Эпюра изгибающих моментов ленточного фундамента

Обновлено: 04.05.2024

В малоэтажном строительстве, как впрочем и в любом другом, балки на упругом основании встречаются намного чаще, чем это можно подумать. По той причине, что любой ленточный фундамент, а иногда и плитный фундамент можно рассматривать как балку на упругом основании.

И если с расчетом балки - ленточного фундамента проблем практически не возникает по той простой причине, что нагрузка на ленточный фундамент как правило равномерно распределенная, а значит и фундамент ведет себя, как абсолютно жесткая балка, дополнительных расчетов не требующая. То при рассмотрении участка плитного фундамента как балки или ленточного фундамента с неравномерно приложенной нагрузкой могут возникнуть некоторые проблемы.

Дело в том, что на сегодняшний день не существует идеальной модели упругого основания. Одной из наиболее распространенных является модель Фусса-Винклера, согласно которой опорная реакция упругого основания, другими словами - распределенная нагрузка q, действующая на балку, является не равномерно распределенной, а пропорциональной прогибу балки f в рассматриваемой точке:

q = - kf (393.1)

k = kоb (393.2)

kо - коэффициент постели, постоянный для рассматриваемого основания и характеризующий его жесткость, измеряется в кгс/см 3 .

b - ширина балки.

расчетная схема балки на сплошном упругом основании

Рисунок 393.1 а) модель балки на сплошном упругом основании, б) реакция основания q на действующую сосредоточенную нагрузку.

Из этого можно сделать как минимум два вывода, неутешительных для человека, собравшегося по-быстрому рассчитать фундамент небольшого домика, к тому же даже основы теоретической механики и теории сопротивления материалов постигшего с трудом:

1. Расчет балки на упругом основании - это статически неопределимая задача, так как уравнения статики позволяют лишь определить суммарное значение нагрузки q (реакции основания). Распределение нагрузки по длине балки будет описываться достаточно сложным уравнением:

q/EI = d 4 f/dx 4 + kf/EI (393.3)

которое мы здесь решать не будем.

2. Помимо всего прочего при расчете таких балок необходимо знать не только коэффициент постели основания, но и жесткость балки ЕI, т.е. все параметры балки - материал, ширина и высота сечения, должны быть известны заранее, между тем при расчете обычных балок определение параметров и является основной задачей.

И что в этом случае делать простому человеку, не обремененному глубокими знаниями сопромата, теорий упругости и прочих наук?

Ответ простой: заказать инженерно-геологические изыскания и проект фундамента в соответствующих организациях. Да, я понимаю, что при этом стоимость дома может увеличиться на несколько тысяч $, но все равно это оптимальное решение в таком случае.

Если же вы, не смотря ни на что, хотите сэкономить на геологоразведке и расчете, т.е. выполнить расчет самостоятельно, то будьте готовы к тому, что придется больше средств потратить на фундамент. Для такого случая я могу предложить следующие расчетные предпосылки:

1. Как правило сплошная фундаментная плита принимается в качестве фундамента в тех случаях, когда несущая способность основания очень низкая. Другими словами грунт - это песок или глина, никак не скальные породы. Для песка, глины и даже гравия коэффициент постели, определенный опытным путем в зависимости от различных факторов (влажности, крупности зерен и др.) ko = 0.5-5 кгс/см 3 . Для скальных пород ko = 100-1500 кг/см 3 . Для бетона и железобетона ko = 800-1500 кгс/см 3 . Как видно из формулы 393.1, чем меньше значение коэффициента постели, тем больше будет прогиб балки при той же нагрузке и параметрах балки. Таким образом мы можем для упрощения дальнейших расчетов предположить, что слабые грунты не влияют на прогиб балки, точнее этим незначительным влиянием можно пренебречь. Другими словами изгибающие моменты, поперечные силы, углы поворотов поперечных сечений и прогибы будут такими же, как и у балки, загруженной распределенной нагрузкой. Результатом такого допущения будет повышенный запас прочности и чем больше будут прочностные характеристики грунтов, тем большим будет запас прочности.

2. Если сосредоточенные нагрузки на балку будут симметричными, то для упрощения расчетов реакцию упругого основания можно принимать равномерно распределенной. Основанием для такого допущения служат следующие факторы:

2.1. Как правило фундамент, рассматриваемый как балка на упругом основании, в малоэтажном строительстве имеет относительно небольшую длину - 10-12 м. При этом нагрузка от стен, рассматриваемая как сосредоточенная, в действительности является равномерно распределенной на участке, равном ширине стен. Кроме того балка имеет некоторую высоту, на первом этапе расчета не учитываемую, а между тем даже сосредоточенная нагрузка, приложенная к верху балки, будет распределяться в теле балки и чем больше высота балки, тем больше площадь распределения. Так например для фундаментной плиты высотой 0.3 м и длиной 12 м, рассматриваемой как балка, на которую опираются три стены - две наружных и одна внутренняя, все толщиной 0.4 м, нагрузки от стен более правильно рассматривать не как сосредоточенные, а как равномерно распределенные на 3 участках длиной 0.4 + 0.3·2 = 1 м. Т.е. нагрузка от стен будет распределена на 25% длины балки, а это не мало.

2.2. Если балка лежащая на сплошном упругом основании имеет относительно небольшую длину и к ней приложено несколько сосредоточенных нагрузок, то реакция основания будет изменяться не от 0 в начале длины балки до некоего максимального значения посредине балки и опять до 0 в конце длины балки (для варианта показанного на рис. 393.1), а от некоторого минимального значения до максимального. И чем больше сосредоточенных нагрузок будет приложено к балке относительно небольшой длины, тем меньше будет разница между минимальным и максимальным значением опорной реакции упругого основания.

Результатом принятого допущения будет опять же некоторый запас прочности. Впрочем в данном случае возможный запас прочности не превысит нескольких процентов. Например, даже для однопролетной балки, на которую действует распределенная нагрузка, равномерно изменяющая от 1.5q в начале балки до 0.5q в середине балки и снова до 1.5q в конце балки (см. статью "Приведение распределенной нагрузки к эквивалентной равномерно распределенной") суммарная нагрузка составит ql, как и для балки, на которую действует равномерно распределенная нагрузка. Между тем максимальный изгибающий момент для такой балки составит

М = ql 2 /(8·2) + ql 2 /24 = 10ql 2 /96 = ql 2 /9.6

Это на 20% меньше, чем для балки, на которую действует равномерно распределенная нагрузка. Для балки, изменение опорной реакции которой описывается достаточно сложным уравнением, особенно если сосредоточенных нагрузок будет много, разница будет еще меньше. Ну и не забываем про п.2.1.

В итоге при использовании данных допущений задача расчета балки на сплошном упругом основании максимально упрощается, особенно при симметричности приложенных нагрузок, несимметричные нагрузки приведут к крену фундамента и этого в любом случае следует избегать. Более того на расчет практически не влияет количество приложенных сосредоточенных нагрузок. Если для балки на шарнирных опорах вне зависимости от их количества должно соблюдаться условие нулевого прогиба на всех опорах, что увеличивает статическую неопределимость балки на количество промежуточных опор, то при расчете балки на упругом основании достаточно рассматривать прогиб, как нулевой, в точках приложения крайних сосредоточенных нагрузок - наружных стен. При этом прогиб под сосредоточенными нагрузками - внутренними стенами определяется согласно общих уравнений. Ну а определить осадку фундамента в точках, где прогиб принят нулевым, можно, воспользовавшись существующими нормативными документами по расчету оснований и фундаментов.

А еще можно достаточно просто подобрать длину консолей балки таким образом, чтобы прогиб и под внутренними стенами был нулевым. Пример того, как можно воспользоваться данными расчетными предпосылками, рассказывается отдельно.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье "Записаться на прием к доктору"

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины - номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Добрый день! Пытаюсь рассчитать свой ленточный фундамент. Размеры в плане 10х10м. Ширина 0,4м Высота 1м. Равномерно распределенная нагрузка 5т/м Пытаюсь рассчитать продольную рабочею арматуру. Пользуюсь формулами из пособия по СП 52-101-2003 Там есть формула для нахождения Am. Для данной формулы необходимо найти изгибающий момент. Можно ли использовать вашу формулу для нахождения изг момента для балки на упругом оснвании М=q*lквадрат/9,6 На форумах говорят слишком уж большой момент будет.

Ваш вопрос достаточно сложный и я по этому поводу давно собираюсь написать соответствующую статью, но все руки не доходят. Поэтому попробую тезисно.
Вообще-то если нагрузка от здания равномерно распределенная, а физико-химические свойства основания постоянны, то никакого продольного армирования для ленточного фундамента не требуется (смотрите второй абзац).
Тем не менее и равномерно распределенная нагрузка и однородное основание возможны только в теории. На практике же основание состоит из различных пород, залегающих слоями, различной толщины и под различными углами, но даже в этих слоях свойства пород меняются. К тому же еще есть грунтовые воды, сезон замерзания и оттаивания, карстовые процессы и прочие неожиданности. Даже геологоразведка позволяет определить свойства основания лишь приблизительно. Да и нагрузка является равномерно распределенной достаточно условно. Поэтому армирование фундаментной стены никогда не помешает. А вот какую расчетную схему для этого выбрать - это отдельный вопрос. Принимая для расчета армирования нижней зоны поперечного сечения момент М=q*l^2/9,6, вы допускаете, что ваш ленточный фундамент будет иметь опоры только в углах (если рассматривать его как однопролетную балку), а под остальным фундаментом грунт или вымоется или просядет сильнее чем под углами. Что хотя теоретически и возможно, но все равно маловероятно, так как при этом нагрузки в углах - опорные реакции балки -возрастают значительно и значит грунт в углах тоже скорее всего просядет.
Если же вы будете использовать подобное значение момента для расчета армирования верхней зоны поперечного сечения фундамента, то это будет не совсем корректно, но для упрощения расчетов допустимо. Тем более, что чаще всего фундаменты проседают в углах зданий, что приводит к трещинам в стенах из материалов, плохо работающих на растяжение. Хотя и запас прочности при этом получится скорее всего не малый.
Кроме того подобные расчеты подразумевают, что бетонировать фундамент вы будете сразу, без технологических перерывов, чтобы обеспечить монолитность балки. Примерно так.

Оба метода построены на одних и тех же теоретических предпосылках и дают практически одинаковый результат. так что можете пользоваться тем, который вам больше нравится.

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).

Ленточные монолитные фундаменты обычно делаются под сплошные стены и в этом случае армирование фундамента по расчету вроде бы и не требуется.

Лента такого фундамента с точки зрения строительной механики представляет собой балку на упругом основании - грунте, и к этой балке приложена равномерно распределенная нагрузка - сплошные стены. А потому такая балка рассматривается как абсолютно жесткая и в дополнительном усилении арматурой не нуждается.

К тому же строили как-то наши предки дома без арматуры, а иногда и вообще без фундамента и ничего, некоторые из этих построек стоят и до сих пор.

Однако все не так просто, как может показаться на первый взгляд, по ряду причин:

1. Грунт под фундаментом можно рассматривать как упругое основание с постоянными физическими свойствами далеко не всегда. Более точный ответ на вопрос, как изменяются свойства грунта под фундаментом, может дать только геологоразведка. Но в любом случае, чем больше размеры строения в плане, тем больше вероятность, что свойства грунта под ленточным фундаментом будут не одинаковыми.

2. Со временем физические свойства грунта могут изменяться в результате жизнедеятельности человека или по природным причинам (например при изменении уровня грунтовых вод). Это может приводить к неравномерной осадке основания.

Для стен из натурального или искусственного камня наиболее неблагоприятной будет ситуация, когда наибольшая осадка произойдет под одним или несколькими углами здания. В этом случае в сечениях стены появятся дополнительные растягивающие напряжения, что может привести к образованию трещин. Впрочем и дополнительные сжимающие напряжения при просадке грунта ближе к середине ленты также могут оказаться не желательными.

3. Мелкозаглубленные ленточные фундаменты могут испытывать дополнительные нагрузки из-за пучения замерзшего грунта.

4. Принимаемая при расчетах нагрузка на фундамент далеко не всегда является равномерно распределенной по всей длине ленты фундамента. Наличие окон и дверей приводит как минимум к изменению значений нагрузки, а под достаточно широкими дверями нагрузки на ленту фундамента может вообще не быть. Кроме того, нагрузка на фундамент в летнее и зимнее время может быть разной.

5. В углах сопряжения перпендикулярных лент фундамента возможны скачки напряжений, если ширина лент фундамента определена неправильно или эти ленты делаются одной ширины из технологических соображений.

Как видим, причин для армирования ленточного фундамента вполне достаточно, даже если армирование по расчету не требуется. Такое армирование называется конструктивным, т.е. принимаемым без расчета. При этом конечно же должны соблюдаться общие требования по армированию балок, а также по анкеровке арматуры. Если же ленточный фундамент делается ступенчатым, то расчет армирования подошвы фундамента - отдельная тема.

Как правило в малоэтажном строительстве различные авторы многочисленных сайтов рекомендуют использовать для продольного армирования стержни диаметром 10-12 мм, но не более 40 мм.

На чем основана данная рекомендация, я не знаю. В известной мне технической литературе подобных рекомендаций нет. Впрочем эта литература предназначена для специалистов, а не для любителей. От себя могу добавить, что при выборе диаметра арматуры для конструктивного армирования кроме вышеизложенного следует руководствоваться следующими параметрами:

1. Длина ленты - чем больше длина, тем больший диаметр арматуры следует принимать).

2. Высота и ширина ленты - чем больше высота и ширина, тем меньший диаметр арматуры можно принимать.

3. Расчетные нагрузки - тут все просто, чем меньше нагрузки тем меньший диаметр арматуры можно принимать.

Тем не менее, чтобы все вышесказанное было более наглядно, представим себе следующую ситуацию: планируется ленточный фундамент (вместо фундаментной плиты), длина ленты по одной из наружных стен 8 м, высота 1 м и ширина 0.5 м, ширина подошвы фундамента 0.8 м высота подошвы 0.2 м.

Если под одной из наружных стен, например А3 (крайняя левая стена на рисунке 345.1.в) грунт в правом верхнем углу просядет сильнее, чем посредине, то в этом случае ленту фундамента под этой стеной можно рассматривать, как консольную балку длиной 4 м, соответственно потребуется армирование в верхней части ленты фундамента.

примерный план для расчета сплошной фундаментной плиты

Рисунок 345.1. Примерный план 1 этажа для расчета фундаментной плиты.

Как мы уже выяснили, равномерно распределенная нагрузка на эту стену, составляет q = 6976 ≈ 7000 кг/м. Но это была нагрузка, равномерно распределенная как по фундаменту, так и по основанию, а при просадке основания нагрузка, действующая на консольную балку, будет описываться уравнением прогиба.

Чтобы упростить задачу, предположим, что эта дополнительная нагрузка описывается уравнением квадратной параболы, т.е. изменяется от максимума на конце до нуля на опоре. Тогда изгибающий момент на опоре составит:

М = (ql/3)3l/4 = ql 2 /4 = 7000·4 2 /4 = 28000 кгс·м или 2800000 кгс·см

Примечание: в данном случае мы определили значение момента графоаналитическим методом, т.е. умножили площадь эпюры нагрузки на расстояние от центра тяжести эпюры до рассматриваемой точки - опоры балки.

Так как в данном случае лента фундамента представляет собой тавровую балку из-за наличия подошвы, то сначала нужно определить, где находится граница сжатой зоны:

Это означает, что граница сжатой зоны находится в полке балки, тогда

Примечание: если для упрощения расчетов данную балку рассматривать как прямоугольную шириной 0.5 м, то требуемая площадь сечения составит 8.23 см 2 , т.е. не намного больше.

Т.е. для армирования верхней зоны сечения ленты фундамента под рассматриваемой стеной в этом случае понадобится не менее 3 стержней Ø 20 мм, площадь сечения составит 9.41см 2 . Такие дела.

Примечание: если арматурные стержни будут и в нижней части сечения, т.е. в сжатой зоне, то их тоже можно учесть в расчетах. Впрочем это увеличит несущую способность балки на 3-5%, а у нас итак принята арматура с хорошим запасом.

Определение прогиба при такой нагрузке - отдельная сложная тема, но опять упростим задачу и предположим, что прогиб будет такой же (хотя в действительности прогиб будет немного меньше), как при равномерно изменяющейся нагрузке и составит (согласно расчетной схеме 2.6, таблицы 2):

f = 0.86·11ql 4 /120EI

где 0.86 - коэффициент учитывающий изменение высоты сжатой зоны сечения, который тоже требует более точного определения.

Начальный модуль упругости для бетона класса В20 составляет Е = 275000 кг/см 2 . Для определения момента инерции приведенного сечения следует решить кубическое уравнение, которое здесь не привожу. Скажу лишь, что граница сжатой области бетона будет проходить в ребре балки и потому момент инерции приведенного сечения будет составлять примерно I = 750000 см 4 .

При таких исходных данных максимальный прогиб составит:

f = 0.86·11·70·400 4 /(120·275000·750000) = 0.685 см

Это означает, что если осадка основания под этим углом будет даже незначительно больше, чем под серединой фундамента, то уже включится в работу арматура. А если разница достигнет 7 мм и больше, то арматура будет работать на полную мощность. Кроме того в материале стены появятся дополнительные растягивающие напряжения, для восприятия этих напряжений в стенах их натурального и искусственного камня обычно делается арматурный пояс по периметру.

А кроме того, наличие арматуры в фундаменте позволит соблюсти требования нормативных документов, в частности СНиП 2.02.01-83* "Основания зданий и сооружений", согласно которому относительная разность осадок по отношению к длине не должна превышать 0.002 для многоэтажных бескаркасных зданий с несущими стенами из крупных блоков или кирпича (согласно таблице 391.2).

В нашем случае Δs/L = 0.7/400 = 0.00175 < 0.002.

Тут может возникнуть вполне логичный вопрос, а что произойдет, если данный фундамент армирован 2 стержнями диаметром 12 мм в верхней зоне, согласно многочисленным рекомендациям?

Да в принципе ничего страшного не произойдет: лента фундамента окончательно треснет в наиболее напряженном поперечном сечении и после этого такую ленту можно рассматривать как 2 балки на упругом основании, лежащие рядом и несущая способность таких балок увеличится в несколько раз.

Вот только если разница просадок основания под углом и в середине будет увеличиваться, то будут расти и растягивающие напряжения в материале стены, а если никаких армирующих поясов при строительстве не было предусмотрено, то могут появиться и трещины на стенах.

Лента фундамента под примыкающей стеной в левом верхнем углу будет более длинной, около 12 м, однако и нагрузка на эту ленту почти в 2 раза меньше. Тем не менее, если и эту часть ленты фундамента рассматривать как консольную балку длиной 6 м высотой 1 м и шириной 0.5 м, то максимальный момент на опоре составит:

М = ql 2 /4 = 3600·6 2 /4 = 32400 кгс·м или 3240000 кгс·см

Это в 1.16 раза больше, чем возможный изгибающий момент в примыкающей более нагруженной ленте. Если учесть, что мы приняли сечение арматуры с хорошим запасом (в 1.154 раза), и наличие арматуры в сжатой зоне, то этого должно хватить даже не смотря на то, что в данном случае у нас не тавровая, а обычная прямоугольная балка.

К тому же возможный прогиб такой балки при неравномерной осадке фундамента будет больше, а значит у балки появится дополнительная опора - лента фундамента примыкающей стены. Все это может немного увеличить нагрузку на ленту, рассмотренную нами ранее и уменьшить нагрузку на примыкающую ленту.

Ну а насколько подобная ситуация может быть вероятна - решать вам. Я же трещины на кирпичных стенах примерно посредине (часто в районе оконного проема) наблюдал неоднократно.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье "Записаться на прием к доктору"

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины - номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Высота ленты 1м считается от верха подошвы до верха ленты или от низа подошвы до верха ленты?

От низа подошвы до верха ленты.

Ответьте пожалуйста, правильно ли я понял что в формуле М=ql?/4, l-это половина длинны стены и знаменатель 4 это тоже половина длины стены, и в случае со стеной 9м формула будет выглядеть так: М=7000*4,5?/4,5
И ещё, правильно ли я понял, что в формуле
M =2800000

Не совсем так. В данном случае знаменатель берется из формулы, описывающей квадратную параболу, т.е. вне зависимости от длины составляет 4. Соответственно в вашем случае М=7000*4,5?/4.

b'f - это ширина подошвы - да,
h'f - это толщина подошвы - да,
ho - это расстояние от верха ленты до верха арматуры? - нет, это расстояние от шиза подошвы до центра тяжести арматуры, расположенной в верхней области сечения ленты фундамента, так как мы рассматривали условную консольную балку и рассчитывали арматуру в верхней области сечения, а не в нижней.

Ясно всё. Спасибо большое за ответы!
Насчёт арматуры в нижней зоне. Получается она не нужна вовсе, потому что в случае оседания угла здания работает арматура в верхней части и сжатая зона бетона в нижней части фундамента. А в случае проседания в середине стены начинает работать та же арматура в верхней зоне фундамента и сжатая зона роль которой выполняет вся стена целиком. А так как по вашему второму условию "чем больше высота и ширина, тем меньший диаметр арматуры можно принимать", то трещин не будет, потому что стена целиком исполняет роль очень крупной сжатой зоны, не так ли?
Надеюсь вопрос и доводы понятны, формулирую как умею)))

В целом вы все правильно сформулировали. Тем не менее сейчас для стен часто используются материалы, которые имеют значительно меньший модуль упругости, чем бетон, да и нагрузки на фундамент бывают разные, поэтому арматура в нижней зоне тоже может пригодиться.

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).

Видео-курсы от Ирины Михалевской

В данной статье будет рассмотрен расчет внецентренно нагруженного ленточного фундамента. Такая ситуация встречается особенно часто при устройстве фундаментов под наружные стены – стена может быть сбита относительно оси ленточного фундамента. В итоге вертикальная нагрузка передается не центрально, а с эксцентриситетом, возникает дополнительный изгибающий момент, увеличивается краевое давление под фундаментом и, как следствие, значительно возрастает ширина ленты. Поэтому если ваша стена сбита относительно оси ленточного фундамента хотя бы на 50 мм, ни в коем случае не игнорируйте это, а учтите в расчете.

Пример расчета центрально нагруженного фундамента можно посмотреть здесь. Для наглядности в данном расчете все исходные данные совпадают с тем расчетом – чтобы можно было провести анализ и сделать для себя соответствующие выводы. По причине одинаковых исходных данных многие этапы расчетов будут схожи. Я постараюсь не дублировать пояснения к расчету, а давать только комментарии к отличительным особенностям расчета внецентренно нагруженного ленточного фундамента. Поэтому рекомендую изучить оба расчета – уверена, это будет полезной работой.

Чтобы сравнить, на сколько может увеличиться ширина подошвы ленточного фундамента и убедиться, насколько важен следующий расчет, загляните в таблицу ниже.

Эксцентриситет приложения нагрузки на фундамент

Ширина подошвы по результатам расчета

Ссылка на статью расчета

Как видно из таблицы, при всех остальных одинаковых вводных данных одна лишь величина эксцентриситета сыграла значительную роль в размерах итоговой ширины подошвы ленты.

Исходные данные для расчета ленточного фундамента

На рисунке показана геометрия ленточного фундамента. Уровень природного рельефа взят из инженерно-геологического отчета (как и данные по всем грунтам). При строительстве дома рельеф будет понижен до уровня планировки срезкой, а пол первого этажа будет несколько выше уровня земли на улице.

Очень важным фактором является то, что подземная часть конструкции стены расположена симметрично относительно оси фундаментной ленты. А вот нагрузка от вышележащих конструкций Nc расположена с эксцентриситетом относительно этой оси. Этот эксцентриситет может быть вызван различными ситуациями (см. рисунок ниже), и важно определить не только его величину, но и в какую сторону сбита нагрузка по отношению к оси.

Исходные данные в нашем расчете описывают геометрию стены. Обратите внимание, что расчет можно построить так, чтобы вводить нужно было только значения, помеченные желтым маркером – остальные будут вычисляться автоматически.

Значение А3 должно быть не меньше глубины промерзания грунта в вашем районе. Пол дома нужно делать выше уровня земли.

Для упрощения расчета мы берем не всю длину ленты, какой бы она ни была, а только один ее погонный метр – так и с нагрузками проще будет оперировать, и с площадями.

Характеристики грунта в данном расчете взяты из инженерно-геологического отчета – и взяты именно расчетные значения характеристик для расчета оснований по деформациям.

Как видно из рисунка, фундамент залегает во втором слое грунта ИГЭ-2, а в третьем присутствуют грунтовые воды.

Номер слоя грунтов

Удельный вес, т/м 3

Модуль деформации, т/м 2

Сцепле- ние, т/м 2

Угол внутр. трения

Коэфф. Пористо- сти

Ограничение давления, т/м 2

Водонасыщен- ное состояние

Водонасыщен- ное состояние

Для данного расчета нам не понадобятся коэффициент пористости и модуль деформации, но они будут нужны при расчете осадок фундамента.

В нашем случае ИГЭ-2 – просадочный суглинок с начальным просадочным давлением 16,5 т/м 2 , т.е. при таком давлении под подошвой грунт резко начинает деформироваться, чего мы допустить не должны. Поэтому мы задаем начальное просадочное давление для этого слоя несколько меньшим, чем 16,5 т/м 2 , чтобы иметь запас. Слой ИГЭ-2 является основанием для фундамента, но если бы он был где-то глубже, то согласно п. 2.177 пособия, расчетное сопротивление следует определять по наиболее слабому грунту – об этом забывать не следует.

Итак, исходные данные по грунтам сведены ниже в расчетную таблицу. Обратите внимание, что слоев грунта уже четыре, а не три. Для удобства третий слой разделен на два – сухой и водонасыщенный.

Завершающая часть исходных данных – обратная засыпка и нагрузки.

Нагрузка на стену в нашем случае взята из примера сбора нагрузок "Собираем нагрузки на ленточный фундамент дома" для фундамента по оси «1», т.е. для фундамента под крайнюю стену, и равна она сумме постоянных и временных нагрузок из шестой таблицы примера 7391 кг/м + 724 кг/м = 8115 кг/м = 8,115 т/м (так как расчет у нас ведется на 1 погонный метр фундамента, то нагрузка Nс берется уже не в тоннах на метр, а в тоннах).

Эксцентриситет приложения нагрузки в нашем примере равен 0,1 м, сбита нагрузка в сторону дома.

Расчет ленточного фундамента выполняется методом последовательных приближений. Чтобы от чего-то оттолкнуться, мы задаемся расчетным сопротивлением грунта (оно приближенное и выбирается из таблиц пособия для подходящего грунта). Далее мы находим предварительную ширину подошвы, по значениям которой будем уже более точно определять расчетное сопротивление грунта.

Определение расчетного сопротивления грунта основания и ширины подошвы фундамента (расчет основания по деформациям – по 2 предельному состоянию).

Прежде всего, необходимо определить, какой слой грунта является основанием для нашего фундамента и выбрать для него угол внутреннего трения и удельное сцепление из исходных данных.

Обратите внимание, что удельный вес грунта нужно брать с учетом водонасыщенного состояния. В нашем случае водонасыщен 4 слой (т.к. он находится ниже уровня грунтовых вод).

Если в инженерно-геологическом отчете вы не найдете значения удельного веса грунта в водонасыщенном состоянии, можно воспользоваться формулой (36) пособия.

Далее приступаем к определению расчетного сопротивления грунта.

Значения коэффициентов выбираем из таблицы 43 пособия, при этом нужно учитывать данные пункта 2.178 о том, какие здания относятся к жесткой конструктивной схеме.

В шаге 6.2 мы определим все действующие нагрузки и приблизимся к окончательному определению ширины подошвы фундамента.

Сначала мы просто делим нагрузку на расчетное сопротивление и получаем ширину подошвы даже меньшую, чем ширина стены. Округляем до ширины стены 0,4 м.

Но нам также необходимо узнать нагрузку от собственного веса стены, от грунта на срезах фундамента и от временных нагрузок на грунте и на полу – все они влияют на ширину подошвы фундамента. Т.к. срезов фундамента у нас пока нет, то N1 и Nвр на данном этапе получились равны нулю, а вот собственный вес уже составил 1,5 тонны.

Уточняем ширину фундамента с новой нагрузкой и получаем уже 0,5 м. Конечно, так можно вылизывать до бесконечности, но мы пока проигнорируем N1 и Nвр и найдем среднее давление под подошвой для ширины 0,5 м.

Среднее давление для такой ширины ленты получилось больше, чем мы можем себе позволить при ограничении давления на грунт 15 т/м2. Поэтому мы пересчитываем ширину подошвы до такого размера, чтобы среднее давление было меньше 15 т/м2 – получаем ширину ленты 0,7 м.

Далее мы снова уточняем все нагрузки для ширины ленты 0,7 м. И в п. 6.3 снова определяем среднее давление под подошвой фундамента для уточненных значений – оно оказывается больше нашего ограничения. Тогда в п. 6.3а мы увеличиваем ширину фундамента на столько, чтобы среднее давление под подошвой стало меньше ограничения давления. Когда это произошло, мы снова находим значения всех нагрузок для ширины подошвы 0,8 м, а также уточняем значение расчетного сопротивления грунта. После этого можно определить момент, действующий относительно оси, проходящей через центр тяжести подошвы. Обратите внимание, что Nc*e при нахождении момента берется с минусом в случае, если сбивка нагрузки в сторону дома; если же в сторону улицы, то нужно в формуле ставить знак плюс.

Знак момента дает нам понять о том, с какой стороны будет максимальное давление под подошвой ленточного фундамента.

Следующим шагом мы определяем эксцентриситет и проверяем несколько важных условий (смысл их описан в статье "Расчет ленточного фундамента под наружную стену в доме без подвала")

Дальнейший расчет может пойти двумя путями. Если эпюра давления под подошвой фундамента имеет форму трапеции (при небольшом эксцентриситете), то считать нужно по формуле (50) пособия – у нас так и получилось, и мы будем вести дальнейший расчет по пункту 6.7. Если бы эксцентриситет оказался большим, и эпюра оказалась бы треугольной (это значит, что в фундаменте может даже получиться отрыв от подошвы), то считать нужно было бы уже по формуле (51), а в нашем расчете она прописана в п. 6.8. Я приведу оба пункта в этом примере – вдруг кому-то пригодится алгоритм. Но для этого конкретного случая п. 6.7 является завершающим для расчета.

Сначала мы находим pmax по стандартной формуле, в которой есть только одна особенность: если сила Nc сбита в сторону дома, то в расчете принимает участие qэт (т.е. нагрузка со стороны дома), а если бы сила Nc была сбита в сторону улицы, то вместо qэт у нас бы уже была qгр (нагрузка на грунте со стороны улицы).

После определения pmax прежде всего нужно сравнить его с расчетным сопротивлением грунта. И если бы у нас не было ограничения давления на грунт, то расчет на этом можно было бы закончить. Но pmax превышает заданное ограничение, поэтому мы снова вынуждены увеличивать подошву и пересчитывать все значения (какие-то из них пригодятся нам при расчете осадок фундамента).

И как итог, у нас получается ширина подошвы фундамента 1,2 м.

И напоследок добавлю пункт 6.8, в котором показан алгоритм расчета максимального давления под подошвой в случае с треугольной эпюрой давления.

После того, как расчет выполнен, нужно определить осадку фундамента, но это уже тема отдельной статьи.

Видео-курсы от Ирины Михалевской

Бывает такая ситуация: принимаешь решение сделать под домом фундаментную плиту, выполняешь расчет в программном комплексе и обнаруживаешь странное явление: чрезмерную верхнюю арматуру в плите, прямо вот очень большую. Давайте рассмотрим на примере, откуда у этого явления ноги растут.


На рисунке показан результат расчета (верхнее армирование вдоль оси Х) обыкновенной фундаментной плиты с монолитными стенами по периметру (стены с плитой жестко связаны). Как видите, верхняя арматура достигла диаметра 18 мм с шагом 200 мм. Внушительно для небольшой плиты в частном доме.

В чем же причина такого явления?


На рисунке выше у нас показана наша плита со стенками, на которые будут опираться стены дома. И мы выделим фрагмент (полосу), чтобы рассмотреть работу плиты повнимательней.

Что покажут нам перемещения плиты и изгибающий момент в ней?


Под стенами плита просела больше, а средняя часть ее выгнулась дугой. Это и понятно: по краям стены задавливают плиту в низ, но снизу на нее действует отпор грунта (грунт-то сопротивляется попытке его смять). И этот отпор под интенсивной нагрузкой от стен поддается больше (плита по краям проседает), а вот в центре плиты нет никакой особой нагрузки, и грунт удерживает плиту от значительных осадок (плита в центре проседает меньше). В итоге мы видим изгиб плиты, что и подтверждает эпюра изгибающих моментов: на нижнем рисунке синим показана часть плиты, в которой верхняя зона вышла растянутой, а значит в ней мы получим всплеск верхней арматуры:


Как видите, так и вышло: двадцатка с шагом двести. И что делать?

Конечно, можно авторитетно заявить, что для фундамента двадцатка – это не арматура, и, размахивая расчетом перед лицом заказчика, настоять на таком армировании.

А можно и сэкономить, да и конструкцию разгрузить.

Давайте чисто ради эксперимента вырежем в нашей плите ту зону, которая оказалась переармированной.


Упс, мы получили ленточный фундамент… Но давайте все-таки посмотрим, как изменилась его работа.

Осадки фундамента:


Если сравнить сплошную плиту и плиту с вырезом, то у второй осадка несколько возросла. И это логично, ведь чем больше площадь плиты, тем меньше осадка. Этот фактор нужно отслеживать, делая вырезы в плите: если осадка осталась в пределах допустимой, значит все в порядке.

Расчетное сопротивление грунта под подошвой фундамента:


Расчетное сопротивление, как и осадки, тоже выросли – оно ведь тоже зависит от площади фундамента. Я специально не вдаюсь в численные значения в этой статье – в каждой ситуации будут свои цифры. Главное понимать – уменьшая площадь фундамента, мы должны проверить, а не увеличилось ли расчетное сопротивление грунта под подошвой фундамента настолько, что вышло за пределы допустимого. Если не вышло, значит все в порядке.

Изгибающие моменты в фундаментной плите:

А вот здесь разница очень ощутима. Если в сплошной плите максимумы изгибающих моментов достигают +3,99 тм и -7,92 тм, то в плите с вырезом они снизились до +1,91 тм. Естественно, это благоприятно скажется на армировании плиты. Верхняя арматура не нужна (отрицательный момент отсутствует), а нижняя будет намного меньше.

Арматура в фундаментной плите:


На рисунке выше показана верхняя арматура. С d18 она упала до d8. Впечатляет. Давайте посмотрим нижнюю.


Тоже была двадцатка, стала десятка. Впечатляет.

Выводы. Если в фундаментной плите по расчету получается завышенная верхняя арматура, можно снять напряжение, просто вырезав отверстие в плите. При этом армирование плиты резко снизится, т.к. расчетная схема изменится к лучшему. Но при этом следует отслеживать осадки и расчетное сопротивление грунта под подошвой – они вырастут.

В каких случаях следует ожидать скачка верхней арматуры в плите?

  1. При значительных нагрузках от стен – чем больше нагрузка, тем больше выгнется плита.
  2. При больших расстояниях между стенами – чем больше пролеты фундаментной плиты, тем больше будет верхняя арматура.

Что делать, если нужна все-таки сплошная фундаментная плита под зданием?

Если наличие цельной плиты принципиально, нужно делать цельную плиту. Я призываю просто каждый раз взвешивать: а действительно ли нужна именно сплошная плита? Для размышления предлагаю вам такой вариант:


Мы вырезаем в плите отверстие, при этом добиваемся значительной экономии в армировании. А внутри заполняем отверстие фундаментной плитой, которая несет лишь саму себя плюс нагрузку от первого этажа. Эта внутренняя плита может быть и из бетона попроще, да и армирование ее конструктивно. А между плитами можно устроить водонепроницаемый деформационный шов. Единственное неудобство такого решения – нужно просчитать осадки обеих плит и проанализировать, не приведет ли разность осадок к каким-то некомфортным последствиям.

Напоследок хочу сказать, что в примере я приводила самую простую фундаментную плиту. Вырезая прямоугольник из нее, мы по сути получали ленточный фундамент. Но не всегда бывают такие простые ситуации, и не всегда мы получаем в результате ленту. Иногда отверстия приходится вырезать лишь в части пролетов плиты (обычно в бОльших пролетах), иногда быть вырезанными просятся плиты, на которые опираются колонны… Нужно просто помнить, что есть такое решение. Сделать отверстие – это не всегда ухудшить работу плиты.

Кстати, как думаете, если в плите перекрытия, опирающейся по четырем сторонам, вырезать отверстие в центре, лучше она будет себя чувствовать или хуже? А как насчет многопролетной плиты, опирающейся на сетку колонн?

Творческих вам задач!

Первый вопрос: С одной стороны будет лучше т.к уменьшиться грузовая площадь. С другой стороны если вырезать квадратное отверстий появятся концентраторы напряжения в углах будет хуже. Если мы сделаем круглое отверстие и избавимся от концентраций то моменты на опорах все равно увеличатся т.к. схема станет больше похожа на консольную. По всем факторам плита станет вести себя хуже. Ну и тут в вопросе конечно нужно уточнить шарнирно плита оперта иди жестко. Я предполагаю что плита монолитная жесткая. Если шарнирное закрепление то будет лучше себя вести .

Расчет ленточных и плитных фундаментов, работающих на изгиб, проводится с учетом совместной работы конструкции и грунтового основания согласно теории конструкций на упругом основании. В этом случае предположение о линейном распределении реактивных давлений уже не может рассматриваться как достаточно точное, так как изгиб конструкции изменяет распределение этих давлений и, следовательно, отражается и на усилиях в балках и плитах. Линейное распределение давлений используется лишь для предварительного определения сечений конструкций.

6.5.2. Предварительное назначение размеров сечений

Предварительное назначение размеров сечений рассмотрим на примере ленточного фундамента под колонны, исходя из схемы линейного распределения реактивных давлений. Изгибающие моменты в каждом сечении ленты определяются по формуле


(6.125)

где Ml — момент в данном сечении от площади эпюры реактивных давлений, расположенной левее данного сечения; ΣPili — сумма моментов для данного сечения от нагрузок, передаваемых колоннами, расположенными левее сечения (здесь Рi — нагрузка от колонны i ; li —расстояние от колонны до сечения); ΣМi — сумма внешних моментов, передаваемых колоннами, расположенными левее данного сечения.

За положительное направление моментов принимается направление по часовой стрелке.

Таким образом, изгибающие моменты определяются простейшим способом по схеме статически определяемой балки. Не рекомендуется пользоваться расчетом статически неопределимой неразрезной балки, нагруженной трапецеидальной эпюрой давлений, при котором опорные реакции оказываются отличными от расчетных нагрузок, передаваемых на балку колоннами; кроме того, такой расчет сложнее. Использование схемы неразрезной балки оправдано лишь в случае, если жесткость верхнего строения очень велика и не позволяет смещаться опорным точкам колонн нелинейно относительно друг друга. В этом случае учитывается перераспределение внешней нагрузки по колоннам исходя из учета жесткости верхнего строения.

6.5.3. Расчет фундаментных балок и плит как конструкций на упругом основании

Для учета влияния изгиба на распределение реактивных давлений используется одно из двух предположений.

1. Основание работает согласно гипотезе коэффициента постели (Винклера). Эта гипотеза предполагает, что осадка какой-либо точки (элемента) поверхности основания s пропорциональна давлению р , приложенному в той же точке, т.е. что p = kss . Коэффициент ks , Па/м, называется коэффициентом постели. Осадка данной точки (элемента) зависит только от давления, приложенного в этой точке, и не зависит от давлений, действующих по соседству (рис. 6.32, а).

Перемещение поверхности основания под нагрузкой

2. Основание работает как среда, к которой применимы формулы теории упругости, связывающие напряжения и осадки. Грунт принимается за однородное упругое тело, бесконечно простирающееся вниз и в стороны и ограниченное сверху плоскостью (упругое полупространство), а соответствующее предположение называется гипотезой упругого полупространства. Поверхность упругого полупространства деформируется не только непосредственно под нагрузкой, но и по соседству с ней (рис. 6.32, б). Деформационные свойства грунта характеризуются в основном модулем деформации Е0 , МПа.

Согласно гипотезе коэффициента постели, грунт лишен распределительной способности, т.е. деформации соседних с нагрузкой элементов поверхности грунта отсутствуют. Коэффициент постели для данного типа основания предполагается величиной, не зависящей от площади фундамента (в действительности — зависит).

В гипотезе упругого полупространства распределительная способность преувеличена. Модуль деформации является характеристикой, представляющей одновременно как упругие, так и остаточные деформации. При многократном приложении нагрузки остаточные деформации исчезают, модуль общей деформации Е0 переходит в модуль упругости Е , значительно больший, чем Е0 , При ширине фундамента примерно от 70 см до 7 м значение модуля деформации меняется незначительно. При превышении ширины 7 м модуль деформации заметно возрастает.

6.5.4. Связь между расчетными значениями модуля деформации и коэффициента постели

Между расчетными значениями модуля деформации Е0 и коэффициентом постели, исходя из приравнивания осадок, вычисленных по той и другой гипотезе, устанавливается связь


.


(6.126)

Значение k0 определяется по рис. 6.33 в зависимости от отношения сторон прямоугольного фундамента α, его опорной площади А и коэффициента Пуассона грунта ν0 , принимаемого для песков ν0 = 0,3, для суглинков и супесей ν0 = 0,35, для глин ν0 = 0,4.


Осадки жесткого прямоугольного фундамента на однородном основании определяются по формуле


,


(6.127)

где Р — суммарная центрированная нагрузка на фундамент.

Осадки жесткой плиты лишь немного меньше (на 7 %) средних осадок гибкой плиты при равномерной нагрузке.

Расчеты по обеим гипотезам, даже при использовании формулы (6.126), дают, как правило, различные результаты в отношении изгибающих моментов в конструкции и ее изгиба. Только для узких балок при α ≥ 10 можно подобрать отличное от определяемого формулой (6.127) значение коэффициента постели, при котором результаты расчета будут близки. Однако при равномерной нагрузке или при нагрузке, приближающейся к ней, получить близкие результаты расчета при любом соотношении между E0 и k невозможно. Формула соотношения между Е0 и k , для узких балок шириной В имеет вид:


.


(6.128)

Гибкие фундаменты в настоящее время рассчитываются преимущественно по гипотезе упругого полупространства. Этот расчет при фундаментах большой опорной площади, в десятки или сотни квадратных метров, дает, однако, преувеличенное значение осадки, изгиба и изгибающих моментов, так как гипотеза игнорирует уплотнение грунта с глубиной, вызванное действием его собственного веса. Кроме того, при больших опорных площадях грунт под фундаментом сжимается в основном без возможности бокового расширения, что не учитывается при опытном определении модуля деформации штампом.

Чтобы приблизить расчетные условия к действительным, при больших опорных площадях используют схему, согласно которой основание представляет собой сжимаемый слой, подстилаемый несжимаемым основанием. Удобно также использовать схему однородного полупространства с повышенным модулем деформации так, чтобы расчет по этой схеме давал значение, равное ожидаемой осадке.

Читайте также: