Определение вещественного состава бетона

Обновлено: 02.05.2024

Бетонные и железобетонные конструкции в любом сооружении за время эксплуатации подвергаются неблагоприятным воздействиям внешней среды, оказывающей значительное воздействие на долговечность и работоспособность несущих конструкций здания. Строительная лаборатория ЦНИЛ гарантирует оказание профессиональных, качественных и полных испытаний бетона в соответствии с требованиями ГОСТ и СП. Испытания проводятся как неразрушающими (косвенными), так и прямыми (механическими) методами.

Сроки выполнения испытаний: от 1 до 10 рабочих дней *при условии отсутствия ограничений, установленных технологией испытания

Стоимость,
руб., НДС не облагается

Определение прочности бетона, раствора на сжатие по предоставленным контрольным образцам-кубам

Определение прочности бетона с изготовлением, хранением
образцов Исполнителем с испытанием в два срока твердения
(7, 28 суток)

Определение прочности бетона по предоставленным образцам-кернам, выпиленным из конструкции, с подготовкой торцов к испытаниям и определением физических характеристик бетона (плотности, водопоглощения)

Определение прочности бетона неразрушающими методами на объекте Заказчика:
- методом поверхностного прозвучивания, ударно-импульсным
методом
- методом сквозного прозвучивания

Подбор состава тяжелого бетона (без требований)

Определение вещественного состава незатвердевшего бетона

Определение вещественного состава затвердевшего бетона (химанализ)

Оценка эффективности добавок в составе тяжелого бетона

Определение усилия вырыва анкера или прочности сцепления с основанием (максимальное усилие - до 2т)

Определение морозостойкости бетона
F 50
F 100
F 150
F 200
F 300

6 840
9 370
12 620
16 960
24 920

Определение водонепроницаемости бетона
W4
W6
W8

8 380
9 550
11 020

Испытание кернов бетона с отбором, изготовлением, подготовкой образцов и их испытанием на прочность при сжатии

Определение активности цемента (ТВО, 2 суток, 28 суток)
по ГОСТ 310.4

Определение прочности бетона методом отрыва со скалыванием

Испытание бетона в строительной лаборатории – залог долговечности здания!

Бетон – искусственный каменный строительный материал, получаемый в результате формования и затвердевания рационально подобранной и уплотнённой смеси, состоящей из вяжущего вещества (например, цемент), крупных и мелких заполнителей, воды.

Для достижения высокого качества бетона необходимо использовать специальные добавки, а также следить за различными свойствами цемента и заполнителя. От качества бетона зависит надёжность и долговечность постройки.

Как проводим испытания?

Испытания проводятся как по месту проведения исследования, так и по образцам, доставленным в лабораторию. Наша лаборатория строго соблюдает стандарты и выдает заказчику точные и полные данные о материале. Строительная лаборатория владеет всеми неразрушающими и разрушающими методиками испытаний.

Разрушающие прямые методы более предпочтительны, посколько они наиболее точны, дают наиболее полную информацию о качестве бетона, о его свойствах. Например, морозостойкость и водонепроницаемость бетона невозможно качественно определить неразрушающими методами.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОПРЕДЕЛЕНИЮ ПЕРВОНАЧАЛЬНОГО СОСТАВА БЕТОНА

Утверждены директором НИИЖБ 27 июня 1983 г.

Методические рекомендации содержат описание методов экспериментального определения вещественного состава затвердевшего раствора и бетона, изготовленных как на чистом портландцементе, так и на цементе с активными минеральными добавками. Приведен пример расчета.

Предназначены для инженерно-технических работников строительных лабораторий и научно-исследовательских организаций.

Определение первоначального состава затвердевшего бетона и раствора имеет важное значение в строительной практике. Оно требуется в тех случаях, когда возникает необходимость установить в готовом изделии, соответствовала ли дозировка составляющих, в первую очередь - цемента, заданной марке бетона. Такая необходимость возникает, например, в случаях аварий или обнаружения недостаточной прочности бетона. Подобные случаи, хотя и являются сравнительно редкими, все же имеют место в строительной практике, поэтому методы определения первоначального состава затвердевшего бетона представляют значительный интерес как для строительных организаций, непосредственно отвечающих за качество бетона, так и для органов контроля (арбитража и т.д.).

Именно этим можно объяснить, что в ряде стран подобные методы узаконены в форме государственных или ведомственных стандартов (США, ГДР, Венгрия, Великобритания, Австралия и др.).

В 1969 г. были изданы разработанные НИИЖБ "Рекомендации методов анализа затвердевшего бетона и раствора для определения их первоначального состава" (М., 1969), в которых были обобщены все известные в литературе методы определения состава бетона и результаты обширных исследований, связанных с проверкой этих методов.

В настоящих Методических рекомендациях учтен многолетний опыт применения разработанных ранее методов для анализа затвердевших растворов и бетонов, поэтому они содержат некоторые изменения и дополнения.

Настоящие Методические рекомендации разработаны лабораторией физико-химических исследований бетонов НИИЖБ Госстроя СССР (инж. А.И.Лапшина и канд.техн.наук Л.В.Никитина).

Все замечания и предложения по содержанию настоящих Методических рекомендаций просим направлять в НИИЖБ по адресу: 109389, Москва, 2-я Институтская ул., д.6.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Основным условием надежности предлагаемых методов определения состава затвердевшего бетона является представительность отобранной для анализа пробы, т.е. возможно более близкое соответствие анализируемого образца фактическому составу бетона в данной части сооружения. Эта представительность достигается большим количеством отбираемых для анализа проб и достаточной массой отдельной пробы.

1.2. Большинство известных методов анализа затвердевшего бетона основано на растворении тонкорастертой пробы бетона соляной кислотой с последующим определением в растворе и , по значению которых рассчитывается содержание цемента. Нерастворившуюся часть пробы бетона обычно относят за счет заполнителей. При этом неизбежно имеет место частичное растворение в кислоте песка и крупного заполнителя, что снижает точность анализа. Проведенная в НИИЖБ проверка указанных методик показала, что относительная ошибка анализа при их применении может достигать 10-20%.

1.3. Учитывая вышесказанное, в настоящих Методических рекомендациях за основу принят комбинированный метод анализа затвердевшего раствора и бетона, состоящий из следующих операций:

определения количества крупного заполнителя;

анализа растворной части с целью определения содержания цемента;

определения содержания песка - по разности.

Метод предусматривает предварительное отделение от пробы крупного заполнителя, для чего используется термическая обработка, в результате которой бетон распадается на составные части.

Учитывая, что крупный заполнитель составляет обычно около половины массы бетона, притом он более растворим, чем песок, исключение его из химической обработки способствует повышению точности анализов.

1.4. Проверка предлагаемого в настоящих Методических рекомендациях метода определения состава бетона показала, что он обеспечивает относительную точность 5-10%.

1.5. В Методических рекомендациях приводятся также некоторые варианты указанного основного метода применительно к бетонам с различными вяжущими и заполнителями.

2. ОБЛАСТЬ ПРИМЕНЕНИЯ

2.1. Настоящие Методические рекомендации распространяются на анализ затвердевшего портландцементного раствора и бетона, включая бетоны, содержащие цементы с активными минеральными добавками и заполнителями из карбонатных пород.

2.2. Методические рекомендации не распространяются на бетоны, в которых вяжущими являются глиноземистые, известково-пуццолановые и известково-шлаковые (бесклинкерные) цементы, а также на бетоны, подвергавшиеся воздействию агрессивных сред.

3. РЕКОМЕНДУЕМЫЕ МЕТОДЫ АНАЛИЗА

3.1. Для определения содержания цемента в пробах бетона предлагаются два метода:

метод непосредственного определения содержания цемента (химический метод);

метод определения содержания цемента по разности между массой исследуемой пробы бетона и массой заполнителей (ситовой метод).

3.2. Метод с непосредственным определением содержания цемента состоит из следующих операций:

определения количества крупного заполнителя;

определения количества цемента с помощью химического анализа;

определения количества мелкого заполнителя (песка) - по разности.

Количество крупного заполнителя определяется путем термического разложения бетона и отсеивания распавшейся массы через сито с размером ячейки 5 мм.

Количество цемента определяется путем растворения фракции, прошедшей через сито 5 мм (растворной части), в , а затем в щелочи (для растворения выпавшего при обработке кислотой геля ). При такой обработке частично будут растворяться и заполнители, поэтому результаты анализа будут более точными лишь в том случае, если имеются в наличии и будут проанализированы также исходные материалы бетона. В противном случае при расчете приходится принимать условные величины, что снижает точность анализа.

3.3. Метод определения содержания цемента по разности слагается из следующих операций:

разложения бетона нагреванием, иногда с последующей химической обработкой для отделения цемента с поверхности зерен заполнителя;

разделения (на ситах) полученных заполнителей и определение количеств отдельных фракций;

определения содержания цемента по разности.

Метод не требует специальной лаборатории и высокой квалификации исполнителей, но менее точен, так как неточности отдельных прямых определений отражаются на величине, определяемой по разности (т.е. содержании цемента).

3.4. Выбор того или иного метода или же применение обоих производится лабораторией в зависимости от поставленной задачи и местных условий.

4. ОТБОР ПРОБЫ ДЛЯ АНАЛИЗА

4.1. Проба, взятая для анализа, должна наиболее точно отражать состав бетона в данной части сооружения. Для этого отбирается 6-8 проб в разных точках сооружения или конструкции.

4.2. В зависимости от крупности заполнителей в бетоне, размеров конструктивного элемента и других факторов масса каждой пробы может изменяться от 1 до 5 кг.

4.3. Для установления причин местных дефектов, выцветов и т.п. пробы могут отбираться по месту дефекта в меньших размерах и числе (иногда в виде единичной пробы).

5. КАЧЕСТВЕННЫЙ АНАЛИЗ ПРОБЫ

5.1. Если не имеется точных сведений о том, какой цемент и заполнитель были использованы в данном бетоне, необходимо провести качественный анализ пробы для установления:

минералогического состава заполнителей, в частности - наличия в них карбонатных зерен;

наличия и вида активных минеральных добавок.

5.2. Для установления наличия карбонатных зерен в крупном заполнителе следует выделить из бетона несколько щебенок и испытать их на вскипание при действии концентрированной соляной кислоты.

Эта проба необходима и в отношении песка (в растворной части бетона). Если песок карбонатный, раствор разложится почти полностью.

5.3. Установление наличия и вида минеральных добавок в цементе производится с помощью микроскопического анализа и по данным микрохимических реакций. Для распознавания отдельных видов добавок могут служить следующие специфические признаки:

а) характерными признаками наличия в бетоне доменных шлаков (шлакопортландцемента) является синеватый цвет на свежем изломе бетона и запах сероводорода. Для доменных гранулированных шлаков характерно преобладание острогранных изотропных зерен шлакового стекла, часто аморфных. Для этих шлаков характерно наличие ольдгамита () и минералов из группы мелилита.

При обработке шлака раствором, содержащим в 10 мл дистиллированной воды 0,35 г треххлористой сурьмы (или хлорокиси сурьмы) и 1 г винной кислоты, он окрашивается в оранжево-красный цвет, при обработке раствором ацетата свинца и уксусной кислоты - в коричнево-черный;

б) для трепелов, опоки, диатомитов характерна скрытокристаллическая, часто аморфная, тонкозернистая структура. При обработке 0,1%-ным водным раствором родамина 6Ж появляется красная окраска зерен (зерна цемента остаются серыми или коричневыми);

в) туфы (трассы) определяются по ряду петрографических признаков, наиболее характерным из которых является пепловая структура (смесь обломков кристаллов и вулканического стекла).

При окрашивании родамином 6Ж появляется бордовый цвет;

г) в золах преобладают шаровидные зерна стекла, окрашенные в черный и желтовато-зеленый цвета. Так как специальных красителей для золы нет, для ее обнаружения можно использовать красители, окрашивающие цемент (например, 0,1%-ный водный раствор конго красного);

д) горелые породы, глиежи (природные горелые породы), котельные шлаки характеризуются присутствием остатков глинистых минералов.

5.4. Если строительная лаборатория не располагает необходимыми специалистами и оборудованием для петрографического анализа, последний поручается специализированной петрографической лаборатории.

6. ПОДГОТОВКА ПРОБЫ

6.1. Отобранные пробы бетона дробятся с помощью молотка или пресса на куски, не более максимального размера зерен крупного заполнителя в бетоне, причем стараются не повредить отдельных кусков крупного заполнителя.

6.2. Раздробленный таким образом бетон рассыпается ровным слоем на полу или на столе и подвергается квартованию до тех пор, пока оставшееся количество не станет равным 5-6 кг.

Из конечной пробы отбирают три навески по 0,5-1 кг (в зависимости от предельной крупности заполнителя), помещают их в фарфоровые чашки или на поддоны из неокисляющегося металла, сушат до постоянной массы при 110 °С и взвешивают с точностью до 1 г, получая массу сухой пробы бетона (масса А). Все дальнейшие операции производятся с этими тремя навесками параллельно.

7. ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ БЕТОНА

Подготовленные, как указано в п.6.2 настоящих Методических рекомендаций, пробы в чашках или поддонах вносят в муфельную печь и нагревают до 400-600 °С в течение 3 ч. При этом бетон распадается на составные части, чему способствует легкое постукивание и разминание кусков в чашке резиновым или деревянным пестиком.

7.1. Если после первого нагревания распада не произойдет, прокаливание нужно повторить еще 2-3 раза. Для улучшения дезагрегации бетона горячие куски бетона после каждого нагревания можно помещать в чашку с холодной водой. В этом случае перед каждым повторным нагреванием пробу собирают в ту же чашку или поддон и высушивают.

7.2. После окончания разложения проба бетона высушиваются и взвешивается с той же точностью (получаем массу Б).

7.3. Полученная таким образом потеря массы при прокаливании до 600 °С (п.п.п.), %, равная


(1)

характеризует собой, в основном, содержание гидратной воды в пробе бетона.

8. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА КРУПНОГО ЗАПОЛНИТЕЛЯ

8.1. Полученную сухую смесь (масса Б) просеивают через сито с отверствиями 5 мм для отделения крупного заполнителя от растворной части (цемент + песок). Остаток на сите с размером ячейки 5 мм взвешивают и получают массу крупного заполнителя (масса В). Масса материала, прошедшего через сито, представляет собой растворную часть бетона (масса Г).

8.2. Куски заполнителя, оставшиеся на сите 5 мм, тщательно просматриваются с помощью лупы и замеченные при этом кусочки прилипшего цемента или раствора осторожно удаляются вручную шпателем или щеткой. Снятые куски и пыль присоединяют к растворной части.

8.3. Все крупные куски щебня испытываются на присутствие карбонатов (вскипание капли на поверхности щебенки). Обнаруженные щебенки карбонатных пород (известняка, доломита) отбирают пинцетом и хранят отдельно.


8.4. Оставшиеся куски крупного заполнителя (за вычетом карбонатных зерен) обрабатывают два-три раза холодной разведенной (1:10) декантацией (споласкиванием), затем три раза водой, один раз 1%-ным раствором (декантацией) и опять два раза водой, после чего сушат, присоединяют отложенные карбонатные щебенки и взвешивают (масса Д). Промывные воды соединяют вместе и обрабатывают по п.8.6 настоящих Методических рекомендаций.

8.5. Если крупный заполнитель состоит, в основном, из карбонатных пород, обработка не применяется.

Дата введения 2020-01-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ им.А.А.Гвоздева) - структурным подразделением Акционерного общества "Научно-исследовательский центр "Строительство" (АО "НИЦ "Строительство")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 29 марта 2019 г. N 117-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

4 Приказом Федерального агентства по техническому регулированию и метрологии от 6 июня 2019 г. N 296-ст межгосударственный стандарт ГОСТ 27006-2019 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2020 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт распространяется на тяжелый и мелкозернистый бетоны по ГОСТ 26633 и устанавливает правила подбора, назначения и передачи на производство состава бетона при изготовлении сборных бетонных и железобетонных изделий и монолитных конструкций.

Правила, устанавливаемые в настоящем стандарте, следует учитывать при разработке производственных норм расхода материалов.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181-2014 Смеси бетонные. Методы испытаний

ГОСТ 12730.5-84 Бетоны. Методы определения водонепроницаемости

ГОСТ 18105-2015* Бетоны. Правила контроля и оценки прочности

* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

ГОСТ 24211-2008 Добавки для бетонов и строительных растворов. Общие технические условия

ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения, обозначения и сокращения

3.1 Термины и определения

3.1.1 нормативная прочность класса бетона: Средняя кубиковая прочность бетона, соответствующая его классу с обеспеченностью 0,95 (тяжелый и мелкозернистый) при коэффициенте вариации 13,5% или с обеспеченностью 0,9 (гидротехнический бетон) при коэффициенте вариации 17%.

3.1.2 начальные составы бетона (основной и дополнительные): Составы бетона, рассчитанные теоретически и используемые после экспериментальной проверки, для назначения номинального состава бетона.

3.1.3 номинальный состав: Состав бетона, определяющий расход материалов фиксированного качества, необходимый для изготовления 1 м бетона заданного качества, который после твердения в определенных условиях обеспечивает в проектном возрасте (и других нормируемых возрастах) получение бетона, соответствующего всем нормируемым показателям качества.

3.1.4 рабочий состав: Состав бетона, полученный из номинального состава, путем его корректирования, учитывающего отличия фактических показателей качества материалов, применяемых для изготовления бетонной смеси, от показателей качества материалов, использованных при подборе номинального состава бетона.

3.1.5 уровень основного эффекта действия добавки: Критерий эффективности добавки по ГОСТ 24211 и техническим условиям изготовителя.

3.1.6 критерий оптимизации: Экстремальное значение количественного или качественного показателя свойств компонентов или состава бетона.

3.1.6.1 компоненты бетонной смеси: Экстремальный расход цемента или заполнителя, минимальная экзотермия цемента, минимальная водопотребность песка и т.д.

3.1.6.2 технологическая характеристика бетонной смеси: Минимальная пустотность смеси заполнителей, минимальная водопотребность бетонной смеси, минимальная расслаиваемость и т.д.

3.1.6.3 физико-механические свойства бетона: Кинетика набора прочности, усадочно-деформативные свойства, однородность свойств и т.д.

3.1.6.4 номинальный состав бетона: Минимальные стоимость, трудоемкость, сроки строительства и т.д.

3.1.7 рабочая дозировка: Дозировка рабочего состава бетона, необходимая для получения определенного объема готовой бетонной смеси.

3.2 Обозначения

В настоящем стандарте применены следующие обозначения:

, - необходимое количество мелкого и крупного заполнителя соответственно в 1 м бетона после корректирования, кг/м;

- процентное содержание мелкого заполнителя в крупном заполнителе, %; , , и - расход мелкого заполнителя, крупного заполнителя и воды соответственно в скорректированном по влажности рабочем составе, кг/м;

, и - расход цемента, мелкого заполнителя, крупного заполнителя и воды в номинальном составе соответственно, кг/м;

1.1. Коррозионная стойкость бетона может быть определена:

а) по изменению химического состава цементного камня бетона во времени - кинетический метод определения скорости коррозии;

б) по изменению прочностных свойств бетона: прочности на растяжение при изгибе и сжатии, динамического модуля упругости;

в) по изменению величины линейных деформаций бетона.

1.2. Методики настоящих Рекомендаций могут применяться для:

а) оценки состава и степени агрессивности жидких сред различного состава по отношению к бетону при диффузионном переносе агрессивных веществ (постоянное воздействие жидкой среды), что соответствует условиям эксплуатации ненапорных подземных и подводных конструкций;

б) определения сравнительной коррозионной стойкости бетонов и строительных растворов на основе минеральных гидравлических вяжущих различного минералогического и вещественного состава, различного вида и количества химических добавок;

в) оценки эффективности мероприятий по вторичной защите бетона (пропитка, защита лакокрасочными покрытиями и т.д.) в условиях воздействия агрессивных сред.

2.1. Интенсивность коррозионного процесса определяется массой цементного камня с единицы поверхности бетона, вступившей во взаимодействие с компонентами агрессивной среды (общекислотная, углекислая, магнезиальная, щелочная коррозия - II вид, сульфатная коррозия - III вид), или вынесенной из структуры бетона при действии на него жидкой среды (выщелачивающая коррозия - I вид) в единицу времени.

2.2. В лабораторных условиях необходимо соблюдать равенство параметров, определяющих скорость коррозии бетона в реальных условиях эксплуатации конструкций:

механизм переноса агрессивных компонентов или продуктов коррозии;

толщину слоя продуктов коррозии;

фазовый состав и структура продуктов коррозии.

2.3. Механизм переноса агрессивного компонента и толщина слоя продуктов коррозии моделируются условиями проведения эксперимента.

2.4. Фазовый состав продуктов коррозии и юс структура в лабораторных условиях воспроизводятся соответствующим подбором цемента, состава бетона, вида, концентрации и температуры агрессивной среда.

3.1. Определение скорости коррозии рекомендуется проводить на образцах-цилиндрах из цементного камня, цементно-песчаного раствора и бетона с размером крупного заполнителя до 1 см на образцах диаметром и высотой 5 см. В том случае, если при изготовлении образцов бетона применяется заполнитель с размером более 1 см, следует рекомендовать образцы-цилиндры других размеров с учетом крупности заполнителя.

3.2. При исследовании сульфатостойкости новых видов вяжущих и химических добавок для ускорения коррозионного процесса рекомендуется применять образцы малых размеров диаметром 0,5 см и высотой 1,0 см.

3.3. При исследовании сульфатостойкости новых видов вяжущих в качестве эталона принимают сульфатостойкий портландцемент по ГОСТ 22266-76*.

3.4. При испытании химических добавок, повышающих сульфатостойкость бетона, для ускорения коррозионных процессов в качестве эталона следует принимать портландцемент при содержании в клинкере С3А не менее 9 %.

3.6. Для оценки эффективности химических добавок изготавливают образцы цементного камня следующих составов:

составы без добавки и с добавкой с равным водоцементным отношением;

составы без добавки и с добавкой с одинаковой консистенцией цементного теста.

3.7. Состав бетона выбирают в соответствии с реальными составами бетона, применяемыми для изготовления конкретных конструкций.

3.9. В случае, когда стойкость заполнителей к воздействию данной агрессивной среда неизвестна, необходимо провести специальные предварительные испытания по определению скорости коррозии данного заполнителя.

Примечание . Выполнение испытаний производится в соответствии с указаниями раздела 4 настоящих Рекомендаций. Для чего 100 г заполнителя заливают 500 мл агрессивного раствора. Определение концентрации агрессивной среды производится каждые 7 сут в течение 35 сут. Если изменение концентрации агрессивной среды за период испытаний не превышает 5 %, делается заключение о пригодности заполнителя для изготовления бетона.

3.10. Состав эталонных образцов цементного раствора принимают следующим: цемент-песок 1:3, расход воды выбирают таким, чтобы подвижность смеси соответствовала расплыву на встряхивающем столике 106 - 115 мм. Песок для испытания должен соответствовать требованиям ГОСТ 6139-79 (песок Вольский).

Примечание . Допускается изготовлять образцы из бетонной смеси, из которой отсевом на виброплощадке удалена крупная фракция заполнителя.

3.11. При изготовлении образцов цементного камня и цементного раствора смесь укладывают в форму с избытком, уплотняют в течение 1 мин на стандартной виброплощадке, а избыток смеси снимают ножом, смоченным водой.

3.12. Образцы данной серии испытаний изготовляют из одних и тех же материалов по одной и той же технологии.

3.13. В зависимости от задачи исследования образцы могут твердеть в нормально-влажных условиях, при пропаривании и при автоклавной обработке.

3.14. Условия и длительность твердения образцов из бетона назначают такими же, как для бетона конструкций, а при отсутствии данных об условиях твердения бетона в конструкциях - 28 сут. в камере нормально-влажного твердения.

В том случае, когда пропаривание применяется только как метод ускорения твердения образцов и не является предметом специальных исследований, принимают следующий режим пропаривания :

(4 + 3 + 8) ч + естественное остывание (изотермический прогрев при температуре 80 °С).

3.16. Условия твердения образцов цементного камня и цементного раствора назначают следующими: 3 сут - в ванне с гидравлическим затвором и 25 сут - в воде при температуре 20 ± 3 °С. Формы с образцами помещают в ванну через час после изготовления. Через сутки образца извлекают из формы и маркируют.

3.17. После изготовления образцов производится их отбраковка. Отбраковывают образцы неправильной геометрической формы, образцы, имеющие раковины, а также образцы, масса которых отличается более чем на 10 % от средней массы.

* Защита строительных конструкций и технологического оборудования от коррозии (Справочник строителя). / Под ред. А.У. Орлова. - М.: Стройиздат, 1981.

3.19. При исследовании эффективности защитных покрытий изучаемое покрытие наносится на торцевые поверхности образцов; цилиндрическая поверхность образцов защищается стойким в данной среде покрытием в соответствии с указаниями п. 3.18 настоящего раздела.

3.20. Все работы по нанесению лакокрасочных покрытий, а также работы по их изготовление производятся в соответствии с требованиями техники безопасности и пожарной безопасности, изложенными в «Руководстве по защите от коррозии лакокрасочными покрытиями строительных бетонных и железобетонных конструкций, работающих в газовлажных средах» (М.: Стройиздат, 1978).

3.21. Незащищенные торцевые рабочие поверхности перед погружением образцов в агрессивную среду зачищают наждачной бумагой для удаления следов покрытия и пленки цементного камня и замеряют площадь рабочей поверхности, которая в дальнейшем используется для расчета скорости коррозии.

4.1. Исследование скорости коррозии бетона проводится в проходящем токе раствора или в стационарных условиях с периодической сменой раствора.

а) изменение концентрации выбранного аниона или катиона должно происходить только в процессе коррозии;

б) изменение концентрации этих ионов определяется ускоренным методом;

в) ошибки выбранного метода определения концентраций не должны оказывать влияния на определяемую скорость коррозии.

4.4. Примерный перечень показателей агрессивности, по изменению концентрации которых рекомендуется определять скорость коррозии цементного камня, раствора или бетона, приводится в табл. 1.

Единица измерения концентрации

Допустимые пределы изменения концентрации показателей агрессивности

Углекислая, СО2 агрессивная

Магнезиальная, Mg 2+


Аммонийная,

Щелочная, Na + + K +


Сульфатная,

Объемное титрование с индикатором нитхромазо

* При выщелачивающей коррозии используют дистиллированную воду с последующим кипячением.

4.5. Перечень показателей агрессивности, приведенный в табл. 1; может быть расширен при изучении коррозии бетона в средах другого состава. Выбранная характеристика должна соответствовать указаниям п. 4.3.

4.6. Концентрация исследуемого вещества в среде, агрессивной по отношению к бетону, выбирается в зависимости от целей исследования:

при определении скорости коррозии бетона данного состава на определенном виде вяжущего исследования выполняются при одной, заданной условиями эксплуатации бетона концентрации вещества в агрессивной среде;

при определении степени агрессивности сред по показателям агрессивности (см. табл. 1) или по отношению к бетону с маркой по водонепроницаемости выше W 8 исследования необходимо проводить при нескольких концентрациях исследуемого вещества в агрессивном растворе (не менее трех). Показатели и концентрацию агрессивных сред принимают по табл. 2.

Единица измерения концентрации

Углекислая коррозия, СО2 агрессивная

Магнезиальная коррозия, Mg 2+

10000, 5000, 2000


Аммонийная коррозия,


Сульфатная коррозия,

34000, 10000, 3000, 1000

4.7. При моделировании процессов коррозии подводных конструкций образцы в рабочих емкостях устанавливают боковой цилиндрической поверхностью на специальные подставки по размеру образцов из стойкого в данной агрессивной среде материала так, чтобы образующиеся продукты коррозии (в случае их опадения) не скапливались у поверхности образца.

4.8. При моделировании процессов коррозии подземных конструкций исследование скорости коррозии проводится в проходящем токе при заполнении рабочей емкости установки специально подготовленным Вольским песком.

4.9. Подготовка песка заключается в следующем: песок промывают 5 %-ным раствором соляной кислоты, отмывают вначале водопроводной, а затем дистиллированной водой до отрицательной реакции раствора нитрата на ионы хлорида. Заполнение рабочей емкости производят песком любой влажности.

4.10. Установка для исследования скорости коррозии в проходящем токе раствора схематично представлена на рис. 1.


Рис. 1. Экспериментальная установка для определения скорости коррозии бетона в проходящем токе агрессивного раствора

1 - расходная емкость с агрессивным раствором; 2 - рабочая емкость с исследуемым образцом; 3 - емкость для слива отработанного раствора; 4 - краны; 5 - шланг; 6 - хлоркальциевые трубки; 7 - образец

Порядок подготовки установки к исследованиям следующий. Проверяют исправность соединительных шлангов, затем закрывают кран 4 и емкость 1 заполняется агрессивным раствором. После этого кран 4 открывают и тем же раствором заполняется емкость 2. Слив раствора из емкости 2 в емкость 3 осуществляется шлангом 5. С помощью крана 4 регулируется скорость протекания раствора в соответствии с указаниями п. 4.2 настоящих Рекомендаций.

4.11. Температура проведения исследований скорости коррозии бетона выбирается, исходя из задачи исследования и условий эксплуатации реальных конструкций; колебание температуры в процессе исследования допускается не более +3 °С.

4.12. При исследовании скорости коррозии принимается не менее трех образцов-близнецов. Испытание каждого из параллельных образцов следует проводить в отдельном приборе при исследовании скорости коррозии в проходящем токе или в отдельной емкости при исследовании скорости коррозии в стационарных условиях.

4.13. Исследование скорости коррозии в стационарных условиях следует проводить в стеклянных емкостях с плотно прилегающими крышками и пробками. В случае необходимости следует предусмотреть изоляцию емкостей от СО2 воздуха посредством хлоркальциевой трубки с натронной известью.

4.14. В качестве рабочих емкостей можно применять эксикаторы, цилиндры с притертыми пластинками или крышками, широкогорлые колбы с плотно пригнанными резиновыми пробками и т.д.

4.15. Подготовка емкостей заключается в тщательной их очистке и сушке. Кроме того, необходимо подготовить крышки, смазав их вазелиновым маслом.

4.16. В процессе испытаний в стационарных условиях испытуемый раствор в рабочей емкости утром и вечером тщательно перемешивается.

4.17. При проведении испытаний в стационарных условиях в агрессивных средах, вызывающих развитие в бетоне процессов коррозии вида: выщелачивающая, общекислотная, углекислая - соотношение объема раствора, см 3 , к 1 см 2 поверхности образцов принимают равным 25:1, а для видов коррозии: магнезиальная, аммонийная, щелочная, сульфатная - 5:1.

При исследовании влияния химических добавок на сульфатостойкость цементных растворов образцы в количестве 30 шт. (цилиндры d = 0,5 см, h = 1,0 см) помещают в эксикаторы с агрессивным раствором (объем раствора - 250 мл).

4.18. Определение концентрации агрессивных ионов в процессе испытания производится:

а) при проведении исследований в проходящем токе через определенные интервалы времени, выбранные для данного опыта;

б) в стационарных условиях срок выполнения анализа устанавливается экспериментально в соответствии с указаниями п. 4.2.

Периодичность смены раствора в стационарных условиях или скорость протекания раствора в рабочей емкости постепенно уменьшают по мере замедления процессов коррозии.


Например, при исследовании скорости коррозии цементного камня в соляной кислоте 0,1 м концентрации интервалы смены раствора за 5 мес испытаний увеличиваются с 1 сут в первые дни испытаний до 7 сут - в конце опыта, а в растворе сульфата натрия с концентрацией иона более 10000 мг/л - с 14 сут в первый месяц испытаний до 60 сут через полгода испытаний.

4.19. В том случае, когда исследуется скорость выщелачивания, предельная концентрация СаО, при которой происходит смена дистиллированной воды, взаимодействующей с образцами, равна 20 мг/л.

4.20. В процессе исследования не разрешается поддерживать постоянство концентрации агрессивного раствора добавлением концентрированных растворов агрессивных веществ, так как это связано с накоплением продуктов коррозии в рабочей емкости, что может привести не только к значительному изменению скорости коррозии, но и к качественному изменению процессов.

4.21. Рабочие агрессивные растворы для определения скорости коррозии следует приготовлять на дистиллированной воде. Емкости (обычно стеклянные бутыли), в которых приготавливаются растворы, необходимо тщательно вымыть и проградуировать.

4.22. Для приготовления рабочих растворов следует применять вещества категории: чистый для анализа (ч.д.а.), химически чистый (х.ч.).

4.23. Анализы по определению концентрации исходных и испытуемых растворов выполняются сотрудниками, освоившими методы аналитической химии, по методикам, изложенным в специальной литературе, с соблюдением всех требований по проведению работ, приведенных в соответствующих Руководствах, а также правил по технике безопасности лабораторных работ.

4.24. Перед отбором пробы испытуемого раствора на анализ необходимо тщательно перемешать раствор в емкости 3 (см. рис. 1) (проходящий ток) или в рабочей емкости (стационарные условия).

4.25. Максимальная продолжительность исследований скорости коррозии определяется в зависимости от поставленной задачи.

4.26. При проведении исследований во внутренней диффузионной области для видов коррозии: выщелачивающая, общекислотная, углекислая, магнезиальная, аммонийная, щелочная необходимо получить не менее шести определений скорости коррозии для построения прямолинейной зависимости глубины разрушения от корня квадратного из времени (рис. 2, 3 - все шесть точек ложатся на прямую).


Рис. 2. Кинетическая зависимость процессов коррозии цементного камня в диффузионной области

1 - 0,05 м раствор Н2С2О4; 2 - вода дистиллированная; 3 - агрессивная CO2 - 300 мг/л; 4 - 0,1 м HF; 5 - 0,05 м H24; 6 - 0,1 м HCl (бетон); 7 - 0,1 м НСl


Рис. 3. Кинетическая зависимость процессов коррозии образцов цементного раствора 1:2,5 при В/Ц = 0,5 из растворов сульфата натрия с концентрацией по иону

1 - 1,5 г/л; 2 - 5,0 г/л; 3 - 12,0 г/л; 4 - 20,0 г/л

4.27. При проведении исследований в сульфатных средах продолжительность опыта по определению количества поглощенного SO 3 - не менее года.

5.1. Скорость коррозии выражается количеством вещества, вступившего во взаимодействие или перешедшего в агрессивный раствор в единицу времени с единицы поверхности исследуемого образца , мг/(см 2 × сут),


5.2. Степень коррозионного разрушения образцов для видов коррозии: выщелачивающая, общекислотная, углекислая, магнезиальная, аммонийная, щелочная выражается, мг/см 2 по СаО, сульфатной агрессивности, мг/см 2 по или в % SO 3 от массы цемента в образцах.

5.3. Запись результатов испытаний для каждого из трех параллельных образцов производится по форме (табл. 3).

Состав бетона — это рациональное соотношение между его компонентами, обеспечивающее получение бетона с требуемыми показателями качества при минимуме материальных и энергетических затрат. Правильное определение состава — одна из важнейших операций в технологии бетона. Исходные данные для определения состава обычно содержатся в техническом проекте строительства и включают по меньшей мере два требования: получить бетон необходимой прочности,а бетонную смесь — заданной удобоукладываемости. В ряде случаев, обусловленных специфическими условиями эксплуатации конструкций, главными могут стать требования по морозостойкости, водонепроницаемости или стойкости бетона к коррозии.
Обычно стремятся получить бетон с минимальным расходом цемента, так как цемент гораздо дороже других компонентов бетона. Состав бетона определяют расчетно-экспериментальным методом, который предусматривает предварительный расчет по формулам и последующую корректировку полученных данных по результатам экспериментального затворения бетона.
Чаще всего состав выражают в виде массовой концентрации компонентов, т. е. их расхода в кг на 1 м3 уплотненного бетона. Для этого используют следующие зависимости.
1. Расход воды В, необходимой для получения бетонной смеси с заданной удобоукладываемостью, определяют по справочным данным.
2. Из формул, выражающих основной закон прочности, вычисляют цементно-водное отношение, обеспечивающее заданную прочность.
3. Расход цемента находят с учетом уже известных значений В и Ц/В:Ц = В*Ц/В.
Если расход цемента окажется меньше допускаемого нормами, то его следует увеличить, сохранив расчетное значение Ц/В. При этом уточняют и расход воды с учетом увеличенного расхода цемента.
В соответствии с требованиями норм минимальный расход цемента допускается в бетонных конструкциях 200 кг/м3, в железобетонных — 220 кг/м3. Для обеспечения плотности бетонов, предназначенных для работ в агрессивных средах, минимальный расход цемента следует принимать равным 250 кг/м3.
4.Расход крупного и мелкого заполнителей определяют, исходя из следующих положений:
а)объем плотноуложенного бетона, принимаемыйв расчете равным 1 м3 или 1000 л, слагается из объема зерен мелкого и крупного заполнителей и объема цементного теста, заполняющего пустоты между зернами заполнителей.
б)межзерновые пустоты в крупном заполнителе должны быть заполнены цементно-песчаным раствором с учетом некоторой раздвижки зерен.
Сумма расходов компонентов численно равна средней плотности бетонной смеси, выраженной в кг/м3.
Иногда состав бетона выражают в относительных единицах, например по отношению к массе цемента: 1 : В/Ц : П/Ц : К/Ц.
Рассчитанный состав проверяют путем пробного за-творения бетона, внося коррективы для достижения заданной удобоукладываемости бетонной смеси. Из бетонной смеси изготовляют контрольные образцы, которые после твердения по заданному режиму испытывают на прочность. Если полученная при испытании образцов прочность бетона отличается от заданной более чем на 15%, то изменяют расход цемента (т. е. Ц/В) в большую или меньшую сторону.
Окончательно определенный номинальный (лабораторный) состав бетона, полученный для сухих материалов, пересчитывают на рабочий состав, в котором учитывают влажность заполнителей.

Читайте также: