Парадокс монти холла как увеличить шансы выбрать выигрышную дверь

Обновлено: 06.05.2024

Парадокс Монти Холла — это одна из тех математических задач, над решением которой уже долгое время бьются многие умы, и даже всемирно известных математиков она приводит в затруднение. Хотя идея, лежащая в основе этого парадокса, предельно ясна и понятна. Задача эта, строго говоря, и не парадокс вовсе, но называется так из-за неочевидности и парадоксальности предлагаемых решений и объяснений, которые становятся поводом для самых жарких дискуссий в Интернете. Их накал уступает, пожалуй, лишь спорам из-за оптической иллюзии так называемого «платья раздора» и аудиоиллюзии «Янни и Лорел». Предлагаемое здесь объяснение призвано раз и навсегда развеять все связанные с этим парадоксом вопросы и очень доходчиво разъяснить всем интересующимся его суть.

Парадокс

Парадокс впервые был сформулирован американским математиком Стивом Селвином ещё в 1975 году, но широкую известность он приобрёл благодаря популярному игровому шоу «Давайте заключим сделку». В честь ведущего этой телевикторины, которого звали Монти Холл, парадокс и получил своё название.

В чём же суть парадокса Монти Холла?

Представьте, что перед вами три двери, как показано на рисунке ниже. За двумя дверьми находятся козы, за одной — автомобиль. Надо угадать дверь с автомобилем, и он ваш.

Казалось бы, ничего сложного. Но, как говорилось в одном фильме: «Если бы задача так просто решалась, то армянское радио этим бы не занималось». В своей передаче, после того как участник выбирал дверь, Монти всегда открывал одну из дверей с козой и предлагал ему поменять свой выбор. А вы поменяли бы или нет?

Этот вопрос многих ставит в тупик. Люди обычно думают: «Ну какая разница: остались две двери, и машина может с одинаковой вероятностью 50% оказаться как за одной, так и за другой дверью?». … И оказываются неправы. Правильный ответ — всегда менять первоначальный выбор. Поступая так, вы удваиваете свои шансы на победу.

Удивлены? Такой ответ для многих становится откровением: мало кто ожидает этого. Давайте подробно разберёмся, как так получается.

Итак, вы выбрали одну из трёх дверей. Вероятность того, что машина окажется именно за ней, составляет 1/3. А вероятность того, что она окажется за одной из двух оставшихся (то есть не выбранных вами) дверей, будет 2/3. Это должно быть понятно.

На рисунке у нас наглядно показаны эти вероятности: 1/3 слева и 2/3 справа.

Теперь Монти открывает одну из невыбранных дверей — тех, что справа. И открывает он всегда ту, за которой коза.

Вероятности остаются неизменными: 1/3 слева (ваш первоначальный выбор) и 2/3 справа. Изменилось лишь то, что справа одна дверь теперь открыта, но вероятность для оставшейся неоткрытой двери здесь та же, что была прежде для обеих.

Если не совсем понятно, попробуем объяснить на примере с десятью дверьми.

Выбранная вами дверь будет слева, остальные девять — справа (как на рисунке ниже). Вероятность того, что вы угадали дверь с машиной, будет 1/10. Вероятность того, что вы не угадали и машина окажется за одной из оставшихся девяти дверей, будет 9/10.

Дальше Монти открывает восемь из этих невыбранных девяти дверей, причем за всеми восемью — козы. Как поступить теперь: поменять свой выбор или нет? Конечно, поменять! Ведь теперь восемь из девяти дверей справа открыты, а вероятность того, что машина окажется за оставшейся девятой дверью (как мы уже посчитали ранее), равна 9/10.

Ответ на вопрос станет ещё очевиднее, если представить, что Монти даёт вам возможность открыть не одну оставшуюся справа неоткрытой дверь, а сразу все девять!

Вот и всё. Это так просто! Однако важно не забывать, что всегда есть вероятность проигрыша. Верное решение определяется стратегией. Правильная стратегия — делать так, чтобы шансы на победу были максимальными или хотя бы такими, которые позволяют больше выигрывать, чем проигрывать.

Усложняем задачу

Предположим, Монти хочет усложнить для вас задачу и открывает лишь одну дверь с правой стороны. Как вы поступите теперь: выберите одну из восьми закрытых дверей справа или не станете менять свой выбор?

Здесь придётся кое-что посчитать. Вероятность того, что машина окажется за одной из девяти дверей справа, равна 9/10. Разделим её на количество оставшихся неоткрытыми дверей (8):

Это будет вероятность того, что машина окажется за одной из восьми остающихся закрытыми дверей справа. И она чуть больше вероятности 0,1 (1/10), что первоначально выбранная вами дверь слева окажется с машиной. Поэтому вам всё же предпочтительнее поменять свой выбор, хотя шансы выиграть машину и в этом случае будут очень низкими. По этой же формуле можно посчитать вероятность для любого количества неоткрытых дверей.

Вот и весь парадокс Монти Холла вкратце. Не знаю, можно ли придумать более простое его объяснение? Я лишь выношу на ваш суд свой взгляд, отличный от тех, что изложены в большинстве других объяснений, в которых вы можете тоже почерпнуть много полезного. Надеюсь, что после прочтения статьи вы приблизились к пониманию парадокса Монти Холла.

Сегодня SMM-специалист нашей команды Артур расскажет о том, что такое парадокс Монти Холла и как можно помочь человеку принять верное решение, проанализировав этот парадокс.

В 1963 году мир эрудитов окунулся в жаркий спор из-за игрового телешоу. В этом шоу ведущий предлагал участникам решить различные задачи и дилеммы, которые казались элементарными. С каждым шагом к «супер-игре» — ставки увеличивались. Но без логического мышления люди проигрывали, поддаваясь интуиции.

Через несколько лет была представлена задачка, которая вызвала шквал эмоций и дискуссий, которая и получила свое название в честь ведущего — Монти Холла. Почему?

Ведущий предлагал сыграть участнику в «супер-игру», суть которой заключалась в следующем:

На выбор давалось 3 двери. За двумя из них были спрятаны козы, а за третьей — машина. Участник должен был угадать дверь с ценным призом за ней, в ином случае он уходил ни с чем.Участник делал выбор, допустим, дверь № 2. Перед тем как показать, что находится за дверью, Холл открывал любую из 2 оставшихся дверей, например, № 1, за которой находилась коза. Он знал содержимое.

Оставалось две закрытые двери. Монти предлагал изменить свой выбор. Может игрок передумает и откроет дверь № 3? Участников смущала такая психологическая уловка, и они продолжали настаивать на своей позиции.

У людей появлялась уверенность, что они выбрали верную дверь и вот-вот получат свой новенький автомобиль. Ну, конечно же, ведь интуиция подсказывает ему не менять позицию, а ведущий лишь хочет помешать ему получить приз. И проигрывали.

Давайте вспомним теорию вероятности. Изначально, вероятность выбора каждой двери равна 1/3. Исключаем одну дверь и вероятность выбора каждой двери становится равна ½. Верно?

Нет. Не верно. Садитесь. Вам сегодня 2.

Шансы выбрать приз за одной из 2-х дверей не равны. Потому что исключение одной двери создало новое событие, вероятность которого составляет 1/3+1/3=2/3. Значит, шансы выиграть автомобиль за новой дверью выросли вдвое.

Чтобы вычислить вероятность в данной задаче, достаточно знать основы теории вероятности.
Фото с Яндекс.Картинки

Все очень просто. Парадокс Монти Холла действительно работает, но он не гарантирует выигрыш, а лишь увеличивает шансы на него.

Ухх, ребят. Подобрались к самому вкусному. Если начать углубляться в эту тему, то мы сталкиваемся c проблемой применения рационального мышления.

Уже давно доказано, что человек склонен ошибаться в тех ситуациях, в которых нужно выполнить простые математические расчеты, чего уж тут говорить об оценке вероятности. Т.е. человек предпочитает автоматическое решение.

Об этом хорошо написано в книге Дэвида Канемана «Думай медленно, решай быстро». Канеман считает, что существует 2 системы, на основании которых человек принимает решение:

1) В первом случае — это «быстрое», интуитивное мышление. Решение принимается на основании уже известных, похожих вариантов. Например, по выражению лица делается заключение о настроении человека.

Вернемся к парадоксу. Наличие трех одинаковых дверей, как по стилю, так и по цвету, заставляет человека думать, что после открытия одной двери, вероятность становится 50/50.

Это происходит потому что мозгу не за что сразу зацепиться. Мышление работает на автомате и не переходит во вторую фазу, а сразу выдает решение.

Система № 2 — это «медленное», рациональное мышление. Иногда его еще называют математическим или статическим.

Наличие дверей разного цвета или стиля могло бы привести к активации второй системы. Тогда человек начал бы анализировать, чтобы принять решение, т.к. в этом случае оно не очевидно.

​Наличие дверей разного цвета или стиля значительно увеличивает вероятность успешного выбора. Фото с Яндекс.Картинки

Таким образом, следует помнить, что:

1. Очевидное решение может быть не таким верным, как кажется изначально;

2. Внешне различные варианты могут никак не отличаться. Двери в шоу Холла выглядят совершенно одинаково, создавая визуальную симметрию;

3. Человек склонен игнорировать расчет вероятности, потому что он уже видел подобные ситуации и якобы знает, какой выбор в них является верным.

И, наконец-то, перейдем к «вишенке на торте».

Правило очень простое:

если статистические данные корректно визуализировать, то это повышает эффективность выбора стратегии человеком, а следовательно, можно заранее спрогнозировать, какое решение примет человек. И решение это будет рациональным, а не основанным на интуиции.

Так что, используйте данное правило при подаче материала как в соцсетях для потенциальных учеников, так и для учеников в ваших программах.

Статистика как коллективная интуиция

На примере парадокса Монти Холла посмотрим, что общего между статистикой и интуицией, и как визуализация данных может помочь принять правильное решение, основанное на статистической оценке.

Парадокс Монти Холла получил свое название от ведущего телевизионного шоу "Let's Make a Deal". Игровая ситуация:

Перед игроком три двери, за одной из которых приз. Игрок выбирает одну из них, не открывая. После этого ведущий, открывает одну из двух оставшихся дверей. Ведущий знает, за какой из дверей приз, и всегда открывает дверь, за которой приза нет. Далее игроку предлагается поменять первоначально выбранную дверь на другую, остающуюся закрытой. Вопрос: повышаются ли шансы игрока при изменении выбранной двери?

Парадокс заключается в том, что интуитивно кажется, что смена двери ничего не дает. Приз либо за одной дверью, либо за другой. Ситуация симметричная, и вероятности одинаковы. Однако, теория вероятностей показывает, что смена двери повышает шансы выигрыша в два раза.

Чтобы прийти к статистически правильному решению, игрок должен:

  1. Мысленно перейти от выбора одной из двух дверей к выбору одной из двух стратегий: "stay" (оставить изначально выбранную дверь) и "switch" (сменить дверь на другую).
  2. Построить статистическую модель игровой ситуации и оценить обе стратегии.
  3. На основании статистических оценок отказаться от первоначально выбранной двери.

Первый шаг ключевой. Если остаться на уровне выбора дверей, то ничего не получится, ведь приз, так или иначе, за одной из двух дверей. А они выглядят одинаково — ситуация как будто симметричная. Можно не менять дверь и выиграть, можно поменять дверь и проиграть. Возможно, смена двери повышает шансы на успех, но не гарантирует его. Делая первый шаг, игрок не должен путать "повышение шансов" и "гарантированный выигрыш".

Второй шаг еще сложнее: построить и применить статистическую модель задачи. Цепочка рассуждений может быть такой.

Сначала игрок делает выбор одной из трех дверей. По условию приз размещен за любой из них с одинаковой вероятностью. На первом шаге вероятность выбора приза равна 1/3. На рисунке ниже изображено дерево решений после первоначального выбора игрока. Дверь, за которой приз, закрашена:

Монти Холл Дерево решений 1

Дальше ведущий открывает одну из дверей, не выбранных игроком. Игроку кажется, что ведущий выбирает дверь, которую открыть. Однако, это не всегда так. Поведение ведущего обусловлено первым выбором игрока:

  • Если игрок сразу выбрал дверь с призом, то ведущий может выбрать любую из двух закрытых. Ни за одной из них приза нет.
  • Если игрок выбрал дверь без приза, то ведущий всегда открывает одну дверь. Дверь, за которой приз, ведущий открыть не может по условиям игры.

Вероятность того, что приз за дверью, которую ведущий оставил закрытой, рассчитывается по формуле условной вероятности. И эти вероятности различаются для разных исходов, как показывает дерево решений. Закрытые двери, за которыми приз, закрашены:

Монти Холл Дерево решений 2

Игрок суммирует вероятности по каждой стратегии и получает их статистическую оценку. На рисунке видно, что вероятность выигрыша при смене двери (стратегия "switch") в два раза выше:

Монти Холл Дерево решений 3

После того, как стратегии оценены, игрок должен отказаться от первоначального выбора. Это сложно само по себе. Игрок будет стремится сохранить первоначальный выбор, так как это проще. Например, потенциальный покупатель гораздо вероятнее не будет отключать по умолчанию включенную услугу, нежели включит ее. В общем случае это приводит к систематическому отклонению поведения игроков от рационального.

Проблемы, связанные с применением статистического мышления и рационального мышления вообще рассматриваются в книге Дэвида Канемана "Думай медленно, решай быстро". Исследования Канемана и его коллег показали, что человек склонен ошибаться в ситуациях, если нужно провести даже простые математические расчеты, не говоря уже об оценке вероятности.

Канеман вводит понятие двух систем. Система 1 это "быстрое", интуитивное, эвристическое мышление. Им человек пользуется, например, для определения настроения по выражению лица или при оценке дорожной ситуации, когда ведет автомобиль. Система 1 это автоматическая, почти мгновенная реакция, и работает в большинстве повседневных ситуаций.

Система 2 — "медленное", рациональное, математическое и статистическое мышление. Эта система подключается с усилием. Человек должен осознать, что автоматическое решение неправильное, задуматься и провести расчеты.

Ключевая проблема заключается в том, что в ситуации, где требуется подумать, человек полагается на автоматическое решение, предлагаемое системой 1. А эта система делает выводы, в первую очередь, на основании похожести вариантов. В парадоксе Монти Холла, после того, как ведущий открыл одну из дверей, две оставшихся выглядят одинаково, а обусловленное поведение ведущего старательно замаскировано. Ситуация представляется симметричной, а вероятности одинаковыми. Системе 1 не за что зацепиться, чтобы заметить вероятностную асимметрию. А системе 2 некогда подключиться. Тем более, что ведущий разными способами старается сбить игрока с толку.

Система 1 тренируется на многократном повторении ситуаций, доводя выбор до автоматизма (распознавание лиц, вождение автомобиля). Человек видит похожую ситуацию, что-то, что ему знакомо, и делает выбор, который ранее был успешен в аналогичных ситуациях.

Система 2 подразумевает, что человек начинает анализировать ситуацию, чтобы принять решение. В случае со статистическими задачами правильный ответ не очевиден. Чтобы к нему прийти, человек должен проанализировать данные, произвести расчеты и выбрать наибольшие значения статистических показателей.

Основная идея Дэвида Канемана в том, что система 1 (интуитивная) и система 2 (рациональная) различаются. В общем случае так и есть, однако, применительно к статистике между ними есть сходство.

Предположим, что все участники шоу Монти Холла собрались, чтобы обсудить результаты участия в шоу. Собравшиеся разбились на две группы: тех, кто остался с первоначально выбранной дверью и тех, кто поменял дверь. Согласно статистике, подсчет участников и их результатов покажет, что те участники, которые меняли дверь, выигрывали чаще. Если участников в обеих группах много, то доля победителей в группе сменивших дверь, будет примерно в два раза выше, чем в другой.

Достаточное количество участников, при котором будет видна статистическая закономерность, определяется законом больших чисел. Чем больше игроков примет участие в собрании, тем более результаты подсчетов их успехов и неудач будут соответствовать теоретическим. Другими словами, статистика начинает работать, когда игра была повторена разными участниками много раз. Если бы такое сообщество игроков существовало, то со временем они бы пришли к правильной стратегии.

Таким образом, в статистических расчетах система 2 опирается на закон больших чисел — достаточно большое (в идеале бесконечное) количество испытаний. Но и системе 1 большое количество испытаний позволяет принимать правильные решения. Многократное повторение доводит ту или иную способность человека до автоматизма.

Правила для двух систем:

  • Система 1: это было правильно для меня много раз в похожих случаях, поэтому будет верно и сейчас.
  • Система 2: это было правильно для многих других людей в похожих случаях, поэтому будет верно и сейчас.

Можно сказать, что расчет вероятности отражает коллективный опыт всех реальных и возможных участников игры Монти Холла. Для ситуаций индивидуального выбора стратегий статистика выступает как коллективная интуиция. Остается сделать статистику наглядной при помощи подходящей визуализации.

На примере парадокса Монти Холла мы смоделировали выбор человеком правильной стратегии с привлечением статистических расчетов. В общем случае:

  • Стратегий может быть больше, чем две.
  • Теоретические расчеты вероятности могут отсутствовать или требовать проверки. Тогда придется испытывать все стратегии и определять частотную вероятность для каждой.
  • Внешне различные варианты могут никак не отличаться (двери в игре Монти Холла выглядят одинаково — визуальная симметрия).

Если поставить задачу помочь выиграть игроку, а не сбить его с толку, как на шоу, то в визуализации данных или пользовательском интерфейсе можно дополнить "двери", между которыми выбирает "игрок", диаграммами-шкалами. На такой диаграмме шкала задает градации изменения величины, и на шкалу накладывается столбик фактического значения по аналогии с термометром.

На диаграмме-шкале удобно совместить теоретическое, ожидаемое количество выигрышей (выделено серым) и фактическое после всех предыдущих игр (узкий черный столбик). Фактическое значение меняется после каждого принятого решения по выбору одной из двух стратегий и сохраняется на протяжении всей серии игр:

Таким образом, подходящая визуализация статистических данных помогает человеку выбрать правильную стратегию. Например, в интерфейсе, похожем на прототип, элемент интерфейса, соответствующий стратегии, может быть помечен статистическим виджетом, похожим на диаграмму-шкалу. Изображение фактических данных полезно, если пользователь выбирает между примерно одинаково успешными стратегиями. Оно позволяет ему быстро прийти к заключению:

Экология познания. Одной из задач теории вероятностей является интереснейший и, казалось бы, противоречащий здравому смыслу парадокс Монти Холла, названный так в честь ведущего американского телешоу «Let’s Make A Deal».

Многие из нас наверняка слышали о теории вероятностей – особом разделе математики, который изучает закономерности в случайных явлениях, случайные события, а также их свойства. И как раз одной из задач теории вероятностей является интереснейший и, казалось бы, противоречащий здравому смыслу парадокс Монти Холла, названный так в честь ведущего американского телешоу «Let’s Make A Deal». С этим парадоксом мы и хотим вас сегодня познакомить.

Определение парадокса Монти Холла

Как задача парадокс Монти Холла определяется в виде описаний вышеназванной игры, наиболее распространённым среди которых является формулировка, которая была опубликована журналом «Parade Magazine» в 1990 году.

Парадокс Монти Холла - логическая задачка не для слабаков

Согласно ей, человек должен представить себя участником игры, где нужно выбрать одну дверь из трёх.

За одной дверью скрывается автомобиль, а за остальными – козы. Игрок должен выбрать одну дверь, к примеру, дверь №1.

А ведущий, знающий о том, что находится за каждой дверью, открывает одну из двух дверей, которые остались, например, дверь №3, за которой стоит коза.

После этого ведущий интересуется у игрока, не желает ли он изменить свой изначальный выбор и выбрать дверь №2?

Вопрос: повысятся ли шансы игрока на выигрыш, если он изменит свой выбор?

Но после публикации этого определения выяснилось, что задача игрока сформулирована несколько неверно, т.к. не обговорены все условия.

К примеру, ведущий игры может выбрать стратегию «адского Монти», предлагая изменить выбор только в том случае, если игрок изначально угадал дверь, за которой находится автомобиль.

И становится ясно, что изменение выбора приведёт к стопроцентному проигрышу.

Поэтому, наибольшую популярность получила постановка задачи с особым условием №6 из специальной таблицы:

  • Автомобиль может с одинаковой вероятностью находиться за каждой дверью
  • Ведущий всегда обязан открывать дверь с козой, кроме той которую выбрал игрок, и предлагать игроку возможность изменения выбора
  • Ведущий, имея возможность открыть одну из двух дверей, выбирает любую с одинаковой вероятностью

Представленный ниже разбор парадокса Монти Холла рассматривается именно с учётом этого условия. Итак, разбор парадокса.

Разбор парадокса Монти Холла

Есть три варианта развития событий:

Результат, если менять выбор

Результат, если не менять выбор

Во время решения представленной задачи обычно приводятся такие рассуждения: ведущий в каждом случае убирает одну дверь с козой, следовательно, вероятность нахождения автомобиля за одной из двух закрытых дверей приравнивается к ½, независимо от того, какой выбор был сделан изначально. Однако это не так.

Смысл в том, что, делая первый выбор, участник разделяет двери на A (выбранную), B и C (оставшиеся). Шансы (P) на то, что машина стоит за дверью A, равны 1/3, а на то, что она за дверьми B и C равны 2/3. И шансы на успех при выборе дверей B и C вычисляются так:

Где ½ является условной вероятностью того, что машина находится именно за этой дверью, при условии, что машина не за той дверью, что выбрал игрок.

Ведущий, открывая заведомо проигрышную дверь из двух оставшихся, сообщает игроку 1 бит информации и изменяет тем самым условные вероятности для дверей B и C на значения 1 и 0. Теперь шансы на успех будут вычисляться так:

И получается, что если игрок изменит свой изначальный выбор, то его шанс на успех будет равен 2/3.

Объясняется это следующим образом: изменяя свой выбор после манипуляций ведущего, игрок выиграет, если изначально он выбрал дверь с козой, т.к. ведущий открывает вторую дверь с козой, а игроку остаётся лишь поменять двери. Выбрать же изначально дверь с козой можно двумя способами (2/3), соответственно, если игрок заменит двери, то выиграет с вероятностью 2/3. Именно из-за противоречия такого вывода интуитивному восприятию задача и получила статус парадокса.

Интуитивное восприятие говорит о следующем: когда ведущий открывает проигрышную дверь, перед игроком встаёт новая задача, на первый взгляд не связанная с изначальным выбором, т.к. коза за открываемой ведущим дверью будет там в любом случае, независимо от того, проигрышную или выигрышную дверь изначально выбрал игрок.

После открытия ведущим двери игрок должен снова сделать выбор – либо остановиться на прежней двери, либо выбрать новую. Это значит, что игрок делает именно новый выбор, а не меняет изначальный. И математическим решением рассматриваются две последовательные и связанные друг с другом задачи ведущего.

Но нужно иметь в виду, что ведущий открывает дверь именно из тех двух, которые остались, но не ту, что выбрал игрок. А значит, шанс на то, что машина находится за оставшейся дверью, увеличиваются, т.к. ведущий её не выбрал. Если же ведущий знает, что за выбранной игроком дверью стоит коза, всё-таки её откроет, он тем самым заведомо снизит вероятность того, что игрок выберет правильную дверь, ведь вероятность успеха станет равна ½. Но это уже игра по иным правилам.

А вот ещё одно объяснение: допустим, игрок играет по представленной выше системе, т.е. из дверей B или C всегда выбирает ту, что отличается от изначального выбора. Проиграет он в том случае, если изначально выбрал дверь с автомобилем, т.к. впоследствии выберет дверь с козой. В любом другом случае игрок выиграет, если изначально выбрал проигрышный вариант. Однако вероятность того, что изначально он выберет его, равна 2/3, из чего следует, что для успеха в игре сначала нужно сделать ошибку, вероятность которой в два раза больше вероятности правильного выбора.

Третье объяснение: представим, что дверей не 3, а 1000. После того как игрок сделал выбор, ведущий убирает 998 ненужных дверей – остаются только две двери: выбранная игроком и ещё одна. Но шанс на то, что машина за каждой из дверей совсем не ½. Скорее всего (0,999%) машина будет за той дверью, которую игрок не выбрал изначально, т.е. за дверью, отобранной из оставшихся после первого выбора 999 других. Примерно так же нужно и рассуждать при выборе из трёх дверей, пусть шансы на успех и снижаются и становятся 2/3.

И последнее объяснение – замена условий. Допустим, что вместо того, чтобы делать изначальный выбор, например, двери №1, и вместо открытия двери №2 или №3 ведущим, игрок должен сделать верный выбор с первого раза, если ему известно, что вероятность успеха с дверью №1 равна 33%, но об отсутствии машины за дверьми №2 и №3 он не знает ничего. Из этого следует, что шанс на успех с последней дверью будет составлять 66%, т.е. вероятность победы увеличивается вдвое.

Но каково будет положение дел, если ведущий станет вести себя иначе?

Разбор парадокса Монти Холла при другом поведении ведущего

В классической версии парадокса Монти Холла говорится, что ведущий шоу должен обязательно предоставить игроку выбор двери, вне зависимости от того, угадал игрок или нет. Но ведущий может и усложнить своё поведение. Например:

  • Ведущий предлагает игроку изменить свой выбор, если он изначально верный – игрок всегда проиграет, если согласится изменить выбор;
  • Ведущий предлагает игроку изменить свой выбор, если он изначально не верный – игрок всегда победит, если согласится;
  • Ведущий открывает дверь наугад, не зная, что где стоит – шансы игрока на выигрыш при смене двери всегда будут составлять ½;
  • Ведущий открывает дверь с козой, если игрок, действительно, выбрал дверь с козой – шансы игрока на выигрыш при смене двери всегда будут составлять ½;
  • Ведущий всегда открывает дверь с козой. Если игрок выбрал дверь с машиной, левая дверь с козой будет открываться с вероятностью (q) равной p, а правая — с вероятностью q = 1-p. Если ведущий открыл дверь слева, то вероятность выигрыша рассчитывается как 1/(1+p). Если ведущий открыл дверь справа, то: 1/(1+q).Но вероятность того, что будет открыта дверь справа, равна: (1+q)/3;
  • Условия из примера выше, но p=q=1/2 — шансы игрока на выигрыш при смене двери всегда будут составлять 2/3;
  • Условия из примера выше, но p=1, а q=0. Если ведущий откроет дверь справа, то изменение игроком выбора приведёт к победе, если будет открыта дверь слева, то вероятность победы станет равна ½;
  • Если ведущий всегда будет открывать дверь с козой, когда игроком выбрана дверь с автомобилем, и с вероятностью ½, если игроком выбрана дверь с козой, то шансы игрока на выигрыш при смене двери всегда будут составлять ½;
  • Если игра повторяется множество раз, а машина находится за той или иной дверью всегда с одинаковой вероятностью, плюс с одинаковой вероятностью ведущим открывается дверь, но ведущий знает, где машина и всегда ставит игрока перед выбором, открывая дверь с козой, то вероятность победы будет равна 1/3;
  • Условия из примера выше, но ведущий вообще может не открывать дверь — шансы игрока на выигрыш будут составлять 1/3.

Таков парадокс Мотни Холла. Проверить его классический вариант на практике довольно просто, но гораздо сложнее будет провести эксперименты с изменением поведения ведущего. Хотя для дотошных практиков и это возможно. Но не важно, станете вы проверять парадокс Монти Холла на личном опыте или нет, теперь вы знаете некоторые секреты игр, проводящихся с людьми на разных шоу и телепередачах, а также интересные математические закономерности.

Мы надеемся, что вам понравилась статья, и вы с пользой провели время. Учитесь делать правильный выбор!

Недавно на просторах интернета увидел отрывок из фильма "Двадцать одно". В этом отрывке говорится о том, что парадокс Монти Холла действительно работает!

До сих пор я ничего не слышал об этом парадоксе, но при этом мне никак не верилось в его правдивость, хотя подавляющее большинство говорило обратное. По этому вопросу я смотрел видеоролики, читал статьи, проверял коды программ, но в голове это всё равно никак не укладывалось.
В этой статье будем рассматривать классическую постановку задачи.

В голову приходили разные вопросы: чем отличается дверь без приза по отношению к другой двери без приза, как если мы выбрали именно её? А что если после первой итерации выбора двери к тебе придут Люди в чёрном и сотрут из твоей памяти это первоначальное решение? Куда тогда исчезнут лишние проценты, ведь теперь выбор останется между двумя дверьми?

Ну так что, первая или вторая дверь?

Ну так что, первая или вторая дверь?

И вроде бы в расчётах у людей всё сходилось, не к чему было придраться. Тогда для наглядности решил создать google-таблицу, в которой смоделировал 1000 игр на парадокс Монти Холла.

Не долго думая, создал 4 столбца:

столбец A, "Приз за дверью №" - случайное число от 1 до 3 (включительно, конечно);

столбец B, "Выбрали дверь №" - так же случайное число от 1 до 3;

столбец C, "Поменяли дверь" - случайное число от 0 до 1, т.е. либо не меняли дверь, либо поменяли :)

столбец D, "Выиграли" - если выбранная нами дверь совпадает с дверью, за которой находится приз, то значение выигрыша (0 или 1) будет противоположным значению столбца "Поменяли дверь", иначе значение выигрыша будет таким же, как и значение в столбце "Поменяли дверь". Это логично.

После прямых подсчетов получилась так, что в суммарных полях "Поменяли" и "Не меняли" было соотношение приблизительно 50 на 50. В суммарных полях "Выиграли" и "Проиграли" соотношение было тем же (условно).


Такие соотношения с каждым глобальным прогоном по моделированию 1000 игр сохраняются. Но где же тогда 66% выигрышей?

Посчитаем теперь суммы для всевозможных сочетаний событий по всем играм.

Суммы для всевозможных сочетаний событий

Суммы для всевозможных сочетаний событий

Суммарное поле "Выиграли, когда поменяли" практически в 2 раза превосходит суммарное поле "Выиграли, когда не меняли" по значениям.

То есть получается, что меняя дверь, мы увеличиваем свои шансы на победу в 2 раза? НЕТ! Дело в том, что если мы уже выиграли, то нам не нужны дополнительные условия, меняли ли мы дверь или нет.
Проблема этого парадокса заключается в том, что ответ на задачу поставлен с ног на голову: причина и следствие меняются местами!

Вместо "Если он поменяет дверь, то с вероятностью 2/3 выиграет" нужно говорить: "Если он выиграл, то с вероятность 2/3 менял дверь". Чувствуете разницу? - она диаметрально противоположная. И вы можете менять дверь или не менять - суть заключается в том, что шансы на победу составляют 50 на 50.

Вместо "Мы меняем дверь и выигрываем в 2 раза чаще, чем не меняем дверь" нужно говорить: "Мы меняем дверь и выигрываем в 2 раза чаще, чем не меняем дверь и выигрываем".

Неправильные умозаключения рождают такие парадоксы. Но интуитивно мы понимаем, что здесь что-то не так :)

Приведу еще пару примеров.

Представьте, что ведущий предлагает на выбор 2 двери, только за одной из которых находится приз. Очевидно, что вероятность выбрать правильную дверь составляет 50%? А теперь ведущий внезапно открывает 3-ю дверь, за которой нет никакого приза. Неужели вы думаете, что из-за этого у вас станет меньше шансов на победу? Да пусть он откроет хоть 100 дверей, шансы от этого не поменяются.

А если изначально будет миллион дверей, разве вы проиграете 1-2 раза в миллион игр, меняя дверь? Очевидно, что нет. И проиграете вы примерно столько же, сколько и выиграете. Просто если выиграете, то скорее всего вы меняли дверь, именно так - в обратную сторону это не работает!

Вот что я хотел донести до вас! Надеюсь, у меня это получилось, так как это мой дебют.
Больше доверяйте своей интуиции! Всем удачи!

Читайте также: