Материал несущих стен исторических зданий

Обновлено: 29.04.2024

Строительная система - это комплексная характеристика конструктивного решения зданий по материалу и технологии возведения основных несущих конструкций.

Строительные системы зданий бывают:

монолитное и сборно-монолитное домостроение :

- с несъемной опалубкой.

- полнокомплектные из легких металлических конструкций;

- брусчатые из клееной древесины и комбинированные – доб. в табл;

- каркасные из клееной древесины и комбинированные – доб. в табл.;

- пневматические и тентовые.

Таблица классификации строительных систем зданий

Традиционная система

1. Ручная кладка (здания из мелкоштучных элементов)

Традиционная система ручной кладки - несущие стены из мелкоштучных элементов:

- мелких блоков из керамики, легкого бетона или естественного камня.

Традиционная система основана на возведении стен в технике ручной кладки, как это издревле выполнялось во всех традиционных сооружениях. Необходимо отметить, что в индустриальном сооружении собственно традиционными остаются лишь ограждающие конструкции, перекрытия и другие внутренние несущие конструкции – полностью идентичны полносборным сооружениям.

Традиционная система (с деревянными перекрытиями), долгое время считавшаяся основным типом капитального гражданского здания средней и повышенной этажности – осталась в прошлом. На сегодняшний день лишь для удобства классификации огромного многообразия индустриальных сооружений, в них выделяются традиционные здания, которые только внешним видом напоминают прежние кирпичные сооружения, возводимые до конца 50-х годов.

К середине 80-х годов прошлого столетия на основе применения традиционной системы ограждающих конструкций возводилось около 30% объема строительства жилых и 80% - массовых общественных зданий. Разумеется, уровень индустриальности конструкций зданий "традиционной" строительной системы в целом достаточно высок благодаря массовому применению крупноразмерных сборных изделий перекрытий, лестниц, перегородок, фундаментов.

Индустриальная традиционная система обладала и обладает существенными архитектурными преимуществами. Благодаря малым размерам основного конструктивного элемента стены (кирпича, камня) эта система позволяет проектировать здания любой формы с различными высотами этажей и разнообразными по размерам и форме проемами.

Применение традиционной системы считается наиболее целесообразным для зданий, доминирующих в застройке. Конструкции зданий со стенами ручной кладки надежны в эксплуатации – кирпич высокотехнологичного обжига не требует устройства многодельной, недолговечной в эксплуатации штукатурки, а это значительно повышает огнестойкость индустриальных кирпичных стен.

Наряду с архитектурными и эксплуатационными преимуществами ручная кладка стен является причиной основных технических и экономических недостатков каменных зданий: трудоемкость возведения и нестабильность прочностных характеристик кладки в зависимости от разных партий кирпича, в случае незначительных отклонений в технологическом процессе на кирпичных заводах. Качество и прочность кладки зависят от сезона возведения и квалификации каменщика.

В целях повышения экономичности и индустриальности конструкций зданий с каменными стенами было опробовано применение камня или кирпича высоких марок а также частичная замена ручной кладки монтажом кирпичных (каменных) панелей заводского изготовления. В ходе работы были разработаны и исследованы виброкирпичные конструкций, не имевшие мировых аналогов. Объединения отдельных камней, мелких блоков естественного камня, керамических блоков или кирпича в панель производились путем их предварительной укладки на цементном растворе в стальные формы с вибрированием (виброкирпичные и виброкаменные панели) либо без вибрирования, но со специальными синтетическими добавками в раствор, повышающим сопротивление кладки растяжению (кирпичные и каменные панели).




Строительная система зданий со стенами из кирпичных панелей впервые разработана и применена в СССР в 1968 г. и, вследствие ряда причин, (например, значительная хрупкость изделия) не нашла дальнейшего применения в строительстве.

Бревенчатая рубленная

Строительные системы из дерева– наиболее органично используется в малоэтажном индивидуальном строительстве. Они по своим конструктивным качествам, а главное, по долговечности - малопригодны для государственной жилищной политики. Более того, как показывает историческая ретроспектива, даже в наиболее сложных экономических ситуациях граждане могли выстроить подобное жилище самостоятельно, без вмешательства государства.

Полносборное домостроение

Индустриальное изготовление железобетонных конструкций это путь, по которому пошла страна еще в доперестроечные времена. Это рациональный путь, позволивший в свое время очень многое сделать для решения жилищной проблемы россиян. Не зря когда-­то по всей стране было построено множество комбинатов ДСК и КПД крупнопанельного домостроения. Ведь совершенно очевидно, что только на предприятии с хорошим уровнем автоматизации возможно изготовление качественных элементов, необходимых для того, чтобы можно было просто и быстро "собирать" дома. Только этот способ дает возможность ставить изготовление домов на поток, на конвейер.
Полносборные здания с несущими конструкциями из бетонных и железобетонных элементов возводят на основе крупноблочной, панельной, каркасно-панельной и объемно-блочной строительных систем.

Крупноблочная строительная система

Крупноблочная строительная система применялась для возведения жилых зданий высотой до 22 этажей. Масса сборных элементов наружных и внутренних стен составляла 3-5 т. Установку крупных блоков осуществлялась по основному принципу возведения каменных стен - горизонтальными рядами, на растворе, с взаимной перевязкой швов.

Для зданий высотой до 5-ти этажей применяют бескаркасную, конструктивную систему с продольными несущими стенами, а для зданий повышенной этажности - с большим или смешанным шагом поперечных стен.

Наружные стены в пределах высоты каждого этажа членят по горизонтали на два, три или четыре ряда блоков.

Преимущества крупноблочной строительной системы заключаются в:

- простоте техники возведения, обусловленной самоустойчивостью блоков при монтаже,

- возможностью широкого вменения системы в условиях различной сырьевой базы.

Гибкая система номенклатуры блоков позволяла возводить различные типы жилых домов при ограниченном числе типоразмеров изделий. Эта система требовала меньших по сравнению с панельным и объемно-блочным домостроением капиталовложений в производственную базу из-за простоты и меньшей металлоемкости формовочного оборудования, а ограниченная масса сборных изделий позволяла использовать распространенное монтажное оборудование малой грузоподъемности.

Создание крупноблочной строительной системы стало первым этапом массовой индустриализации конструкций зданий с бетонными стенами. Крупноблочная система по сравнению с традиционной каменной дала снижение затрат труда на 10% и сроков строительства на 15-20%. По мере внедрения более индустриальной панельной системы постепенно уменьшается объем применения крупноблочной. В середине 70-х годов прошлого столетия крупноблочная система в массовом жилищном строительстве занимала третье место по объему применения после панельной и традиционной каменной систем с постепенно устойчивым снижением объемов.

Жилищный фонд России формировался в различные историче­ские периоды, вследствие чего он различается по положению в пла­нировочной структуре города, капитальности, этажности, архитек­турно-исторической ценности, а также по уровню благоустройств, комфортности, планировочным решением квартир, числом комнат и размером их площадей.

В качестве основных периодов развития жилищного строительст­ва можно выделить следующие:

I — дореволюционный (до 1917 г.);

II —довоенный (1917—1940 гг.);

III — послевоенный (1945—1955 гг.);

IV — современный (после 1955 г.).

К первому периоду строительства относятся одно- и двухэтажные деревянные рубленые дома, в основном возводившиеся на окраинах города. Застройка кварталов при этом напоминала сельскую.

С начала XVII в. возводили рубленые стены, каркасы из бруса с дощатым заполнением. Основным строительным материалом в ка­менных зданиях оставался крупный кирпич, для облицовки исполь­зовали фигурные керамические изделия. В качестве отделочного ма­териала применяли терракоту и многоцветную майолику. Вместе с тем, несмотря на увеличение количества каменных домов, главным строительным материалом в жилищном строительстве оставалось де­рево. По мнению историков, одним из наиболее старых сохранив­шихся каменных домов XVII в. считаются палаты бояр Поганкиных в Пскове. Они существовали уже в середине XVII в., состоя из трех кор­пусов, и имели три каменных и четвертый деревянный этаж.

В Москве уже в то время предъявлялись высокие требования к по­жарной безопасности. В 1688 г. был опубликован царский указ о за­прете строительства на палатах «деревянного хоромного строения». Поэтому деревянные жилые этажи стали заменять на кирпичные. В Москве сохранились и входят в состав памятников архитектуры пала­ты думского дьяка А. Кириллова (1657), В. Голицына (1689), бояр Волкова и Троекурова (конец XVII в.). Почти в это же время были по­строены палаты архиереев и жилые дома в Кремле (Патриаршие па­латы, теремной дворец, потешный дворец — дом боярина И. Милославского).

В XVIII в. в Петербурге и его окрестностях были возведены такие сооружения, как дворец Строганова (1752—1754), Зимний дворец (1754—1764), Большой дворец в Петергофе (1747—1752), Большой дворец в Царском селе (пристройка 1752—1757).

В 60—70-х годах XVIII в. строительство крупных жилых домов ве­лось по индивидуальным проектам, а массовое строительство по «об­разцовым» проектам, которое осуществлялось не только в Москве и Петербурге, но и по всей стране.

В Москве в то время стала распространяться застройка по красной линии улицы. В домах, как правило, было два входа — парадный и черный. Жилая застройка Москвы от петербургской отличалась боль­шей свободой и разнообразием композиционных приемов. В Петер­бурге регламентации следовали более строго, и застройка была глав­ным образом сплошной фасадной. Жилые дома имели один, два или три этажа со стенами толщиной в 2,5—4 кирпича.

Каменное строительство осуществлялось с начала XVIII в. в основном в Москве и Петербурге. По другим городам были введены ограничения на строительство каменных зданий.

Такое строительство стало повсеместно распространяться с по­следней четверти XIX в.

Особенность рассматриваемого периода строительства характе­ризовалась использованием однопролетной конструктивной схемы зданий с продольными несущими стенами либо однопролетной с пе­регородкой, частично воспринимающей нагрузку от перекрытий (рис. 2.1). Для балок перекрытий использовали дорогостоящий длин­номерный корабельный лес. Длина балок перекрытий достигала 10м.

По мере истощения запасов корабельного леса в строительстве перешли на двух- и трехпролетные конструктивные схемы с устрой­ством промежуточных опор в виде кирпичных столбов, металличе­ских колонн, продольных внутренних кирпичных стен (рис. 2.2).

w

Рис. 2.1. Однопролетная конструктивная схема жилого дома с продольными несущими стенами:

а — типовая; б— с продольной разгружающей перегородкой; 7 — несущие стены; 2 — продольная перегородка

Массивные стены и применение новых строительных материалов (прокатный металл, железобетон) обеспечивали жилым зданиям вы­сокую долговечность (120—150 лет).

Довоенная застройка велась с целью быстрого решения жилищ­ного вопроса в условиях активной индустриализации страны и значи­тельного притока населения в крупных городах. Этот период совпал с большими проблемами в экономике. Народное хозяйство в 20-е годы находилось в разрухе. Преобладало строительство двухэтажных зда­ний, прослуживших до 50-х годов XX в.

Кирпичное строительство этого периода отличалось облегченно- стью несущих и ограждающих конструкций. При этом преобладали две конструктивные схемы зданий: трехпролетная, с несущими на­ружными продольными стенами и смешанным внутренним каркасом из кирпичных столбов, и деревянных прогонов, уложенных по желе­зобетонным вутам колонн (рис. 2.3) и с поперечными несущими сте­нами (рис. 2.4).

В предвоенный период (до 40-х годов XX в.) в основном строились здания с двухпролетной конструктивной схемой — наружные продольные несущие стены с внутренней несущей продольной стеной («пятистенка») либо со встроенным каркасом, со­стоящим из кирпичных столбов и металлических прогонов. В мень­ших объемах велось строительство зданий по однопролетной схеме с поперечными несущими стенами.

e

Рис. 2.2. Двухпролетная конструктивная схема жилого дома:

а — с продольными несущими стенами; б — с продольными наружными стенами и металлическими колоннами или кирпичными столбами; 1 — на­ружные несущие стены; 2—внутренняя продольная несущая стена; 3 — металлическая колонна (кирпичный столб)

r

Окончание рис. 2.2

В первое послевоенное десятилетие основным видом массовой городской застройки стала пятиэтажная, осуществлявшаяся на сво­бодных площадях и приведшая к разрастанию селитебных террито­рий и увеличению инженерных коммуникаций.

t

Рис. 2.3. Конструктивная схема жилого дома с несущими наружными стенами и встроенным каркасом: а — двухпролетная; б — трехпролетная; 7 — несущая стена; 2— кирпичный столб

y

В 1945—1950 гг. широко использовали облегченные стены — сплошные, из шлакоблоков и мелких камней. Во второй половине 50-х годов преобладали стены из силикатного кирпича.

Сборные железобетонные перекрытия повсеместно стали приме­нять со второй половины 50-х годов XX в., сначала по железобетон­ным ригелям из плит длиной 2,8—4,0 м и позднее без ригелей из плит длиной 6,3 м.

Трудоемкое кирпичное строительство, начиная с конца 1950-х го­дов, постепенно вытеснялось полносборным. Наибольшее распро­странение получили каркасно-панельные и панельные конструктив­ные схемы полносборных зданий.

Каркасно-панельная схема предусматривает передачу нагрузок на каркас, который обеспечивает пространственную жесткость и устой­чивость зданий. При панельной схеме нагрузки воспринимают пане­ли внутренних поперечных стен. В рассматриваемых схемах наруж­ные стены выполняли из навесных панелей.

К полносборному строительству относятся также и крупноблоч­ные здания с продольными или поперечными стенами из шлакоцементных и керамзитобетонных блоков.

С целью снижения веса наружных стен перешли на трехслойные панели с использованием эффективных утеплителей.

Более экономичными стали и перекрытия из плит размером «на комнату», опираемые по контуру или по трем сторонам.


Традиционным стеновым материалом является кирпич – искусственный строительный камень, применяемый для ручной укладки.

Наибольшее распространение в отечественном строительстве получил глиняный (красный) кирпич. Такой кирпич хорошо сопротивляется действию высоких температур, невлагоемок, и потому без ограничения применялся в стенах и столбах гражданских, общественных и промышленных зданий.

Силикатный кирпич отличается более правильными формами и точными размерами и тем самым имеет ряд преимуществ при производстве кладки. Однако он более теплопроводен, хуже сопротивляется действию высоких температур и влагоемок.

Растворы для кирпичных кладок составляются из инертных, нижущего и различных добавок. В качестве инертных применяют: обычный (кварцевый) песок, песок из тяжелых котельных шлаков, песок из легких и гранулированных шлаков, пемзовый песок и т. д. Чем меньше плотность, тем выше теплоизоляционные свойства раствора и меньше теплопроводность выложенной на нем кладки.

По своей структуре кирпичные стены подразделяются на плотные (однородные), сложенные из кирпича, и облегченные неоднородные, сложенные из кирпича с заполнениями из других менее теплопроводных материалов или с воздушными пробойками.

Дореволюционное жилищное строительство (до 1917 г.) отлилось возведением стен с массивными кирпичными стенами толщиной 660–1480 мм. Излишнее утолщение стен вызывалось отсутствием в то время теории расчета каменных конструкций.

Толщина стен по этажам принималась применительно выработанным практическим правилам, согласно которым толщина стен каждых двух этажей сверху вниз, начиная с третьего этажа, увеличивалась на пол кирпича. Обрезы стен выполнялись внутрь здания.

Несущая способность при этом использовалась на 50–70%. Наибольшее распространение в то время имели следующие разновидности сплошной кладки (рис. 1):

  • цепная (ложковые и тычковые ряды чередуются, вертикальные швы всех ложковых рядов совпадают);
  • крестовая (вертикальные швы в ложковых рядах выкладываются в перевязку);
  • голландская (тычковые ряды чередуются со смешанными, в мешанном ряду ложковые и тычковые кирпичи идут через мин);
  • готическая (состоит из смешанных рядов, тычковые и ложковые кирпичи чередуются в каждом ряду);
  • английская (на каждые два ложковых ряда приходится один тычковый, все ряды перевязаны в 1/4 кирпича).

Типы кирпичных кладок

Рис. 1. Типы кирпичных кладок:

а– цепная; б– крестовая; в–голландская; г– готическая, д – английская, е – многорядная, ж –многорядная без перевязки горизонтальных швов наружной версты.

Довоенное жилищное строительство отличалось возведением зданий, как с массивными кирпичными стенами, так и с облегченными.

Сплошная кладка выполнялась двух типов перевязки швов: цепная, дающая в поперечном сечении перевязку всех швов вышележащими кирпичами, и американская, обеспечивающая перевязку швов только в одном ряду из шести; поэтому ее нередко называют шестирядной.

Облегченные стены

Существует зависимость между теплопроводностью, собственным весом и механической прочностью. Чем больше собственный вес, а следовательно и плотность материала, тем ниже его термическое сопротивление, но зато обычно тем выше его прочность.

Это приводит к тому, что в стенах верхних этажей имеются излишние запасы прочности, а в стенах нижних этажей – недостаток термического сопротивления, что вызывает излишнее утяжеление конструкций стен и фундаментов и потерю полезной площади помещений.

Там, где имелся резерв прочности, применялись так называемые облегченные стены из более легких и потому менее теплопроводных материалов. Это позволяло уменьшить толщину стен настолько, чтобы прочность материала была максимально использована.

Таким материалом являются виды кирпича, обладающие существенно меньшей массой и меньшей теплопроводностью, чем обыкновенный глиняный или силикатный, например:

  • глиняно-трепельный, получаемый путем обжига глины с примесью трепела;
  • пористый, при изготовлении которого к глине добавляется угольная пыль или древесные опилки, выгорающие при обжиге;
  • безобжиговые – шлаковый и зольный, производимые из гранулированных шлаков и из сланцевой золы.

Перечисленные разновидности кирпича имеют те же размеры и форму, что и обыкновенный глиняный кирпич, и изготовляются следующих марок: соответственно «35», «50», «75», «100»; таким образом в среднем они менее прочные, чем обыкновенный глиняный кирпич.

Конструктивно кладка из облегченного кирпича ничем не отличается от кладки из обыкновенного кирпича, но минимальная толщина стен была уменьшена на 1/2 кирпича, так как термическое сопротивление их выше на 30–50% (в зависимости от вида кирпича).

Кладка из этих сортов кирпича велась исключительно на легких растворах марок «8» и «15» и применялась только для малоэтажных (2–3 этажа) зданий или верхних этажей многоэтажных зданий. Применение таких кирпичей не допускалось для стен помещений с повышенной влажностью (бани, прачечные), а также для кладки дымоходов, боровов, печей и т. д.

Значительное уменьшение массы стены достигалось заменой части кирпичной кладки другими легкими и потому малотеплопроводными материалами.

Кладка с засыпками

Одна из наиболее старых конструкций стен такого типа была предложена в 90-х гг. XIX в. архитектором Герардом. Кладка системы Герарда состоит из двух стенок, толщиной в полкирпича каждая, выкладываемых на растворе марки не ниже «15», с промежутком между ними 18–33 см, заполняемым малотеплопроводным материалом:

  • засыпкой из котельного шлака, золы, толченого угля;
  • шлако-опилочным бетоном состава 1:10:6 (известковое тесто : шлак : опилки).

Для райо-нов с 1= –30вС толщина стен принималась 51 см, для районов с температурой –400С – 56–64 см. Для устранения опасности отсыревания засыпки вследствие конденсата паров, проникающих изнутри помещений, внутренняя поверхность стен покрывалась плотной (цементной) штукатуркой, масляной краской и т. д.

Для связи стенок их соединяли друг с другом выпуском тычков – через один ряд из каждой стенки. При оставлении между тычком и стеной зазора шириной 3–5 см опасность промерзания по линии тычков может, как показала практика, считаться исключенной. Соединение стенок металлическими скобами требует затрат значительного количества металла, затрудняет работы, и потому применялось редко.

Засыпки дают со временем некоторую осадку, в результате чего образуются пустоты, уменьшающие термическое сопротивление стены. Для борьбы с этим в верхней части стен, в пределах чердака оставлялась щель, через которую периодически производилось пополнение засыпки.

Система Герарда

По сравнению со сплошной кирпичной стеной система Герарда более экономична по расходу материала. Однако она требовала применения лишь хорошего и целого кирпича, кроме того, кладка такой стены более трудоемка, чем кладка сплошной стены.

Указанные недостатки частично были устранены в кладке Н.С. Попова – Н.М. Орлянкина, в которой две невысокие стенки в четыре горизонтальных ложковых ряда перекрывались горизонтальными диафрагмами из сплошной кладки кирпича толщиной в два ряда.

Засыпка небольшой высоты практически не давала осадки, а кладка стены с горизонтальными диафрагмами отличалась простотой.

Стены с засыпкой применялись для наружных стен зданий высотой не более пяти этажей. Расстояние между поперечными стенами или колоннами каркаса не превышало 7,5 м. Такие стены не устраивались в зданиях с повышенной влажностью воздуха: прачечных, банях, кухнях, моечных.

Цоколь возводился из сплошной кладки с соответствующим утолщением. Простенки имели ширину не менее 51 см. Перемычки пролетом до 1,5 м устраивались рядовыми, раздельными под каждой стенкой.

Засыпка поддерживалась антисептированной (креозотированной) доской, уложенной над оконной коробкой. Рядовые перемычки имели высоту не менее шести рядов и выкладывались на цементном растворе 1:4.

Под нижний ряд кирпичей укладывалось пачечное железо. Ненесущие перемычки пролетом более 1,5 м, а также все перемычки, несущие нагрузку от балок перекрытий (независимо от величины пролета), были железобетонными или из стальных прокатных балок.

Балки перекрытий опирались на обе стенки через деревянные или железобетонные подкладки. Для увеличения устойчивости несущих наружных стен иногда под балками междуэтажного перекрытия предусматривали железобетонный пояс толщиной 6,5 см. Для того чтобы не опирать балки на стены, устраивали внутренние пилястры, по которым вдоль стены укладывали пристенные прогоны, поддерживающие концы балок.

Кирпично-бетонная кладка и кладка с заполнением готовыми вкладышами – кладка Н.С. Попова. Кладка этой системы состоит, как и вышеописанные, из двух параллельных стенок толщиной в кирпич. Промежуток между ними заполняли легким бетоном (примерный состав 1:2:24 – цемент : известковое тесто : шлак).

При плотности легкого бетона 1250 кг/м3 общая толщина стенки на теплом растворе принималась в районах с температурой -20 гр. в 42 см, в районах с –30″С в 52 см, а в районах –40°С в 60 см.

При кладке толщиной менее 51 см для связи стенок с легким бетоном каждый четвертый – шестой ряд по высоте в шахматном порядке перекрывался тычками.

При толщине кладки свыше 51 см связь осуществлялась сквозным горизонтальным рядом кирпичной кладки, укладываемым по высоте через каждые три ложковых ряда боковых стенок.

Кладка Н.С.Попова

Кладка применялась для наружных стен высотой до 15 м, т. е. для четырехэтажных зданий. Благодаря замене внутренней части кладки легким бетоном достигалась экономия от 20 до 40% кирпича без ухудшения теплотехнических свойств.

Устройство цоколя и карнизов принципиально не отличалось от устройства таковых при сплошных кирпичных стенах. Перемычки над проемами устраивались обычно рядовыми, кирпичными.

Достоинство кирпично-бетонных стен заключается в их высокой прочности. Это объясняется тем, что бетон воспринимает часть нагрузки, передаваемой на стену, и, кроме того, в ней хорошо обеспечена связь между лицевыми стенками. Поэтому кирпично-бетонные стены в зависимости от применяемых марок кирпича и класса бетона разрешалось возводить до шести этажей.

Недостатками таких стен являются:

  1. внесение в кирпичную стену во время кладки большого количества влаги;
  2. повышенная трудоемкость работ;
  3. затруднения при производстве работ в зимнее время.

Эти недостатки устранены в конструкции кирпичной стены с термовкладышами, разработанной В.П. Некрасовым (рис. 2).

Эта стена отличается от кирпично-бетонной тем, что внутреннее ее пространство вместо бетонной :меси заполнялось заранее изготовленными малотеплопроводными камнями (термовкладышами). Для изготовления термовкладышей применялись легкий бетон, пенобетон, пеносиликат и др.

Колодцевая кладка стен системы Л.А. Серка и С.А. Власова (рис. 3, а, б, в) состоит из двух лицевых стенок толщиной по 0,5 кирпича, между которыми расположены поперечные в полкирпича стенки (диафрагмы), которые обеспечивают связь между лицевыми стенками и делят внутреннюю полость стены на ряд колодцев.

Облегченная кладка с термовкладышами

Рис. 2. Облегченная кладка с термовкладышами: 1 – кирпичная кладка; 2 – термовкладыш

Расстояние между диафрагмами назначалось от 530 до 1050 мм, т. е. от двух до четырех кирпичей. Колодцы заполняли легким бетоном или легкобетонными вкладышами.

Стены выполняли толщиной от 1,5 до 2,5 кирпичей в зависимости от марки кирпича и класса бетона. Колодцевая кладка стен применялась при строительстве зданий высотой до пяти этажей. В зданиях до двух этажей включительно (а также в двух верхних этажах многоэтажных зданий) колодцы засыпались шлаком.

Во избежание осадки засыпки через каждые пять рядов кирпича по высоте стены устраивали армированные растворные диафрагмы толщиной 15 мм из раствора того же состава, что и для кладки (см. рис. 3, г).

Под балками перекрытий растворные диафрагмы утолщались по всей ширине стены до 40 мм и усиливались дополнительной арматурой.

В углах и местах примыкания внутренних стен к наружным их усиливали стальными связями. Связи диаметром 5–6 мм с крюками на концах укладывали в диафрагмы из раствора на уровнях перекрытий, подоконников и перемычек.

Все описанные конструкции облегченных стен в зависимости от результатов теплотехнического расчета выполняли толщиной 380–420 мм (в 1,5 кирпича), 510–580 мм (в два кирпича) или 640–700 мм (в 2,5 кирпича). Промежуточная толщина получалась за счет уширения вертикальных швов между тычковыми кирпичами поперечных стенок.

Колодцевая кладка стены системы Л.А. Серка и С.А. Власова

Рис. 3. Колодцевая кладка стены системы Л.А. Серка и С.А. Власова:

а –ряды кладки; б– сечения по колодцу; в – сечение по поперечной стенке; г –сечение по колодцу при устройстве засыпки; 1– кирпичи ложкового ряда; 2– кирпичи тычкового ряда; 3 – шлак; 4 – термовкладыш; 5 – растворная диафрагма.

Стены с воздушной прослойкой (предложение Г.Ф. Кузнецова) состоят из двух стенок с зазором между ними (рис. 4, а). Основная внутренняя стенка имеет толщину в 1 или 1,5 кирпича в зависимости от необходимой прочности и теплотехнических требований.

Наружная стенка выкладывалась толщиной в 0,5 кирпича. Замкнутая воздушная прослойка толщиной 50 мм обладает термическим сопротивлением, равноценным сопротивлению кирпичной кладки толщиной в 0,5 кирпича.

Поэтому наличие в кладке такой прослойки значительно экономило кирпич и раствор и позволяло уменьшить толщину, а также вес стены без ухудшения ее теплотехнических качеств.

Связь между внутренней и наружной стенками осуществлялась тычковыми рядами кирпичей, располагаемых через каждые пять ложковых рядов, вследствие чего такие стены допускалось применять в многоэтажном строительстве.

Стены с воздушной прослойкой допускалось выкладывать как из полнотелого кирпича, так и пустотелого и пористого. При применении кирпича высотой более 65 мм поперечная перевязка выполнялась чере:-каждые четыре ряда (см. рис. 4, а).

Стены с воздушной прослойкой

Рис. 4. Стены с воздушной прослойкой:

а – из полнотелого кирпича; б–из многодырчатого кирпича; в –с заполнением минеральным войлоком; 1– воздушная прослойка; 2 – наружная штукатурка; 3– внутренняя штукатурка; 4 – минеральный войлок на битумной связке; 5 – расшивка швов.

Во избежание продувания наружной стенки поверхность ее оштукатуривалась. Если воздушная прослойка была заполнена неорганической засыпкой (шлак, минеральная вата и т. п.), тс штукатурка не применялась, а швы тщательно расшивались.

Пример такого заполнения минеральным войлоком на битумной связке показан на рис. 4, в. Недостатком этой конструкции является ее повышенная трудоемкость.

Стены с плитным утеплителем состоят из несущей кладки толщиной в 1–2 кирпича и внутренней теплоизолирующей плиты (гипсовой, гипсошлаковой, гипсоопилочной, пенобетонной, фибролитовой) (рис. 5).

Плитный утеплитель может плотно прилегать к стене с креплением на растворе, однако рекомендовалось ставить его на относе, т. е. создавать между стеной и плитами воздушную прослойку толщиной 20–40 мм, обеспечивающую дополнительное утепление (см. рис 5, 6).

Плиты в пределах каждого этажа опираются на железобетонные перекрытия или на кирпичные выпуски стен с тем, чтобы осадка их не отличалась от осадки кирпичной кладки.

Стены с плитным утеплителем и облицовкой панелями

Рис. 5. Стены с плитным утеплителем и облицовкой панелями: а –установка утеплителя на растворе; б – установка утеплителя на относе; 1– цементный раствор; 2– утеплитель; 3– затирка; 4 – расшивка швов; 5– воздушная прослойка 20–40 мм.

Установку плит производили на известково-гипсовом растворе но нанесенным на стену гипсовым маякам (рейкам). Маяки наносили правильными рядами, и поверхность их делали строго вертикальной.

Расстояние между маяками определяли таким образом, чтобы стыки плит приходились на маяках. Плиты устанавливали рядами, выполняя перевязку швов и соединяя с кладкой специальными креплениями.

Преимущество стен с плитными утеплителями заключается в том, что при этом не выполняли внутреннюю штукатурку, ограничившись затиркой их поверхностей и швов.

Рациональной для жилых домов средней этажности является конструкция стен, утепленная облицовочными крупноразмерными панелями. Указанные панели применялись только на межоконных участках. Установку панелей производили сразу после окончания кладки стен соответствующего этажа до устройства потолочного перекрытия и перегородок.

Панель крепили к стенам гвоздями, которые забивали в просмоленные пробки. Особого внимания заслуживают стены на теплых растворах со шлаковыми добавками, полученными от сжигания угля с повышенной зольностью (около 20%). Легкие (теплые) растворы, в которых вместо обычного песка применялся мелкий шлак, малоподвижны, сильно деформируются при сжатии.

Вследствие этого при одинаковой марке растворов прочность кладки на теплом растворе почти на 30% меньше прочности кладки на обычном растворе. Она также менее долговечна и стойка к влаге, особенно к сильному замачиванию атмосферными осадками поверхности стены с поврежденным штукатурным слоем, что приводит к значительному снижению прочностных качеств кладки.

4 Comments

Вот оно как всё называется. Спасибо, буду знать. Собираюсь с мыслями для постройки своего собственного жилища. И обдумываю материалы. Больше всего склоняюсь к банальному кирпичу, ибо проверен временем. Статья понравилась, и полезна для таких, как я, ибо всё расписано в мельчайших деталях. Особенно таким, как я, недоделанным строителям. Не знал что есть столько тонкостей, связанных с простыми кирпичами. Всю жизнь разделял их на полные и дырчатые.)

Кирпич самый надёжный и распространённый строительный материал. И хотя трудозатраты по возведению кирпичных зданий велики, это с лихвой окупается их надёжностью и долговечностью. Главное в таких случаях не нарушать технологию производства кирпичной кладки. А это и правильная перевязка, и качественный связывающий материал. Яркий пример общественные здания построенные в дореволюционные времена. Они ещё века простоят.

НЕ спешил бы на вашем месте с кирпичем. Попробуйте погуглить информацию по современным материалам. Технологии не стоят на месте и позволяют строить дома быстрее, легче, теплее. Лучше, конечно проконсультироваться со специалистами в этой области и только потом принимать решение! Хотя я, честно говоря, сам предпочитаю строить по старинке и использую старые, проверенные временем, технологии.

Жилищный фонд РФ по сравнению с другими европейскими странами сравнительно молод. Это объясняется большими разрушениями, прошедшими во время Великой Отечественной войны, и традиционным применением деревянного домостроения. Объем сохранившихся зданий дореволюционных и довоенных построек сравнительно мал.

Распределение зданий в европейских странах показывает, что более 60-70 % жилого фонда относится к постройкам до 1937-1940-х гг. и только 25-30 % - в последующие годы.

Страны, не подвергшиеся массовому разрушению во время Второй мировой войны, сохранили старый фонд в достаточно большом объеме. Нет сомнения, что эти здания претерпели не одну реконструкцию и модернизацию, и поэтому зарубежный опыт выполнения реконструктивных работ имеет большое значение с практической точки зрения.

В Москве сохранился достаточно обширный жилой фонд постройки 1870-1930-х гг., который составляет около 120млн. м 2 и представляет целую гамму архитектурно-планировочных решений домов разной этажности. Как правило, каждое здание старой постройки возводилось по индивидуальным проектам и отражает эпоху, достаток заказчика и особенности конструктивных решений.

Опыт застройки жилыми домами в Москве и Санкт-Петербурге в конце XIX и начале XX в. показывает, что преимущественное влияние на архитектурно-планировочные решения оказывали стоимость земельного участка и удаленность от центральной части города. В то время получили распространение доходные дома, в которых проживало более 70 %городского населения. Этот период характеризуется возведением зданий с высокой плотностью застройки. Ее форма способна интегрировать в высокоорганизованное городское пространство с максимальным экономическим эффектом, многообразными функциональными и социальными составляющими городской среды.

Плотность застройки в центре крупных городов превышала периферийную в 5-6 раз. Стоимость квартир дифференцировалась в зависимости от качества жилья, которое имело девять основных типов. Каждый тип квартир оценивался по строительному объему, качеству отделки и расположению в плане.

При высокой стоимости земли постройки образовывали полностью замкнутые дворы - дома колодцевого типа. На рис. 1.3 приведены характерные примеры доходных домов в Санкт-Петербурге и Москве. Прибыльность домовладений повышалась за счет размещения в первых этажах объектов общественного назначения: это гимназии, магазины, клубы и т.п.


Рис. 1.3. Архитектурно-планировочные решения доходных домов
а -в С.-Петербурге (1910-1912 гг.); б -в Москве на ул. Остоженке; III- IV -классы квартир по качеству проживания

Здания указанного периода можно разделить по уровню планировочных решений на 4 группы.

К первой группе относятся здания, построенные в предреволюционное десятилетие. Они состоят из квартир повышенного качества, рассчитанных на наиболее состоятельные слои населения.

В планировке квартир используется принцип зонирования на три группы помещений: парадную, группу спален и группу хозяйственных помещений. При этом парадные и черные лестницы расположены по одной поперечной оси. Они отличаются большой шириной корпуса,которая достигает 15-17 м, большой толщиной кирпичных стен.

Во II группу входят секционные домадореволюционной постройки и первых десятилетий Советской власти. Квартиры этой группы (рис. 1.4) предназначались для покомнатного заселения. Площадь квартир достигала 80-100 м 2 с высотой этажа 3,0-3,5 м. Ширина корпусов находилась в пределах 10-16 м.


Рис.1.4. Типовые секции, применяемые в массовом жилищном строительстве Москвы
а -типовая секция Моссовета; б - типовая секция Наркомстроя; в -типовая секция Управления жилищного строительства

В первом десятилетии Советской власти и до конца 50-х годов в основном строились дома с квартирами II группы. Здания возводили более узкими (до 12м) с меньшей глубиной комнат.

В III планировочную группу включены дома коридорной и галерейной систем. В коридорных домах старой постройки жилые комнаты имеют площадь 20-35 м 2 и расположены с двух сторон широкого коридора. Дома для дешевых гостиниц и меблированных комнат имели комнаты площадью 10-12 м 2 . Высота этажей составляла 3,2-3,5 м.

К IV группе домов относятся здания со смешанной планировкой, которые имеют ширину корпусов 10-16 м, с расположением комнат смешанной ориентацией и лестничными клетками различных конструктивных решений.




Основные несущие конструкции зданий старой постройки выполнены с использованием стен из кирпича. Очень часто фасады зданий украшались лепниной, мозаикой, барельефами. Фундаменты и стены капитальных зданий выполнены с большим запасом прочности.

На рис. 1.5 показано уменьшение толщины наружных стен и ширины подошвы фундаментов в течение второй половины XIX века и в первые десятилетия XX столетия. В этот период расход кирпича(материала), необходимого для строительства домов одинакового объема,уменьшился в 2 раза. Это объясняется тем, что в прежние времена толщина стен устанавливалась эмпирически с большим запасом прочности.


Рис. 1.5. Изменение параметров конструктивных элементов зданий в зависимости от года постройки
а - средние размеры ширины подошвы фундаментов и толщины стен различных периодов постройки; 1 ,2 -наибольшая и наименьшая ширина подошвы фундаментов; б - плотность размещения фундаментов на площади застройки здания: 1 - на песчаном основании; 2- на связных грунтах; 3 - среднее значение

Для построек периода 1860-1960гг. прослеживается тенденция снижения средних размеров ширины подошвы фундаментов и, соответственно, толщины стен. Это обстоятельство связано с усовершенствованием методик расчетов и уменьшением коэффициента запаса прочности.

Как правило, основными материалами для возведения фундаментов старой постройки служили пережженный кирпич, тесаные блоки из природного камня, бутовый камень и др. Для обеспечения сцепления и однородности кладки использовались известковые, цементные и сложные растворы. Характерной особенностью зданий старой постройки является достаточно высокий показатель плотности фундаментов (отношение площади подошвы фундаментов к площади застройки), который достигает 30-42 %. При этом в 30 % зданий не используется и 50 % нормативного давления. Отсюда следует, что в большей части зданий при их реконструкции возможны увеличение давления на основание и, таким образом, надстройка дополнительных этажей.

Перекрытия в кирпичных зданиях встречаются трех типов: деревянные по деревянным балкам; деревянные по металлическим балкам; железобетонные.

Иногда в одном и том же здании используются различные типы перекрытий: над подвалом - сводчатые из бетона или кирпича по металлическим балкам, междуэтажные перекрытия - деревянные по металлическим балкам, чердачное - деревянное по деревянным балкам.

Перекрытия, как правило, имели значительные запасы толщины и массы. Их толщина достигала в период образования городской застройки 45-50 см, к середине прошлого столетия достигла 25-30 см, в настоящее время снизилась до 16-22 см.

Превышение размеров сечения конструкций по сравнению с современными увеличило сроки службы конструктивных элементов зданий. Достаточно отметить, что при грамотной технической эксплуатации встречаются здания с деревянными перекрытиями, прослужившими более100 лет, несущая способность которых отвечает требованиям современных норм.

Приведенные сведения дают представление о конструктивных элементах зданий и динамике их изменения. К наиболее важным параметрам, влияющими на принятие технологии реконструктивных работ, следует отнести конструкции фундаментов, толщины наружных и внутренних несущих стен, материал перекрытий.

Конфигурация зданий является одним из ведущих параметров характеристики плана этажа. Домам старой постройки свойственны сложные планы. Однако при всех различиях возможно выделить семь типов, соответствующих планировочной компоновке жилых зданий (таблица 1.2).

Классификация основных схем планировочной компоновки жилых капитальных зданий старой постройки

Тип схемы Схема планировочной компоновки корпуса здания Краткая характеристика схемы Повторяемость схем, %
Москва С.-Петербург
I
Рядовая, или 2 корпуса расположены параллельно улице
II
Корпус П-образной формы
III
Курдонерное решение (с двумя дворами)
IV
Корпус Г-образной формы
V
Корпус Т-образной формы
VI
Корпус Н-образной формы с двумя дворами
VII
Здание с участком, застроенным по периметру, с одним или несколькими дворами-колодцами

Конструктивная схема здания - это комплекс ограждающих и несущих конструкций, объединенных в единую пространственную систему. Классификация конструктивных схем жилых зданий старой постройки базируется на основных параметрах, к которым относятся:

А - ширина здания, определяющая глубину жилых помещений, а также тип планировки;

Б - шаг лестничных клеток в здании, определяющий ширину помещений, а также их число вдоль фасада здания;

В - шаг окон, их число и размеры.

В таблице 1.3 приведена классификация конструктивных схем капитальных жилых зданий для Москвы и Санкт-Петербурга с показателем повторяемости решений.

Конструктивные схемы капитальных жилых зданий старой постройки

Тип схемы Схема Характеристика схемы Параметры, м Повторяемость, %, Москва, С.-Петербург
А В
I
Двухпролетная со средней продольной несущей стеной 10-18 12-30
II
Многопролетная с поперечными несущими стенами 14-16 12-20 11,8
III
Однопролетная с наружными несущими стенами 12-14 12-22
IV
Трехпролетная с двумя продольными внутренними стенами 12-24 12-36
V
Смешанная схема 9-18 до 25

Из 5 наиболее употребительных схем максимальную повторяемость имеет двухпролетная с продольной несущей стеной (56 %). Остальные схемы имеют приблизительно равное в процентном отношении распространение (12-15 %).

Прочностные и эксплуатационные характеристики жилых и общественных зданий определяются комплексом нагрузок и воздействий на здание. Эти параметры дают представление об интенсивности износа тех или иных несущих конструкций, степени надежности и долговечности зданий.

Основные виды классификации базируются по видам несущих конструкций стен и фундаментов и применяемым строительным материалам.

Более расширенная классификация учитывает современные строительные материалы конструктивных элементов здания и разделяет их на 6 групп:

1 - здания каменные, особо капитальные; стены кирпичные в 2,5-3,5 кирпича или кирпичные с железобетонным и металлическим каркасом; перекрытия железобетонные и бетонные;

2 - здания со стенами облегченной кладки из кирпича, монолитного шлакобетона, ракушечника; перекрытия железобетонные и бетонные;

3 - здания с кирпичными стенами толщиной 1,5-2,5 кирпича; перекрытия железобетонные, бетонные или деревянные;

4 - здания с крупноблочными стенами, перекрытия железобетонные;

5 - здания со стенами крупноблочными или облегченной кладки из кирпича, монолитного шлакобетона,мелких шлакоблоков, ракушечника, перекрытия деревянные;

6 - здания со стенами смешанными,деревянными рублеными и брусчатыми.

В настоящее время классификация зданий претерпела некоторые изменения в связи с массовым строительством из сборного и монолитного железобетона, с широким использованием композиционных материалов. Основные категории зданий имеют степень капитальности трех групп:особо капитальные, капитальные I и II групп.

По характеру статистической работы все несущие конструкции подразделяются на плоскостные и пространственные. В плоскостных – все элементы работают под нагрузкой автономно, как правило в одном направлении, и не участвуют в работе конструкций, к которым они примыкают. В пространственных – все или большинство элементов работают в двух направлениях и участвуют в работе сопрягаемых с ними конструкций. Благодаря этому повышается жесткость и несущая способность пространственных конструкций и снижается расход материалов на их изготовление. Выбор типа и материала несущих конструкций при проектировании определяется величинами перекрываемых пролетов. При малых пролетах применяют простые плоскостные и стержневые конструкции, при больших – более сложные пространственные.


Рисунок 4.1- Комбинированные системы: а – с неполным каркасом; б – со связевым каркасом; в – каркасно-ствольная; г – ствольно-стеновая; д – оболочково-ствольная; е – каркасно-оболочковая


Рисунок 4.2 - Бескаркасная система зданий: а – с продольным расположением несущих стен; б – с поперечным расположением несущих стен; в – перекрестная; 1 – наружные и внутренние несущие стены; 2 – плиты междуэтажных перекрытий; 3 – наружные самонесущие стены; 4 – торцовая несущая стена; 5 – продольные и поперечные несущие стены; 6 – плиты перекрытия, опертые по контуру

Конструктивный тип здания определяется пространственным сочетанием стен, колонн, перекрытий и других несущих элементов, которые образуют его остов.

В зависимости от пространственной комбинации несущих элементов различают следующие конструктивные типы зданий:

- с несущими стенами (бескаркасные), в которых большинство конструктивных элементов совмещает несущие и ограждающие функции;

- каркасные с четким разделением конструкций по их функциям - несущие и ограждающие. Пространственная система (каркас), состоящая из колонн, балок, ригелей и других элементов, вместе с перекрытиями в данном случае воспринимает все нагрузки, действующие на здание. Помещения от воздействия внешней среды защищаются наружными стенами;

- с неполным каркасом, в которых, наряду с внутренним каркасом, несущими являются и наружные стены.

Конструктивный тип здания характеризуется также определенными материалами и видами основных его строительных элементов (крупных железобетонных блоков, панелей и т.п.).

Каждый из рассмотренных выше конструктивных типов зданий в свою очередь может иметь несколько конструктивных схем, которые отличаются особенностями расположения несущих элементов и их взаимосвязью.

Для бескаркасных зданий характерны следующие конструктивные схемы:

- с продольными несущими стенами, на которые опираются перекрытия;

- с поперечными несущими стенами, когда наружные продольные стены, освобожденные от нагрузки перекрытий, являются самонесущими;

- совмещенная, - с опиранием перекрытий на продольные и поперечные стены.

Конструктивные схемы зданий с неполным каркасом могут быть:

- с продольным расположением ригелей;

- с поперечным расположением ригелей;

В этих схемах несущие внутренние стены заменены колоннами и перегородками между ними, что уменьшает расход стеновых материалов. Нагрузки от ригелей и перекрытий воспринимаются также и наружными стенами.

Стоечно-балочная конструкция (рис.23) является наиболее простой и распространенной среди плоскостных. Она состоит из вертикальных и горизонтальных стержневых несущих элементов. Вертикальный элемент – стойка (колонна, столб) – представляет собой прямолинейный стержень, который воспринимает все вертикальные нагрузки от горизонтального элемента (балки), горизонтальные нагрузки, приходящиеся на стойку, и передает усилия от этих воздействий на фундамент. При этом сама стойка работает на сжатие и изгиб. Горизонтальный элемент стоечно-балочной системы – балка (брус) – прямолинейный стержень, работающий на поперечный изгиб под действием вертикальных нагрузок. Сопряжения вертикальных и горизонтальных элементов могут иметь различную жесткость, что отражается на характере их совместной работы. При шарнирном опирании балки обладают свободой горизонтальных перемещений и поворота на опоре, в связи с этим они передают на стойки только вертикальные усилия. При жестком сопряжении балки со стойкой обеспечивается совместность их деформаций и перемещений в узле сопряжения и возможность передачи изгибающего момента от балки на стойку. Такой вариант стоечно-балочной системы носит название рамы или рамной конструкции, а жесткий узел сопряжения балки со стойкой – рамного узла. Стоечно-балочные конструкции выполняют с различным числом пролетов и ярусов (этажей). Система несущих конструкций здания в виде многопролетной и многоэтажной стоечно-балочной конструкции называется каркасной системой.

По характеру статической работы различают три системы каркасов – рамную, рамно-

связевую и связевую. В рамных каркасах все вертикальные и горизонтальные нагрузки воспринимают рамы с жесткими узлами. Каркас, состоящий из поперечных и продольных рам (рамный каркас), обладает пространственной жесткостью: его деформации под влиянием силовых воздействий минимальны и не нарушают эксплуатационных качеств здания. Каркас из стоечно-балочных конструкций с шарнирными сопряжениями пространственной жесткостью не обладает. Для ее обеспечения вводятся специальные конструкции вертикальных связей, и вся система несущих конструкций здания называется каркасно-связевой или связевым каркасом. В качестве связей могут быть использованы отдельные стены (диафрагмы жесткости), рамы, раскосы и др.

В рамных и связевых каркасах горизонтальными диафрагмами жесткости служат кон-

струкции перекрытий. Каркасные конструкции применяют в общественных зданиях при необходимости организации открытых внутренних пространств большой площади или многократной трансформации планировочных решений.

Стоечно-балочные конструкции зародились в глубокой древности. В современном строительстве стоечно-балочные конструкции выполняют преимущественно из железобетона, реже из стали или дерева либо в сочетании железобетона и стали (например, железобетонные колонны и стальные фермы). Конструктивные модификации

элементов стоечно-балочных конструкций чрезвычайно разнообразны. Каркас проектируют, как правило, сборным железобетонным.

В действующем общесоюзном унифицированном каркасе для гражданских зданий принята сетка колонн 6×6,6×4,5 и 6×3, в ряде случаев применяют и другие – (6+3) ×6; 9×6;

(9+3+9) ×6; (9+6+9) ×6 м. Сечение всех колонн принято 300×300, 400×400 мм. Одноэтажные колонны приняты для этажей высотой 2,4; 3,0; 3,3; 3,6; 4,2; 4,8; 6,0; 7,2

м. Двухэтажные колонны для этажей высотой 3,0; 3,3; 3,6 м. Трех- и четырехэтажные колонны длиной до 14,4 м. Стыки колонн промежуточных этажей выполняют в уровне 730 мм над верхом ригелей перекрытия (для удобства монтажа). Фундаменты под колонны, в основном, отдельно стоящие. Колонны устанавливаются в типовые сборные фундаменты стаканного типа или в сборные подколонники, опирающиеся на монолитные ступенчатые фундаменты.


Рисунок 4.3 - Стоечно-балочная конструктивная система: а – стойка; б – балка; в – стоечно-балочная система с шарнирным сопряжением элементов; г – то же, с рамным; д – рамно-связевая схема каркаса с вариантами конструкций вертикальных связей жесткости в виде рам (1), стен (2), раскосов (3); е – рамная схема каркаса; ж – сборные железобетонные элементы стоечно-балочной системы; 4 – двухэтажная колонна; 5 – колонна безбалочного перекрытия; 6 и 7 V и Т – образные колонны; 8 – совмещенный стоечно-балочный элемент; 9 – совмещенная конструкция ригеля и стенки жесткости; 10 – ригель перекрытия; 11 – балка покрытия; 12 – ферма

Нижние колонны снабжены оголовником для стыка по высоте только сверху, верхние

– только снизу, средние – с обеих сторон. Средние колонны могут быть высотой в один и два этажа. Наличие средних колонн высотой в один и два этажа позволяет более гибко комбинировать этажность и высоту в связи с особенностями функциональной схемы здания.


Рисунок 4.4 - Колонны: а – легкого каркаса рядовые; 1 – одноэтажные, 2 – двухэтажные, 3 – трех- и четырехэтажные, 4 – колонны лоджий одно- и двухэтажные; б – тяжелого каркаса рядовые; 1 – одноэтажные, 2 – верхние

Колонна соединяется с ригелем путем опирания последнего на скрытую консоль (рисунок 2).

Конструкция каркаса запроектирована с частичным защемлением ригелей в колоннах.

Практически принятые соединения можно считать шарнирным, так как узел сопряжения колонны с ригелем не способен воспринимать изгибающие моменты от ветровых нагрузок. Такой каркас не обладает рамными свойствами, а работает по связевой схеме. Все нагрузки, вызывающие горизонтальное перемещение каркаса, воспринимаются сквозными вертикальными диафрагмами жесткости.

Ригели в каркасной системе приняты таврового сечения с полками в нижней зоне для опирания элементов перекрытий (рис. 27).


Рисунок 4.5 - Узел сопряжения поперечного ригеля с колонной унифицированного

каркаса: 1 – колонна; 2 – закладные детали; 3 – монтажная сварка; 4 – железобетонный ри-

гель; 5 – верхняя металлическая рыбка 100×8 мм

Высота ригелей на опоре:

- 300 мм для пролетов до 9 м включительно;

- 600 мм для пролета 12 м;

- 450 мм для легкого каркаса (рядовые);

- 900 мм для тяжелого каркаса (рядовые);

- 480 мм для легкого каркаса (фасадные).

Все ригели устанавливают на консоли колонн. Панели перекрытий в каркасных системах применяют многопустотные высотой 220 мм (для пролетов 6 и 9 м) и 300 мм (для пролета 12 м), ребристые и панели типа «ТТ» и «Т» высотой 600 мм (для пролетов 9 и 12 м).

Типы каркасов

Каркас представляет собой совокупность вертикальных (колонны) и горизонтальных (ригели) линейных несущих конструкций. Ригели могут отсутствовать, в этом случае их роль выполняют безбалочные плиты перекрытий. Сетка колонн каркаса может колебаться в широких пределах от 3 х 3 до 15 х 15 м и определяется величиной укрупненного модуля, принятого в проекте.

Каркасы применяют в общественных зданиях по условиям гибкой планировочной структуры помещений и при значительных ветровых нагрузках на здание. Каркасы выполняют из дерева, железобетона и металла.

В учебном курсовом проектировании многоэтажных зданий применяют преимущественно железобетонный унифицированный каркас межвидовой серии 1.020 (связевой каркас) для обычных условий строительства.

Каркас состоит из колонн, ригелей и диафрагм жесткости. В комплекте чертежей унифицированного сборного железобетонного каркаса дополнительно разработаны также чертежи фундаментов, лестничных маршей, наружных ограждающих конструкций, плит перекрытий и узлов сопряжений конструкций между собой. Плиты перекрытий в учебном проекте могут быть приняты стандартные.

Сетка колонн в плане в унифицированном каркасе основана на укрупненном модуле 6 м. При пролетах свыше 6 м может применяться укрупненный модуль плана 15 м. В учебном проекте шаги и пролеты следует назначать кратными укрупненным модулям независимо от наличия у студента данных о реальных конструктивных элементах, разработанных применительно к выбранным параметрам.

Привязка конструкций каркаса к координационным осям осуществляется следующим образом: оси всех колонн каркаса и оси диафрагм жесткости совмещаются с модульными коорди­национными осями. При необходимости устройства деформационных швов устанавливают парные колонны с расстоянием между ними в осях 600 мм. Привязка панелей наружных стен ну­левая, т. е. внутренняя грань панели и наружная грань колонны совмещаются (на практике имеется монтажный зазор 20 мм). Настилы и ригели, расположенные вдоль фасада, совмещаются внешней гранью с внешней гранью колонн.

Колонны предусмотрены сечением 300 х 300 мм (при сетке колонн не более 6 х 6 м и в зданиях высотой до четырех этажей) и 400 х 400 мм высотой на один, два, три и четыре этажа.

Ригели перекрытий имеют пролет от 1,8 до 7,2 м таврового сечения с полками понизу для опирания на них плит перекрытий. Высота ригелей 600 (при пролете до 6 м и сетке опор до 6 х 6 м) и 750 мм при больших пролетах или сетке опор.

Диафрагмы жесткости представляют собой стенки толщиной 140 мм с полками сверху для опирания на них плит перекрытий. Координационная ширина диафрагм 3 м.

Стыки колонн между собой рекомендуется применять без металлического оголовка с ванной сваркой арматурных выпусков. Стык ригеля с колонной принимается по схеме «со скрытой консолью» (рис. 4.5).

В безбалочных каркасах плиты перекрытия опирают непосредственно на колонны. Плиты перекрытия могут быть сборные, сборно-монолитные и монолитные железобетонные. В последнем случае шаг опор (сетка колонн) может быть нерегулярным в связи с особенностями архитектурно-планировочного решения. Кроме того, в каркасах с безбалочными монолитными перекрытиями они могут быть предварительно изготовлены на уровне земли и с помощью закрепленных к колоннам подъемников подняты в проектное положение (метод подъема перекрытий). Этот метод открывает широкий простор для архитектурных фантазий.




Рисунок 4.1 – Строительство каркасно-панельного здания в г. Гомеле

Типы каркасов различаются по следующим признакам:

- По материалам: железобетонные каркасы (монолитным, сборным, сборно-монолитным) и металлические каркасы.

- По устройству горизонтальных связей: с продольным, поперечным, перекрестным расположением ригелей и с непосредственным опиранием перекрытий на колонны (безригельное решение).

- По характеру статической работы: рамные с "жесткими" (монолитными) соединениями элементов в узлах (пересечениях) каркаса; связевые со сварными соединениями узлов, отличающиеся простотой конструктивного исполнения, но по принципу геометрической неизменяемости системы имеющие связи жесткости, устанавливаемые между колоннами и ригелями каркаса; рамно-связевые с жесткими соединениями узлов в поперечном направлении и сварными соединениями - в продольном направлении.

Каркасный тип здания целесообразен там, где требуются помещения с большой свободной площадью, а также в условиях, когда здание воспринимает большие статические или динамические нагрузки.

Читайте также: