Молоток для проверки прочности бетона

Обновлено: 16.05.2024

Молоток Физделя

Молоток Физделя

В практике возведения бетонных зданий и сооружений часто приходится оперативно определять качество готового бетона. В условиях стройплощадки предпочтение отдаётся методам, которые позволяют просто, быстро и сравнительно точно установить требуемые параметры. Одним из инструментов, при помощи которых решаются подобные задачи, является молоток Физделя.

Устройство

Молоток с шариковой головкой, изобретённый И.А. Физделем, представляет собой инструмент, в боёк которого завальцован шарик из закалённой стали (используются шарики от соответствующих подшипников). Сам инструмент предельно прост и состоит из следующих частей:

  1. Блока/носика.
  2. Деревянной ручки длиной 300 мм.
  3. Корпуса бойка.
  4. Посадочного гнезда под шарик.
  5. Шарика.

Молоток Физделя требователен к размерам и массе отдельных элементов. Так, масса молотка должна составлять 250 г, а диаметр шарика – 17,483 мм. Это существенно, ибо на вторичном рынке нередко встречаются б/у молотки Физделя, которые ранее использовались, например, для наклёпывания автомобильных рессор (твёрдость шарика, изготовленного из сталей типа ШХ15, достигает 62…64 HRC). Естественно, что рабочие характеристики такого инструмента не отвечают эталонным (в частности, шарик часто заклинивается), а потому и полученными результатами невозможно воспользоваться.

молоток для проверки бетона

Принцип действия

Все инструменты подобного типа (включая и известный молоток Кашкарова) используют результаты пластической деформации бетона под действием ударных нагрузок. Благодаря сферической форме шарика, эти деформации локализуются в малой зоне, в связи с чем их можно считать однородными. Диаметр отпечатка, оставленного шариком, будет определять прочность бетона.

Тест с применением молотка Физделя необходимо проводить на участках, прочность которых определяет прочность всего сооружения. К выбранным участкам предъявляются следующие требования:

  • Поверхность должна быть ровной и гладкой, тщательно очищенной от прилипших частиц.
  • Подготовленную поверхность обрабатывают водой до удаления слоя затвердевшего известкового молока.
  • Минимальная площадь испытуемой поверхности составляет 400 см 2 ; этого достаточно для повторения испытания не менее 8…10 раз.
  • К участку, выбранному для тестирования, не должны примыкать торцевые части бетонных элементов, углы и острые кромки. Поры в материале должны отсутствовать.
  • Расстояния между осями смежных отпечатков не могут быть менее 35…40 мм (для железобетона – 40….45 мм).

Эффективность метода зависит от однородности бетона: при наличии крупного заполнителя – щебня фракций от 30 мм и более – точность результата будет невысокой.

монолитный каркас

Последовательность тестирования

Перед использованием твёрдость шарика, вмонтированного в боёк молотка Физделя, необходимо проверить. Для этого к изделию прилагается испытательная таблица, где по диаметру отпечатка на эталонной поверхности устанавливается твёрдость шарика по Бринеллю или Роквеллу. Затем по бетону наносят 2…3 удара. Точность результата увеличивается, если между шариком и бетоном проложить лист белой бумаги (а, если есть возможность – ещё и лист копировальной бумаги). Тогда след от отпечатка получается более чётким.

Диаметр следа от шарика измеряют в двух взаимно перпендикулярных направлениях, при этом точность отсчёта не может быть ниже 0,1 мм. Для анализа принимается среднее арифметическое значение. При резко отличающихся показаниях, проверку повторяют в другом месте тестируемой поверхности.

испытания бетона на прочность

Обработка полученных результатов

В среднем диапазоне значений прочности бетона закалённый шарик оставляет сферическое углубление диаметром от 3,5 до 6,5 мм. Для повышения точности считывания в особо ответственных случаях используют лупу, либо специальный шаблон. Он включает в себя две мерных линейки, расположенные под углом 2,87°. Шаблон накладывают на края лунки и производят измерения.

Более удобно применять эталонный график или экспериментальные таблицы. С их помощью качество бетона можно установить так:

  1. Диаметру лунки от 10 до 12 мм соответствует прочность бетона от 10 до 5 МПа.
  2. От 8 до 10 мм – от 16 до 10 МПа.
  3. От 7 до 8 мм – от 22 до 16 МПа.
  4. От 6,5 до 7 мм – от 30 до 22,5 МПа.

Удары молотком Физделя должны наноситься правой рукой, от локтя и с примерно одинаковым усилием.

молоток Кашкарова

молоток Кашкарова

Определение качества готовых бетонных изделий часто предполагает измерение их прочности. К сожалению, в отличие от металлов, бетон не является однородной структурой, к тому же он достаточно хрупок. Поэтому прямые измерения механических характеристик данного материала либо требуют специальных лабораторных исследований, либо характеризуются большой погрешностью, достигающей 70…75 %. Разумным компромиссом при неразрушающем контроле качества бетона является применение молотка Кашкарова.

Устройство и принцип действия

Молоток Кашкарова представляет собой инструмент для косвенного определения прочности бетона без разрушения или повреждения конструкции. Оценка производится методом пластической деформации – по размерам отпечатка, который получен на эталонной пластинке. Технология получения результата соответствует техническим требованиям основных нормативных документов — ГОСТ 22690-88, ГОСТ 28570-90, ГОСТ 18105-2010 и ГОСТ 10180-2012.

Компактность инструмента и простота метода (при сравнительно высокой точности и воспроизводимости результатов) предопределили широкое использование молотка конструкции Кашкарова в сравнении с приспособлениями аналогичного назначения (имеются в виду молоток Шмидта, молоток Физделя и пр.).

принцип действия Кашкарова

Молоток Кашкарова состоит из следующих деталей:

  1. Стального корпуса.
  2. Обрезиненной рукоятки.
  3. Ударной полусферической головки (допускается её изготовление в форме усечённого конуса), которая имеет резьбовую часть.
  4. Пружины с гужоном.
  5. Стакана.
  6. Закалённого шарика.
  7. Заострённого стержня из стали с пределом прочности не менее 415 МПа, имеющего строго определённые размеры. Обычно предлагаются комплекты таких стержней ( не менее 40) с различными механическими характеристиками, что расширяет область применения устройства.
  8. Сменной металлической пластинки.

Достоинством конструкции является независимость полученного результата от условий проведения испытания.

бетон

Инструкция по применению

Испытание по методу Кашкарова не зависит от силы удара и скорости, которую получают подвижные детали устройства. Не требуется также установка каких-либо дополнительных деталей. Перед испытанием стержень должен быть очищен от загрязнений и следов смазки.

Последовательность определения прочности бетона такова. По ударной головке при помощи слесарного молотка наносится серия ударов (после каждого удара молоток Кашкарова смещается на величину, немного превышающую диаметр шарика). Если после первого удара на поверхности бетона возникла сетка трещин, то испытание продолжают в другом месте конструкции.

При ударе закалённый шарик сжимает пружину и воздействует на стержень, который перемещается и деформирует эталонную пластинку, вставляемую перед испытанием с противоположной стороны корпуса. На пластине остаётся отпечаток, диаметр и глубина которого характеризуют удельное усилие, приложенное к бетону.

проверяем бетон

Возврат головки в исходное положение обеспечивается пружиной, а сила сжатия ограничивается гужоном. Ход стержня может регулироваться ввинчиванием или вывинчиванием головки в корпусе. Точность направления обеспечивается посадкой нижней части головки по внутренним поверхностям стакана и корпуса.

Неизбежные неточности метода связаны с тем, что при ударе закалённый шарик оставляет в бетоне вмятину, диаметр которой хотя и является характеристикой прочности бетона, но в то же время и ухудшает внешний вид конструкции, что не всегда приемлемо. Для минимизации погрешности рекомендуется наносить удар по наиболее гладкой части бетонной поверхности, а между шариком и бетоном иметь лист плотной бумаги.

Среднее соотношение между диаметрами трёх-четырёх отпечатков с использованием калибровочной таблицы показывает прочность бетона. Используя тарировочный график, получают:

  • При пределе на сжатие от 3 до 18 МПа диаметр отпечатка составляет 3,0…1,7 мм;
  • При пределе на сжатие от 18 до 60 МПа диаметр отпечатка составляет 1,6…1,1 мм.

молоток Кашкарова

Детализированная градация приводится в инструкции производителя молотка Кашкарова. Для повышения точности используют и дополнительные таблицы (см, например, ВСН 02-69), учитывающие марку бетона и условия его твердения. Для этого у проверяющего обязательно должны иметься данные по эталонному отпечатку dэ, полученные с использованием стационарного испытательного оборудования.

Тогда прочность бетона можно установить по следующим данным:

  • d/dэ = 2,2…2,7 – 15…10 МПа;
  • d/dэ = 1,9…2,2 – 19…15 МПа;
  • d/dэ = 1,5…1,9 – 26…19 МПа;
  • d/dэ = 1,3…1,5 – 30…26 МПа.

Здесь d – усреднённый размер отпечатка в бетонном изделии по результатам испытания, которые выполнены молотком Кашкарова.

молоток шмидта

молоток шмидта

Сегодня будущие характеристики бетонной смеси в полной мере зависят от критериев её прочности. Поэтому в строительстве определение степени прочности бетонных конструкций является необходимой процедурой, на основании которой производиться вывод о соответствии материалов утверждённым стандартам. Так, к критериям прочности относят показатели растяжения, изгибов, сжатия, а также степень однородности бетонной смеси. Качественный бетон может успешно противостоять различным нагрузкам и отрицательному воздействию окружающей среды.

Методы проверки прочности бетона

На данный момент существует два основных метода определения прочности бетона: с помощью разрушающего либо неразрушающего контроля. Механические способы неразрушающего контроля основываются на взаимосвязи прочности бетона с прочими механическими свойствами, такими, как усилие при скалывании, сопротивление отрыву и твёрдость при сжатии. В зависимости от типа оцениваемого свойства применяются зачастую следующие способы неразрушающих испытаний:

  • отрыв;
  • пластическая деформация;
  • скол ребра;
  • упругий отскок.

Выбор способа испытаний зависит от размера и формы изделий, цели проводимых мероприятий, требований, выдвигаемых к точности полученных результатов и от степени удобства испытаний.
В мировой практике наибольшее распространение в определении прочностных характеристик получил прибор под названием молоток Шмидта. У нас его часто называют склерометром, что в переводе с греческого означает «измеритель твёрдости».

Молоток Шмидта был разработан в 1948 году швейцарским инженером Эрнстом Шмидтом. Именно молоток Шмидта впервые дал возможность измерить прочность бетонных конструкций на месте проведения строительных работ.

молоток шмидта

Принцип работы молотка Шмидта

Молоток Шмидта работает по принципу упругого отскока, который основан на измерениях поверхностей бетона на его твёрдость. Этот способ позаимствован из практики измерения степени прочности металла. Заключается он в воздействии ударами с помощью специального ударника по сферическому штампу, который предварительно прижимается к бетону.

Склерометр устроен таким образом, что после удара по бетону специальная система пружин позволяет ударнику осуществлять свободный отскок. При этом величина обратного отскока характеризует степень твёрдости оцениваемого материала. А с помощью установленной на прибор градуированной кривой вычисляется прочность бетона.

Конструкция молотка Шмидта включает в себя:

1 – ударный плунжер или индентор.

2 – бетонная поверхность, над которой проводят контроль прочности.

3 – корпусная часть.

устройство-склерометра

4 – ползунок, оснащённый направляющими стержнями.

5 – конус корпусной части.

7 – шток бойка, обеспечивающий направление работы инструмента.

8 – шайба для установки бойка.

10 – кольцо для разъёма.

11 – задняя крышка инструмента.

12 – сжимающая пружина.

13 – предохраняющая часть конструкции.

14 – боек, имеющий определённую массу.

15 – пружина для фиксации.

16 – ударяющая пружина.

17 – втулка, направляющая работу молотка.

18 – войлочное кольцо.

19 – дисплейное окно, показывающее шкалу Шмидта.

20 – винт для сцепления.

21 – контрольная гайка.

23 – предохраняющая пружина.

В целом работа молотка основана на вычислении ударного импульса, который возникает при приложении нагрузки. Удар производят о твёрдую поверхность (бетон), без наличия металлической арматуры и замеряют высоту отскока бойка, дающую показание прочности бетона на сжатие.

принцип работы молотка шмидта

Схема работы с молотком Шмидта заключается в следующем:

  • ударный механизм прибора приставляется к исследуемой поверхности;
  • двумя руками производиться плавный нажим на молоток по направлению к поверхности бетона до момента появления удара бойка;
  • после чего на шкале высвечиваются показания;
  • для более точных результатов показания снимаются 9 раз.

Измерения следует проводить на небольших участках, которые предварительно расчерчиваются на квадраты, каждый из которых, подвергается исследованию. Все показания прочности фиксируются, а затем сравниваются. Расстояние между ударами должно быть не менее 25 мм. Иногда полученные данные могут иметь определённые отклонения либо быть одинаковыми. По полученным результатам испытаний определяется среднее арифметическое. Если при испытаниях удар бойка произошёл на пустоте заполнителя, то такие данные не следует учитывать, а удар повторить в другом месте.

Разновидности молотка Шмидта

По своему принципу работы молоток Шмидта делиться на два подтипа:

  • устройство механического воздействия – имеет корпус конструкции в форме цилиндра, внутри которого размещается ударный механизм, состоящей из индикаторной шкалы со стрелкой и отталкивающей пружины. Подобный инструмент предназначен для определения показателя прочности бетона в пределах от 5 Мпа до 50 Мпа. Молоток Шмидта механического типа применяется при обследовании железобетонных либо бетонных конструкций;
  • устройство ультразвукового действия – оснащается встроенным либо внешним электронным блоком. Все получаемые во время измерения показания отображаются на дисплее и могут оставаться в памяти прибора в течение определённого периода времени. При желании молоток может подключаться к компьютеру благодаря дополнительному оснащению специализированными разъёмами и клавиатурой. Такой прибор способен диагностировать показатели, находящиеся в диапазоне от 5 Мпа до 120 Мпа. Предел памяти сохранения результатов предполагает возможность сохранения 1000 версий в течение 100 дней.

молоток шмидта инструкция

В зависимости от энергии удара молоток Шмидта подразделяется на типы:

  • МШ 20 – обладает наименьшим значением энергии удара (196 Дж). Прибор используется чаще всего при определении показателя прочности цементных растворов кирпичной кладки;
  • тип молотка РТ – 200-500 Дж. Используется для определения прочности свежего бетона в цементно-песчаной стяжке. Это молоток маятникового типа, производящий замеры как вертикально, так и горизонтально;
  • МШ 75 (тип L) – энергия удара обладает 735 Дж. В основном применяется, чтобы определить прочность бетонных изделий с толщиной менее 100мм и кирпича;
  • МШ-225 (тип N) – наиболее мощный молоток с энергией удара в 2207 Дж. Устройство предназначено для определения прочности бетонных конструкций с толщиной от 70 до 100 мм и более. Диапазон измерений находится в пределах от 10 до 70 МПа. На корпусе склерометра размещается таблица с тремя графиками.

молоток шмидта

Немного цифр

Каждый вид молотка Шмидта предназначен для конкретных целей. Основные области применения и характеристики каждой модификации прибора могут быть различными:

Предел диапазона прочности на сжатие бетона
От 1 МПа до 5 МПа От 5 МПа до 10 МПа От 10 МПа до 30 МПа От 30 МПа до 70 МПа От 70 МПа до 100 МПа >100 МПа
Свежий бетон с низкими показателями прочности Обычный бетон Бетон с высокими показателями прочности Бетон со сверхвысокой прочностью

Прочность бетонных конструкций на сжатие может выражаться в двух системах:

  • М (марка бетона) – обозначается от 50 до 1000 кг/см 2 . Максимально допустимым отклонением значения прочности считается 13,5%;
  • В (класс бетона) – определяет кубиковую прочность, показывающую величину давления в МПа.

молоток шмидта

Согласно утверждённым стандартам соответствие марки бетона его классу отображено в таблице.

Класс и марка бетона определяется только спустя 28 дней с момента заливки бетонной конструкции.

Показания шкалы в зависимости от класса и марки бетона может варьироваться в пределах:

Молоток Шмидта был изобретен еще в 1948 году, благодаря работам ученого из Швейцарии – Эрнеста Шмидта. Появление данного изобретения сделало возможным измерение прочности конструкций из бетона на территории, где проводится стройка.

Особенности и назначение

На сегодняшний день практикуется несколько способов проверки бетона на прочность. Основой механического способа является контроль взаимосвязи между прочностью бетона и его другими механическими свойствами. Процедура определения данным методом основана на сколах, сопротивлениях отрывам, твердости в момент сжатия. Во всем мире зачастую используется молоток Шмидта, при помощи которого определяются прочностные характеристики.

Данный прибор по-другому называется склерометром. Он позволяет правильно проверить прочность, а также осуществить обследование железобетонной и бетонной стен.



Измеритель твердости нашел свое применение в следующих сферах:

  • измерение прочности бетонного изделия, а также строительного раствора;
  • оказывает помощь в обнаружении слабых мест в бетонных изделиях;
  • позволяет осуществлять контроль качества готового объекта, что собран из бетонных элементов.

Ассортимент измерителя довольно широк. Модели могут иметь отличие в зависимости от характеристик проверяемых предметов, например, толщины, размера, энергии удара. Молотки Шмидта могут охватывать бетонные изделия в диапазоне от 10 до 70 Н/мм². А также пользователь может приобрести электронный инструмент для измерения прочности бетона ND и LD Digi-Schmidt, которые работают автоматически, выдавая результаты измерений на монитор в цифровом виде.



Устройство и принцип работы

Конструкции большинства склерометров состоят из следующих элементов:

  • плунжер ударного типа, индентор;
  • корпус;
  • ползунки, что оснащены стержнями для направления;
  • конус в основе;
  • кнопки стопора;
  • штоки, что обеспечивает направленность функционирования молотка;
  • колпачки;
  • кольца разъема;
  • задняя крышка прибора;
  • пружина со сжимающими свойствами;
  • предохраняющие элементы конструкций;
  • бойки с определенным весом;
  • пружины с фиксирующими свойствами;
  • ударяющие элементы пружин;
  • втулка, что направляет функционирование склерометра;
  • войлочные кольца;
  • индикаторы шкалы;
  • винты, что осуществляют процесс сцепки;
  • гайки контроля;
  • штифты;
  • пружины предохранения.



Функционирование склерометра имеет основу в виде отскока, характеризующегося упругостью, что формируется при измерениях импульса удара, который возникает в конструкциях при их нагрузке. Устройство измерителя произведено так, что после осуществления ударных действий об бетон пружинная система дает ударнику возможность сделать свободный отскок. Градуированная шкала, вмонтированная на приборе, вычисляет искомый показатель.

После использования инструмента стоит пользоваться таблицей значений, в которой описаны пояснения полученных измерений.



Инструкция по применению

Функционирует мотоблок Шмидта на вычислениях ударных импульсов, что возникают во время нагрузок. Удары производятся о твердые поверхности, в которых не имеется арматур из металла. Использовать измеритель необходимо по следующей схеме:

  1. приставить ударный механизм к поверхности, которая будет исследоваться;
  2. используя обе руки, стоит осуществить плавное нажатие на склерометр в направлении к бетонной поверхности до того момента, пока не появиться удар бойка;
  3. на шкале показаний можно увидеть показания, что высвечиваются после проведения вышеперечисленных действий;
  4. чтобы показания были абсолютно точными, проверка прочности при помощи молотка Шмидта должна проводиться 9 раз.



Проводить измерения необходимо на участках с небольшими размерами. Их предварительно расчерчивают на квадраты и после исследуют поочередно. Каждое из показаний прочности необходимо зафиксировать, а после сравнить с предыдущими. При процессе стоит придерживаться расстояния между ударами в 0,25 см. В некоторых ситуациях данные, что получены, могут отличаться друг от друга либо быть идентичными. Из полученных результатов высчитывается среднее арифметическое значение, при этом возможна незначительная погрешность.

Важно! Если во время проведения измерений удар попал на пустой заполнитель, то полученные данные не учитываются. В данной ситуации необходимо провести повторный удар, но в другой точке.



Разновидности

По принципу действия измерители прочности бетонных конструкций делят на несколько подтипов.

  • Склерометр с механическим воздействием. Он оснащен цилиндрическим корпусом с расположенным внутри ударным механизмом. При этом последний оснащен индикаторной шкалой, имеющей стрелку, а также отталкивающей пружиной. Этот вид молота Шмидта нашел свое применение при определении прочности бетонной конструкции, имеющей пределы от 5 до 50 МПа. Измерителем данного вида пользуются при работе с бетонными и железобетонными предметами.
  • Измеритель прочности с ультразвуковым действием. В его конструкции имеется встроенный или внешний блок. Показания можно увидеть на специальном дисплее, который имеет свойство памяти и сохраняет данные. Молоток Шмидта имеет возможность подключения к компьютеру, так как дополнительно оснащен разъемами. Данный вид склерометра работает с показателями прочности от 5 до 120 МПа. Память измерителя сохраняет до 1000 версий на протяжении 100 суток.



Сила энергии удара оказывает прямое влияние на прочность бетонной и железобетонной поверхностей, поэтому они могут быть нескольких типов.

  • МШ-20. Этот инструмент характеризуется наименьшей силой ударов – 196 Дж. Он способен точно и качественно определить показатель прочности раствора из цемента и кирпичной кладки.
  • Молоток РТ работает со значением в 200–500 Дж. Измеритель принято использовать, чтобы измерять прочность бетона первой свежести в стяжках из смеси песка и цемента. Склерометр имеет маятниковый тип, может проводить вертикальные и горизонтальные замеры.
  • МШ-75 (L) работает с ударами в 735 Дж. Основным направлением в применении молотка Шмидта является установка прочности бетона, который характеризуется толщиной не более 10 см, а также кирпича.
  • МШ-225 (N) – это самый мощный тип склерометра, который работает с силой удара в 2207 Дж. Инструмент способен определить прочность конструкции, что имеет толщину от 7 до 10 см и более. Прибор имеет диапазон измерения от 10 до 70 МПа. Корпус оснащен таблицей, что имеет 3 графика.




Преимущества и недостатки

Молоток Шмидта имеет следующие преимущества:

  • эргономичность, которая достигается удобством во время использования;
  • надежность;
  • отсутствие зависимости от угла удара;
  • точность в измерениях, а также возможность воспроизводимости результатов;
  • объективность оценивания.

Измерители характеризуются уникальностью дизайна, конструкцией высокого качества. Каждая из проведенных процедур с использованием склерометра является быстрой и точной. Отзывы пользователей прибора свидетельствуют о том, что молоток имеет простой интерфейс, а также выполняет все необходимые ему функции.



Недостатков измерители практически не имеют, из минусов можно выделить следующие характеристики:

  • зависимость величины отскока от угла удара;
  • влияние внутреннего трения на величину отскока;
  • недостаточность герметизации, которая способствует преждевременной потере точности.

В настоящее время характеристика бетонных смесей полностью зависит от их прочности. Именно от этого свойства зависит, насколько безопасной будет конструкция в готовом виде. Вот почему применение молотка Шмидта – это важная процедура, которую обязательно стоит проводить при возведении бетонных и железобетонных сооружений.

О том, как использовать мотлоток Шмидта, вы узнаете из видео ниже.

Склерометры: особенности и советы по выбору

Склерометр – это прибор, позволяющий дать оценку некоторым характеристикам различных материалов методом их повреждения. Первые серьезные методы проверки прочности металлов и минералов появились в XIX веке, они основывались на выполнении надрезов острыми предметами и напильниками. Со временем методы оценки стали сложнее и точнее.

Первым прототипом современного склерометра стал прибор, созданный немецким физиком Зеебеком в 1833 году.



Назначение и область использования

Сейчас понятием «склерометр» обозначают любой аппарат, при помощи которого царапают изучаемые поверхности, проверяя тем самым такие показатели, как:

  • способность сопротивляться воздействию более твердого предмета (твердость);
  • способность восстанавливать свою структуру после воздействия (пластичность);
  • способность сопротивляться истиранию (износостойкость).

В частном случае этот инструмент – измеритель твердости такого материала, как бетон, поэтому его также называют «молоток для проверки прочности бетона». Областью использования данного инструмента является строительная отрасль.

Инструмент позволяет определять качество материалов, из которых возводят различные конструкции, здания и сооружения. Это необходимо для изучения их целостности, своевременного предотвращения разрушения и исключения появления жертв.



Виды и принципы работы

Современный строительный рынок выпускает склерометры трех типов: механический, электронный и ультразвуковой. Первые два типа выполняют измерение по стандартизированному ГОСТом ударно-импульсному методу. Он заключается в определении длины отскока встроенного механизма, который передает удар твердой поверхности.

Механический прибор обладает вытянутой формой, похожей на увеличенную шариковую ручку. Внутри него вмонтирован ударный боек с пружиной, а снаружи – шкала, отображающая выдерживаемое поверхностью давление. Это самое простое из существующих устройств, которое обладает значительной погрешностью и небольшим спектром применения.

Электронный аппарат внешне похож на механический, но имеет гораздо меньший размер и дополнительно снабжен электронным прибором. Этот прибор отображает измеряемые показатели с учетом температурной погрешности, а работает всего от двух батареек. Электронный аппарат имеет меньшую погрешность и может применяться не только на бетонных, но и композитных, металлических, кирпичных и мраморных поверхностях.

Ультразвуковой тип рассчитывает прочность материалов по времени и скорости излучаемой волны. Корпус инструмента выполнен из пластика, на лицевой части расположены клавиши и табло, а сбоку размещены два контакта. Как и электронный, этот аппарат обладает функцией сохранения проведенных измерений и работает от батареек.




Особенности

Каждый вид аппарата имеет свои характерные особенности.

Для ультразвуковых моделей это:

  • возможность обмена данными с компьютером;
  • удобное управление и настройка прибора при помощи кнопок и интерфейса;
  • выключение при длительном перерыве в использовании;
  • память для сохранения измерений;
  • озвучивание процесса работы;
  • автоматическое изменение волн;
  • возможность поиска дефектов и трещин.



Отличительными чертами электронных моделей являются:

  • способность записи измерений;
  • возможность перевода показателей на ПК;
  • функция сортировки измеренных данных;
  • изменение направления ударного воздействия.

Следует отметить, что электронные модели имеют оптимальную цену по сравнению с альтернативными вариантами.



Специфичность механических моделей заключается в следующем:

  • возможность работы при температуре – 40°;
  • низкая стоимость;
  • высокая погрешность;
  • большой вес.

Характеристики современных моделей и советы по выбору

Любая современная модель измерителя прочности твердых материалов облегчает процессы всех сфер строительных работ. С помощью небольшого прибора можно легко провести контроль качества даже кирпичных кладок без серьезных повреждений.

К главным характеристикам всех типов склерометров относят несколько параметров.

  • Погрешность измерений. Самая большая погрешность у механических моделей. Она обычно не указывается, но зачастую достигает 20%. А также у механических моделей наибольшая периодичность поломок. Для электронных этот показатель составляет 5%, а наименьший у ультразвуковой аппаратуры: 1%.
  • Рабочий интервал прочности. У механических аппаратов он составляет 60 МПа, у электронных – 100. У ультразвуковых интервал изменяется по времени и скорости.
  • Комфорт эксплуатации. Механическим аппаратом пользоваться менее удобно из-за отсутствия сохранения результатов и большого веса (1 кг).
  • Цена. В этом показателе все наоборот: самым дорогим является ультразвуковой прибор.



Если составить рейтинг наилучшего прибора, то лидером, бесспорно, окажется ультразвуковой, так как он опережает другие по всем показателям, кроме цены.

Лучше всего для покупки выбирать последние модели популярных производителей измерительных приборов. В топ компаний, выпускающих качественную продукцию, входят фирма Интерприбор с приборами серии «Оникс», компания Condtrol с одноименной продукцией, а также фирмы Schmidt Hammer и RGK.




Обзор склеромера ИПС-МГ4 смотрите далее.

Читайте также: