условия

СП 16.13330.2011 "СНиП II-23-81* Стальные конструкции"

СП 20.13330.2011 "СНиП 2.01.07-85* Нагрузки и воздействия"

СП 22.13330.2011 "СНиП 2.02.01-83* Основания зданий и сооружений"

СП 24.13330.2011 "СНиП 2.02.03-85* Свайные фундаменты"

СП 25.13330.2012 "СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах"

СП 28.13330.2012 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии"

СП 43.13330.2012 "СНиП 2.09.03-85 Сооружения промышленных предприятий"

СП 47.13330.2012 "СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения"

СП 63.13330.2012 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения"

3 Термины и определения

Термины и определения приведены в приложении А.

4 Общие положения

4.1 Настоящий свод правил основан на приведенных ниже допущениях и предусматривает, что:

исходные данные для проектирования должны собираться в необходимом объеме, регистрироваться и интерпретироваться специалистами, обладающими соответствующей квалификацией и опытом;

проектирование должно выполняться специалистами, имеющими соответствующие квалификацию и опыт;

должны быть обеспечены координация и связь между специалистами по инженерным изысканиям, проектированию, строительству и машиностроению;

должен быть обеспечен соответствующий контроль качества при производстве строительных изделий и выполнении работ на строительной площадке;

строительные работы, установка и наладка оборудования должны выполняться квалифицированным и опытным персоналом, способным обеспечить требования стандартов и технических условий;

используемые материалы и изделия должны удовлетворять требованиям проекта и технических условий;

техническое обслуживание фундаментов машин с динамическими нагрузками и связанных с ними инженерных систем и машин должно обеспечивать их безопасность и рабочее состояние на весь срок эксплуатации;

фундаменты машин с динамическими нагрузками должны использоваться по их назначению в соответствии с проектом.

4.2 Фундаменты машин с динамическими нагрузками должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) данных, характеризующих назначение, конструктивные и технологические особенности машин с динамическими нагрузками, а также условия их эксплуатации;

в) нагрузок, действующих на фундаменты машин;

г) окружающей застройки и влияния на нее вновь строящихся и реконструируемых фундаментов машин;

д) экологических и санитарно-эпидемиологических требований.

4.3 При проектировании фундаментов машин с динамическими нагрузками должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность на всех стадиях строительства и эксплуатации этих фундаментов. Необходимо проводить технико-экономическое сравнение возможных вариантов проектных решений для выбора наиболее экономичного и надежного проектного решения, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов и других конструкций.

При разработке проектов производства работ и организации строительства должны выполняться требования по обеспечению надежности конструкций на всех стадиях их возведения.

4.4 Работы по проектированию следует вести в соответствии с техническим заданием на проектирование и необходимыми исходными данными (см. 4.2 и подраздел 5.1).

4.5 При проектировании следует учитывать уровень ответственности зданий и сооружений.

4.6 Инженерные изыскания для строительства должны проводиться в соответствии с СП 47.13330, [1], [2], [3], стандартами и другими нормативными документами по инженерным изысканиям и исследованиям грунтов для строительства, а также требованиями 4.7 и подраздела 5.1.

Наименование грунтов оснований в отчетной документации по результатам инженерных изысканий и в проектной документации следует принимать по ГОСТ 25100.

4.7 Результаты инженерных изысканий должны содержать данные, необходимые для выбора конструктивных решений фундаментов машин с динамическими нагрузками и проведения их расчетов по предельным состояниям с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических условий площадки строительства и свойств грунтов, а также вида и объема инженерных мероприятий, необходимых для ее освоения.

Проектирование без соответствующих результатов инженерных изысканий или при их недостаточности не допускается.

Примечание - В необходимых случаях инженерные изыскания следует предусматривать не только для вновь строящихся или реконструируемых фундаментов машин, но и для окружающей застройки, попадающей в зону их влияния.

4.8 При возведении нового объекта или реконструкции существующего необходимо выполнять прогноз распространения колебаний в грунте от фундаментов машин с целью предотвращения недопустимых колебаний зданий и сооружений.

4.9 При планировании и проведении геотехнического мониторинга вновь возводимых или реконструируемых фундаментов машин необходимо учитывать особенности мониторинга фундаментов машин.

Программа мониторинга фундаментов машин должна включать измерение колебаний машин и их фундаментов, а в необходимых случаях - грунта и окружающих зданий и сооружений. Измерения должны обеспечивать возможность проверки всех требований задания на проектирование к колебаниям, включая требования стандартов безопасности труда в части допустимых уровней вибраций и требования к обеспечению нормальной работы машин, оборудования и приборов, расположенных на фундаменте или вблизи него, конструкций и оснований зданий и сооружений. В программе измерения колебаний необходимо указывать:

периодичность измерений (однократно, после текущего ремонта машины с динамическими нагрузками и т.д.);

контролируемые параметры колебаний фундаментов машин, грунта и окружающих зданий и сооружений и их расчетные значения;

требуемая точность и применяемая методика измерений;

схемы установки датчиков.

При обнаружении нарушения требований по ограничению колебаний должно быть проведено детальное обследование с выявлением причин и разработкой рекомендаций по ремонту машин с динамическими нагрузками, усилению их фундаментов или разработкой других мероприятий. При необходимости следует предусматривать обследование колебаний при их искусственном возбуждении.

4.10 При научно-техническом сопровождении строительства объектов, где запроектированы фундаменты машин с динамическими нагрузками, необходимо включать в состав работ по научно-техническому сопровождению раздел "Фундаменты машин с динамическими нагрузками".

4.11 При геотехнической экспертизе для объектов, где проектируются фундаменты машин с динамическими нагрузками, необходимо предусматривать соответствующий анализ программы и результатов инженерных изысканий, проектной документации на вновь возводимые (реконструируемые) фундаменты машин с динамическими нагрузками.

Читайте также: