Что произойдет с коэффициентом теплопроводности кирпичной кладки при увеличении влажности материала

Обновлено: 28.04.2024

Теплопроводность кирпича – это способность проводить тепло через толщу материала при наличии разности температур на противоположных поверхностях выравнивая температуру материала. Если обе поверхности кирпичной стены имеют одинаковые температуры, то они находятся в тепловом равновесии, и какой-либо теплообмен между ними не происходит. При наличии же разности температур происходит передача тепла из области с более высокой температурой в область с более низкой температурой до тех пор, пока не установится тепловое равновесие (рис. 1).

Происходит такой теплообмен, когда молекулы приводятся в возбужденное состояние тепловой энергией, поступающей от источника с одной из сторон материала. Эти молекулы передают энергию (тепло) холодной стороне материала. Поэтому теплопроводность осуществляется в условиях тесного соприкосновения между отдельными мельчайшими частицами материала (атомами, ионами, электронами, молекулами) и неравенства температур в отдельных точках, т.е. между неподвижными частицами твердого, жидкого или газообразного вещества. Однако в чистом виде теплопроводность встречается, как правило, только в твердых телах, так как в жидких и газообразных средах практически невозможно обеспечить неподвижность вещества.

Хорошим проводником тепла является металл, средним - дерево и плохим - воздух. Если при строительстве кирпичных зданий применять материалы, то теплопроводность увеличится и потери тепла, а следовательно расходуемая энергия будут велики.

Теплопроводность кирпича

Рис. 1. Схема передачи тепла при разности температур

Теплопроводность кирпича характеризуется коэффициентом теплопроводности. Чем меньше коэффициент теплопроводности, тем меньше потери тепла при одной и той же толщине материала и одинаковых климатических условиях.

Коэффициент теплопроводности кирпича зависит от многих факторов, в т.ч. от атомно-молекулярного строения вещества, но во всех случаях он во много раз превышает теплопроводность воздуха. В целом, условный ряд веществ по мере возрастания их теплопроводности Вт/(м•К) можно представить в следующем виде:

  • газы [в пределах значений от 0,02 до 0,6 (воздух – 0,024)];
  • полимеры (полистирол – 0,084; полиэтилен – 0,34);
  • жидкости [в пределах от 0,07 до 0,7 (вода – 0,58; лёд – 2,32)];
  • стекла (силикатное – 0,75);
  • кристаллы (кварц – 7. 8, корунд – 30, графит – 180);
  • металлы (железо – 73,2; алюминий – 230; серебро – 425), т.е. теплопроводность воздуха почти в 18 тыс. раз ниже, чем у серебра. Самая высокая теплопроводность у графена (разновидность, модификации углерода) – 3. 5 тыс.

Теплопроводность кирпича и блоков уменьшается с увеличением их пористости. У пористых материалов тепловой поток проходит через их массу и поры, наполненные воздухом. Следовательно, теплопроводность пористых материалов имеет промежуточное значение между значениями теплопроводности их веществ и воздуха. Чем больше пористость, тем ниже теплопроводность и наоборот. Например, теплопроводность тяжёлого бетона – 1,2. 1,5; лёгкого бетона на пористых заполнителях – 0,3. 0,7; пено- и газобетона – 0,2. 0,4; древесины – 0,16. 0.30; пенопласта – 0,04. 0,06 Вт/(м•К). Однако при прочих равных условиях наименьшей теплопроводностью будет обладать материал, поры у которого мелкие, равномерно распределённые по всему объёму и замкнутые. Вместе с тем наличие открытых пор в гидрофильных материалах приводит к повышению теплопроводности. Так как средняя плотность материала, так же как и теплопроводность, обратно пропорциональна пористости, то она может служить косвенной характеристикой теплопроводности материала и использоваться в качестве марки материала по теплопроводности. Не стоит также забывать, что пористость снижает прочность изделий, именно поэтому станки для кирпича и плитки имеют высокие усилия прессования с целью получения плотного облицовочного кирпича.

С увеличением влажности кирпича его теплопроводность увеличивается, потому что при увлажнении происходит вытеснение сухого воздуха из пор материала и замещение его водой или влажным воздухом, теплопроводность которых значительно выше. Наглядно это можно проследить на примере материала, поры у которого могут быть заполнены воздухом, водой или льдом: теплопроводность воздуха – 0,024, воды – 0,58, а льда – 2,32 Вт/(м•К). Во втором случае теплопроводность увеличивается в 25 раз, а в третьем – в 100 раз. Либо на примере керамического полнотелого кирпича в сухом, в условиях равновесной влажности и во влажном состоянии. Теплопроводность такого кирпича соответственно будет составлять – 0,56; 0,7 и 0,81 Вт/(м•К).

Знать теплопроводность необходимо при теплотехнических расчётах стен, перекрытий, тепловой изоляции трубопроводов. Чем меньше теплопроводность материала, тем меньше толщина ограждения, а, следовательно, меньше затрачивается материала на единицу его площади. Теплопроводность является также определяющей характеристикой качества теплоизоляционных материалов, у которых теплопроводность должна быть не более 0,175 Вт/(м•К). В большинстве случаев коэффициент теплопроводности теплоизоляционных материалов определяется опытным путем (рис. 2) [СТБ 1618, СТБ EN 12667 12 939, ГОСТ 7076].


Рис. 2. Мобильные измерители теплопроводности

В справочно-технической литературе величина теплопроводности кирпича приводится обычно в сухом состоянии при температуре и влажности в соответствии с нормативными документами и служит сравнительной характеристикой при оценке теплозащитных свойств различных материалов. Причем, согласно требованиям европейских стандартов использование показателя теплопроводности предполагается с обеспеченностью 90/90 (90%-ный доверительный интервал с уровнем вероятности 90%). Это означает, что заявленное значение показателя теплопроводности изделий теплоизоляции зданий принимается из условия, что 90 % результатов измерений этого показателя находятся в пределах 90 % от его заявленного значения (СТБ EN 12667, 12939 и 6946). Кроме того, в ряде случаев теплопроводность определяется не в Вт/(м•К), а для упрощения восприятия в мили Вт/(м•К). Например, индекс 37 на упаковке или сопроводительном документе на материал показывает, что теплопроводность составляет 0,037 Вт/(м•К), а 40 – соответственно 0,040 Вт/(м•К).

Поскольку абсолютное большинство теплоизоляционных материалов и изделий имеют пористое либо комбинированное строение, что не позволяет рассматривать их структуру как сплошную среду, то в практических условиях (в конструкциях зданий и сооружений) процесс передачи теплоты от теплой среды к холодной через разделяющее их ограждение происходит всеми видами теплообмена: на поверхностях имеет место конвективный и лучистый теплообмен, а в материальных слоях – теплопроводность. Такой сложный процесс называется теплопередачей. Следовательно, коэффициент теплопроводности пористых и комбинированных материалов – величина условная и характеризует перенос теплоты как теплопроводностью, так конвекцией и тепловым излучением через заполненные газом поры, пустоты и полости в материалах и конструкциях (например, в стеклопакетах) (рис. 3).


Рис. 3. Теплопередача через конструкцию стеклопакета

Конвекция характерна для газообразных и жидких веществ, т.е. «подвижных систем», где перенос тепла происходит в результате движения молекул и перемещения более нагретых частей среды вверх и опускания более холодных. Это вызвано тем, что повышение температуры воздуха (газа) при нагревании ведет к уменьшению его плотности и соответственно перемещению вверх, а охлажденный воздух занимает освободившееся пространство в нижней части среды.

Тепловое излучение или лучистый теплообмен представляет собой процесс передачи тепла с поверхности на поверхность через лучепрозрачную среду электромагнитными волнами, трансформирующимися в теплоту, т.е. передача тепловой энергии электромагнитными волнами. Например, излучаемая энергия Солнца, нагревает атмосферу и поверхность земли или нагретая поверхность радиатора излучает тепло и обогревает помещение. Лучепрозрачной средой, пропускающей тепловые волны, в данном случае является воздух.

Термическое сопротивление, сопротивление теплопередаче является величиной обратной теплопроводности и характеризует способность материала или конструкции (например, наружной стеновой панели) препятствовать распространению теплового потока или теплового движения молекул, т.е. характеризует теплозащитные свойства материала или конструкции (СТБ ЕН ИСО 10456, СТБ ИСО 5946 и СТБ ЕН 13162). Определяется термическое сопротивление отношением толщины слоя ограждения к теплопроводности материала.

Термическое сопротивление - величина нормируемая в каждом регионе (в зависимости от температурной зоны эксплуатации) и характеризует все типы ограждающих конструкций с точки зрения их теплозащитных свойств. В настоящее время в Республике Беларусь термическое сопротивление принято: для наружных стен 3,2 (м2•К)/Вт, совмещённых покрытий и чердачных перекрытий - 6,0 (м2•К)/Вт, световых проёмов – 1,0 (м2•К)/Вт. Для сравнения нормативные сопротивления теплопередаче для стен жилых зданий в Финляндии – 5,88, Норвегии, Швеции и Великобритании – 5,56, Германии – 3,57 и Бельгии – 2,0 (м2•К)/Вт.

От нормативного значения термического сопротивления зависит толщина наружных стен и расход топлива на отопление зданий. Чем выше этот показатель, тем лучше ограждение по характеристикам сохранения тепловой энергии, т.е. тем лучше его теплозащитные свойства.

По СТБ ЕН ИСО 7345 термическое сопротивление является расчетным значением, определяемым разностью температур на противоположных поверхностях, к плотности теплового потока, проходящего через слой материала в стационарных условиях.

Теплоёмкость (С) – свойство материала поглощать и аккумулировать тепло при нагревании (Дж/К). Оценивается удельной теплоёмкостью или коэффициентом теплоёмкости в Дж/(кг•К), т.е. это количество тепла, необходимого для нагревания 1 кг материала на 1 К (ГОСТ 23250, СТБ EN ISO 7345 и 10456). Например, если вода имеет удельную теплоемкость 4,19 кДж/(кг•К), то для повышения температуры 1 кг воды на 1°К требуется 4,19 кДж.

Теплоёмкость зависит от химического состава, строения материалов, их температуры и влажности. У подавляющего большинства материалов теплоёмкость находится в пределах 0,1. 2,0 кДж/(кг•К): сталь – 0,48, гранит – 0,65, кирпич и оконное стекло – 0,84, бетон – 1,13, пенополистирол – 1,34, древесина – 1,38 кДж/(кг•К). Таким образом, органические материалы имеют большие значения удельной теплоёмкости, чем неорганические. Наибольшей же теплоёмкостью обладает вода – 4,19 кДж/(кг•К). Только водород (14,3) и аммиак (35,6) обладают большей удельной теплоёмкостью, чем вода. Поэтому с увлажнением материалов их теплоёмкость возрастает, но при этом возрастает и теплопроводность.

Материалы, обладающие высокой теплоёмкостью способны выделять больше тепла при последующем их охлаждении. Как видно из примера, деревянные конструкции способны в несколько раз больше аккумулировать тепла, чем каменные, и поэтому могут постепенно отдавать это тепло, например, внутрь помещений. Учитывается теплоемкость при расчёте теплоустойчивости ограждающих конструкций, затрат на топливо и энергию при обогреве материалов и конструкций, подогреве составляющих бетона и раствора при зимних работах, а также при расчете нагревательных и термических печей.

Тепловое расширение (сжатие) – способность материалов изменять в процессе нагревания или охлаждения свои размеры и форму при постоянном давлении – расширяться при нагревании и сжиматься при охлаждении. В основе теплового расширения лежит несимметричность тепловых колебаний атомов, поэтому при повышении температуры увеличиваются средние межатомные расстояния и объем материала увеличивается. Зависит тепловое расширение от химических связей, типа структуры кристаллической решетки, ее анизотропии и пористости материала. Характеристиками теплового расширения являются коэффициенты линейного или объёмного расширения. В строительстве чаще всего используют коэффициент линейного теплового (температурного) расширения (КЛТР).

Коэффициент линейного теплового расширения характеризует изменение линейного размера (длины) при изменении температуры на один градус, т.е. это относительное приращение длины образца, вызванное повышением его температуры на один градус [ГОСТ 32618.2 (ISO 11359-2)]. С повышением температуры коэффициент линейного расширения возрастает. Значения коэффициентов линейного теплового расширения некоторых строительных материалов в интервале температур 15. 200°С приведены ниже, размерность КЛТР (10 -6 К -1 ):

  • Бетон ≈ 14;
  • Стекло оконное 9;
  • Сталь 12;
  • Медь 17;
  • Алюминий 23;
  • Древесина вдоль волокон 6;
  • Древесина поперек волокон 30;
  • Стеклянное волокно 5;
  • Стеклопластик 5;
  • Полиэтилен 160. 230;
  • Поливинилхлориид (PVC) 80. 90;
  • Полиэфирные смолы 80. 200;
  • Полиэстер 123;
  • Эпоксидные компаунды 32. 60.

В практических условиях нагрев или охлаждение материалов приводит к возникновению достаточно больших термоупругих напряжений, способных разрушить материал или конструкцию. Поэтому тепловое расширение, например, металлов необходимо учитывать при ковке, горячей объёмной штамповке, сварке изделий, прокладке трубопроводов и рельсов железнодорожных путей, соединении мостовых ферм и других металлических конструкций. Чтобы трубопроводы могли свободно удлиняться, оставаясь невредимыми, делают специальные устройства – компенсаторы, которые и воспринимают удлинение трубопроводов при их тепловом расширении, на мостах устанавливают подвижные опоры. У зданий и сооружений большой протяжённости из других материалов предусматривают термические швы. Вместе с тем примерно одинаковые коэффициенты теплового расширения бетона и стали позволили создать и обеспечить совместную работу такого материала как «железобетон».

Например, при изменении температуры от -20 до +30°С размер железобетонной панели длиной 6 м увеличивается на 3 мм, при этом настолько же уменьшается ширина шва между панелями.

Руслан

Руслан

Теплопроводность и теплоемкость кирпича – важные параметры, позволяющие определиться с выбором материала для возведения жилых зданий, сохраняя в них необходимый уровень тепла. Удельные показатели рассчитываются и приводятся в специальных таблицах.

Что это такое и что на них влияет?

Теплопроводностью называется процесс, который происходит внутри материала при передаче тепловой энергии между частицами или молекулами. При этом более холодная часть получает тепло от более нагретой. Энергетические потери и выбросы теплоты происходят в материалах не только в результате процесса передачи тепла, но и при излучении. Это зависит от того, какова структура данного вещества.

Каждый строительный компонент имеет определенный показатель проводимости тепла, полученный опытным путем в лаборатории. Процесс распространения тепла неравномерен, поэтому выглядит на графике как кривая. Теплопроводность – физическая величина, которая традиционно характеризуется коэффициентом. Если посмотреть в таблицу, можно легко заметить зависимость показателя от условий эксплуатации данного материала. Расширенные справочники содержат до нескольких сотен видов коэффициентов, определяющих свойства различных по строению стройматериалов.




Для ориентира при выборе в таблице указывают три условия: обычные – для умеренного климата и средней влажности в помещении, «сухое» состояние материала, и «влажное» – то есть эксплуатацию в условиях повышенного количества влаги в атмосфере. Легко заметить, что у большинства материалов коэффициент возрастает с увеличением влажности окружающей среды. «Сухое» состояние определяется при температурах от 20 до 50 градусов выше нуля и нормальном атмосферном давлении.

Если вещество используется как теплоизолятор, показатели выбирают особенно тщательно. Пористые структуры сохраняют тепло лучше, а более плотные материалы отдают его сильнее в окружающую среду. Поэтому традиционные утеплители обладают самыми низкими коэффициентами теплопроводности.

Как правило, для строительства подходит оптимально стекловата, пено- и газобетон с особо пористой структурой. Чем плотнее материал, тем большей теплопроводностью он обладает, следовательно, передает энергию в окружающую среду.




Виды материалов и их характеристики

Кирпич, выпускаемый на сегодняшний день во множестве видов, применяется при строительстве повсеместно. Ни один объект – крупный промышленный корпус, жилой многоквартирный или небольшой частный дом, не возводится без кирпичного основания. Строительство коттеджей, популярное и сравнительно недорогое, базируется исключительно на кирпичной кладке. Кирпич давно стал основным строительным материалом.

Это произошло благодаря его универсальным свойствам:

  • надежности и долговечности;
  • прочности;
  • экологичности;
  • отличным звуко- и шумоизоляционным характеристикам.




Выделяют следующие разновидности кирпича.

  • Красный. Изготавливается из обожженной глины и добавок. Отличается надежностью, долговечностью и морозостойкостью. Подходит для возведения стен и строительства фундамента. Обычно кладется в один или два ряда. Теплопроводность зависит от наличия зазоров в изделии.


  • Клинкерный. Самый прочный и плотный облицовочный кирпич. Полнотелый, цельный и надежный печной материал по причине высокой плотности имеет и наиболее значительный по величине коэффициент теплопроводности. И поэтому для стен его бессмысленно использовать – в доме будет холодно, понадобится значительное утепление стен. Зато кирпич клинкерный незаменим в дорожном строительстве и при укладке пола в промышленных зданиях.


  • Силикатный. Недорогой материал из смеси извести с песком, часто изделия объединяют в блоки для улучшения эксплуатационных свойств. При возведении построек используется не только полнотелый, но и силикат с пустотами. Показатели долговечности у песчаного блока средние, а теплопроводность зависит от размеров соединения, но все же остается достаточно высокой, поэтому дом потребует дополнительного утеплителя.

Ниже показатель у щелевого брикета по сравнению с аналогом без внутренних зазоров. Следует также учесть, что изделие впитывает избыточную влагу.


  • Керамический. Современный и красивый материал, выпускаемый в значительном ассортименте. Если говорить о теплопроводности, то она существенно ниже, чем у обыкновенного красного кирпича.


Бывает полнотелый керамический брикет, огнеупорный и щелевой, с пустотами. Коэффициент проводимости тепла зависит от веса кирпича, вида и количества щелей в нем. Теплая керамика внешне красива, к тому же внутри имеет множество тонких зазоров, что делает ее очень теплой и потому идеальной для строительства. Если в керамическом изделии имеются также поры, снижающие вес, кирпич называется поризованным.

К недостаткам такого кирпича следует отнести то, что отдельные единицы малого размера и хрупкие. Поэтому теплая керамика подходит не для всех конструкций. К тому же это дорогостоящий материал.

Что касается огнеупорной керамики, то это так называемый шамотный кирпич – жженый брусок из глины с высоким показателем теплопроводности, почти таким же, как у обыкновенного полнотелого материала. Вместе с тем огнеупорность – ценное свойство, которое всегда учитывают при строительстве.

Из такого «печного» кирпича сооружают камины, он обладает эстетичным внешним видом, сохраняет тепло в доме благодаря высоким показателям теплопроводности, морозоустойчив, не поддается воздействию кислот и щелочей.

Теплоемкость удельная – это энергия, которая расходуется для нагревания одного килограмма материала на один градус. Этот показатель нужен для определения устойчивости к теплу стен здания, в особенности при низких температурах.

Для изделий из глины и керамики этот показатель колеблется в пределах 0,7-0,9 кДж/кг. Силикатный кирпич дает показатели в 0,75-0,8 кДж/кг. Шамотный способен при нагревании давать увеличение теплоемкости с 0,85 до 1,25.

Сравнение с другими материалами

Среди материалов, способных составить конкуренцию кирпичу, существуют как натуральные и традиционные – дерево и бетон, так и современные синтетические – пеноплекс и газобетон.

Деревянные строения издавна возводились в северных и других отличающихся низкими зимними температурами районах, и это неспроста. Удельная теплоемкость дерева значительно ниже, чем у кирпича. Дома в этой местности строят из цельного дуба, хвойных пород деревьев, а также применяют ДСП.

Если дерево режут поперек волокон, коэффициент теплопроводности материала не превышает 0,25 Вт/М*К. Низкий показатель и у ДСП – 0,15. А наиболее оптимальным для строительства коэффициентом отличается древесина, разрезанная вдоль волокон – не более 0,11. Очевидно, что в домах из такого дерева достигается отличная сохранность тепла.


Таблица наглядно демонстрирует разброс в величине коэффициента теплопроводности кирпича (выражается в Вт/М*К):

  • клинкерный – до 0,9;
  • силикатный – до 0,8 (с пустотами и щелями – 0,5-0,65);
  • керамический – от 0,45 до 0,75;
  • щелевая керамика – 0,3-0,4;
  • поризованный – 0,22;
  • теплая керамика и блоки – 0,12-0,2.

При этом поспорить с деревом по уровню сохранения теплоты в доме может только теплая керамика и поризованный кирпич, которые также дороги и хрупки. Тем не менее, кирпичная кладка при возведении стен используется чаще, и не только по причине дороговизны цельного дерева. Деревянные стены боятся атмосферных осадков, выгорают на солнце. Не любит дерево и химических воздействий, к тому же древесина способна гнить и пересыхать, на ней образуется плесень. Поэтому этот материал требует специальной обработки до начала строительства.

Кроме того, огонь способен очень быстро разрушить деревянное строение, так как древесина отлично горит. В отличие от нее, большинство видов кирпича довольно устойчиво к воздействию огня, в особенности шамотный кирпич.

Что касается других современных материалов, для сравнения с кирпичом обычно выбирают пеноблок и газобетон. Пеноблоки – это бетон с порами, в состав которого входят вода и цемент, пенообразующий состав и затвердители, а также пластификаторы и другие компоненты. Композит не впитывает влагу, отличается высокой морозостойкостью, сохраняет тепло. Используется при возведении невысоких (в два-три этажа) частных построек. Теплопроводность равна 0,2-0,3 Вт/М*К.

Газобетон – очень прочные соединения сходного строения. В них до 80% пор, обеспечивающих отличную тепло- и звукоизоляцию. Материал экологичный и удобный в использовании, а также недорогой. Теплоизоляционные свойства газобетона в 5 раз выше, чем у красного кирпича, и в 8 раз – чем у силикатного (коэффициент теплопроводности не превышает 0,15).



Однако газоблочные структуры боятся воды. К тому же по плотности и долговечности они уступают красному кирпичу. Одним из востребованных на рынке стройматериалов называют пенополистирол экструдированный, или пеноплекс. Это плиты, предназначенные для теплоизоляции. Материал пожаробезопасен, не впитывает влагу и не гниет.

По мнению специалистов, сравнение с кирпичом данный композит выдерживает лишь по теплопроводности. Утеплитель имеет показатель, равный 0,037-0,038. Пеноплекс недостаточно плотный, он не обладает нужной несущей способностью. Поэтому лучше всего сочетать его с кирпичом при возведении стен, при этом дополненная пеноплексом кладка в полтора полых кирпича позволит добиться соблюдения строительных норм по теплоизоляции жилого помещения. Применяется пеноплекс и для фундаментов домов и отмостков.

Морозостойкость

Морозостойкость определяется путем циклов заморозки и размораживания. Данный параметр важен при выборе вида кирпича для укладывания несущих стен. Марка зависит от количества циклов и указывается на изделиях. Наиболее высокой морозостойкостью обладает облицовочный и красный кирпич, который хорошо выдерживает температуру до -50 градусов Цельсия и ниже. Если у вас используется силикатный кирпич, его свойства хуже, поэтому кладку придется делать в два слоя. Не подойдет силикат и для строительства фундамента.

В условиях зимней непогоды тепло в доме сохраняется за счет обогревательного котла отопительной системы. Но для того чтобы не происходило рассеивания тепла, нужны стены, пол и потолок из соответствующего материала, хорошо сохраняющего заданную температуру. Тип кирпичной кладки играет в ходе строительства немаловажную роль. Выбирать материал следует, учитывая все параметры и погодные условия.

Оптимизация защитных функций внешней оболочки здания – одна из актуальных задач строительства, решение которой должно приводить к сокращению потерь тепловой энергии и уменьшению затрат на эксплуатацию здания. С целью определения эксплуатационной эффективности наружных стеновых конструкций в климатической камере проводились теплотехнические испытания кладок из крупноформатных пустотелых керамических блоков, полнотелого обычного кирпича, кладок из щелевых и полнотелых керамзитобетонных блоков. Предлагаем результаты данных испытаний и рекомендации, сформированные на их основе.

Теплотехнические испытания кладок из различных строительных материалов

Задача оптимизации защитных функций наружных стеновых конструкций многогранна, поскольку необходимо повышение как их энергетической, так и эксплуатационной эффективности. Повышение уровня тепловой защиты наружных ограждающих конструкций реализуется путем:

  • применения эффективных теплоизоляционных материалов;
  • минимизации мостиков холода;
  • минимизации накопления влаги;
  • повышения герметичности здания.

Поскольку необходимо решать задачу сокращения как тепловых потерь, так и затрат на проведение последующих капитальных ремонтов зданий, необходимо знание о долговечности используемых материалов, физико-механические свойства которых в эксплуатационных условиях могут значительно изменяться. Кроме того, зачастую широко рекламируемые новые материалы не соответствуют заявленному качеству, не в полной мере удовлетворяют спектру климатических параметров России.

В климатической камере были проведены теплотехнические испытания кладок из крупноформатных пустотелых керамических и керамзитобетонных блоков. Для сравнительного анализа одновременно испытывались кладки из крупноформатных пустотелых керамических блоков и полнотелого обычного кирпича; кладки из щелевых и полнотелых керамзитобетонных блоков. На следующем этапе испытаний эти кладки последовательно утеплялись плитами из каменной минеральной ваты, пенополистирола, пеностекла.

Подготовка к теплотехническим испытаниям

В климатической камере ОАО «НИИМосстрой» смонтированы четыре фрагмента наружных ограждающих конструкций размером 1 500×1 500 мм и толщиной кладок 380 мм каждая (рис. 1):

  • кладка из пустотелых крупноформатных керамических блоков;
  • кладка из полнотелого обыкновенного глиняного кирпича;
  • кладка из щелевых керамзитобетонных блоков;
  • кладка из полнотелых керамзитобетонных блоков.

После изготовления фрагментов кладок их наружная и внутренняя поверхности затирались штукатурным раствором толщиной не более 5 мм и плотностью 1 200 кг/м 3 . Для проведения сравнительного анализа процедуры возведения кладок, измерений всех теплотехнических характеристик строго следовали рекомендациям соответствующих нормативных документов: ГОСТ 530, ГОСТ Р 54853, ГОСТ Р 54852 1 .
На следующем этапе указанные выше кладки последовательно утеплялись плитами из каменной минеральной ваты толщиной 90 мм, плитами из пенополистирола толщиной 100 мм, плитами из пеностекла толщиной 100 мм (рис. 1) и проводились их теплотехнические испытания.

Теплотехнические испытания

При проведении теплотехнических испытаний (согласно ГОСТ 530 и ГОСТ Р 54853) в качестве основных средств измерений использовались измерители плотности тепловых потоков и температуры ИТП-МГ4.03 «ПОТОК» с семью модулями по десять каналов каждый, многофункциональный прибор Testo-435, тепловизор Therma CAM P65 и другие вспомогательные измерительные приборы и оборудование. Все используемое в испытаниях оборудование и средства измерения аттестованы и прошли поверку в установленном порядке.

При проведении испытаний температура и относительная влажность воздуха в отсеках климатической камеры поддерживалась автоматически с точностью ±1 °С и ±5 % соответственно.

Схема размещения датчиков температуры и тепловых потоков составлялась на основе предварительно проведенного термографирования поверхности кладок (согласно ГОСТ Р 54852). Температурное поле снималось с целью выявления теплопроводных включений и термически однородных зон, их конфигурации и размеров. Для определения теплотехнических характеристик ограждающей конструкции датчики температуры и тепловых потоков устанавливались как в центре термически однородных зон, так и в местах с теплопроводными включениями, в зонах поверхности горизонтального и вертикального швов кладки.

Приведенное термическое сопротивление теплопередаче кладки определялось как средневзвешенное значение R пр К по формуле (1) (см. Формулы), а приведенное сопротивление теплопередаче кладки R пр о по формуле (3).

Фрагменты кладок испытывались в два этапа: на первом этапе кладки выдерживали и подсушивали в течение двух недель до влажности не более 6 %; на втором этапе кладки дополнительно высушивали до влажности менее 1 %.

Влажность изделий в кладке определялась методом взятия проб и приборами неразрушающего контроля (прибор GANN UNI-2 с датчиками МВ 35 и В60) в соответствии ГОСТ 21718 2 , а средняя плотность материалов кладок – с ГОСТ 7025 3 (табл. 1).

Измерения теплотехнических характеристик кладок

Результаты измерений теплотехнических характеристик кладок на втором этапе испытаний приведены в табл. 2. Средние значения температуры воздуха в теплом tсрв и холодном tсрн отсеках климатической камеры измерялись на расстоянии 0,1 м от поверхностей кладок, равны соответственно 19,7 и –28,1 0 С. Среднее значения коэффициента теплоотдачи с внутренней стороны кладок αсрв равно 8 Вт/(м 2 ·К), с внешней стороны αсрн – 17,5 Вт/(м 2 ·К).

По результатам полученного в испытаниях приведенного термического сопротивления теплопередаче кладки R пр К по формуле (5) определяется величина эквивалентного коэффициента теплопроводности кладки λэкв.

Далее по данным, полученным на двух этапах теплотехнических испытаний, определяются (согласно ГОСТ 530):

  • значение эквивалентного коэффициента теплопроводности кладки на один процент влажности Δλэкв по формуле (6);
  • коэффициент теплопроводности кладки в сухом состоянии λо по формуле (7) (результаты в табл. 3, где для сравнения приведены значения коэффициентов теплопроводности кладок и из других источников).

Результаты и анализ теплотехнических испытаний

Результаты теплотехнических испытаний кладок из обыкновенного глиняного кирпича достаточно хорошо согласуются с данными, приведенными в ГОСТ 530 и СП 50.13330 4 . Однако для ряда кладочных материалов характерно существенное расхождение значений теплотехнических характеристик, полученных в результате испытаний с аналогичными значениями, предоставленными производителями материалов.

Например, для кладки из пустотелых крупноформатных керамических блоков плотностью 800 кг/м 3 получено значение эквивалентного коэффициента теплопроводности в сухом состоянии 0,31 Вт/(м·K), а в сертификатах производителей приводится значение 0,15 Вт/(м·K); для кладки из полнотелых керамзитобетонных блоков плотностью 1 400 кг/м 3 получено значение 0,91 Вт/(м·K), в сертификатах – 0,36 Вт/(м·K).

Можно сделать вывод, что сегодня на рынке строительных материалов в основном представлены сертификаты, выданные по заказу либо самих производителей, либо ангажированных ими компаний, и практически отсутствуют реальные данные, полученные на базе независимых испытаний.

При проектировании наружных ограждающих конструкций рекомендуется разделять функциональные элементы конструкций на конструкционные (несущие) и теплозащитные. Наметившаяся тенденция совмещения этих двух функций в одном конструкционном элементе (два в одном), например в керамзитобетонных блоках, по-видимому, будущего не имеет. Более перспективными представляются конструкции с прочной несущей частью (например, кирпич или железобетон) и с эффективным слоем наружной теплоизоляции.

Как видно (табл. 4), значения величин приведенных термических сопротивлений теплопередаче R пр К исследованных ограждающих конструкций в сухом состоянии при утеплении кладок плитами из минеральной ваты толщиной 90 мм, пенополистирола и пеностекла толщиной 100 мм близки по величине. Температурные поля кладок, утепленных слоем высокоэффективного теплоизолятора, характеризуются достаточной теплотехнической однородностью – на термограммах не наблюдается тепловых потерь, обусловленных кладочными швами.

Приведенные термические сопротивления теплопередаче и коэффициенты условий работы

Вычисленные по экспериментально полученным данным R пр К средние значения эквивалентного коэффициента теплопроводности для слоя каменной минеральной ваты равны 0,045 Вт/(м·K), плит из пенополистирола – 0,05 Вт/(м·K), плит из пеностекла – 0,06 Вт/(м·K). Более высокое значение эквивалентного коэффициента теплопроводности для пенополистирольных плит 0,05 Вт/(м·K), чем для плит из каменной минеральной ваты 0,045 Вт/(м·K), обусловлено влиянием зазоров между пенополистирольными плитами, их худшим прижатием к поверхности кладки.

При проектировании и строительстве наружных ограждающих конструкций важную роль играют технические мероприятия по устранению мостиков холода, поэтому при монтаже плит важно избегать зазоров между плитами более 2 мм, еще лучше укладывать их с перехлестом 50–100 мм.

Несмотря на то, что эквивалентный коэффициент теплопроводности плит из пеностекла ниже, чем для плит из минеральной ваты, этот тип утеплителей благодаря их свойству не накапливать влагу и большей долговечности находит все более широкое применение в строительстве.

Влияние инфильтрации воздуха на теплотехнические характеристики фрагментов ограждающих конструкций

Инфильтрация воздуха играет существенную роль в формировании теплозащитных качеств наружных ограждающих конструкций. К примеру, кладка из крупноформатных блоков, вертикальные швы которой выложены по технологии «паз – гребень», характеризуется высокой теплотехнической неоднородностью вдоль швов. Из термограмм такой кладки (рис. 2), снятых со сторон теплого и холодного отсеков климатической камеры, видно, что вдоль вертикальных швов кладки, которая выложена по технологии «паз – гребень» без использования раствора, наблюдаются значительные тепловые потери: температурный перепад между гладью кладки и швами составляет полтора градуса.

Определение воздухопроницаемости исследуемой ограждающей конструкции (рис. 3) проводилось в соответствии с ГОСТ 31167. 5

Климатическая камера ОАО «НИИМосстрой» – герметичное помещение с высокой степенью теплоизоляции, оснащенное климатическим оборудованием для создания внутри отсеков (теплого и холодного) различных температурных режимов. Теплый и холодный отсеки климатической камеры разделены исследуемой ограждающей конструкцией, состоящей из различных типов кладок. При измерении воздухопроницаемости:

  • двух объединенных отсеков климатической камеры до монтажа исследуемых кладок получено среднее значение величины кратности воздухообмена, равное n50 = 3,5 ч –1 ;
  • после монтажа исследуемых кладок и их сушки получены средние значения величины кратности воздухообмена для теплого отсека климатической камеры n50 = 16,5 ч –1 , для холодного отсека – n50 = 17,5 ч –1 . Разность полученных величин кратности воздухообмена Δn50 = 16,5 – 3,5 = 13 ч –1 и Δn50 = 17,5 – 3,5 = 14 ч –1 может быть отнесена к воздухопроницаемости испытываемых фрагментов кладок. Эти значения более чем в три раза превышают нормативные значения этой величины 4 ч –1 .

Полученные результаты в такой постановке измерений можно считать предварительными, они требуют дальнейших, более детальных исследований, в частности для каждого типа кладок в отдельности.

Проведена серия испытаний по изучению влияния ветрового воздействия на теплотехнические характеристики ограждающих конструкций, в которых использовался стенд, оснащенный четырьмя вентиляторами ВР 300-45-2.5/3 (рис. 4). Так, в результате выполненных измерений при ветровом воздействии со средней скоростью 7,5 м/с на поверхности кладок получено, что приведенное термическое сопротивление:

  • для кладки из щелевых керамзитобетонных блоков снизилось на 10 % – от 0,44 м 2 ·К/Вт (табл. 2) до 0,40 м 2 ·К/Вт;
  • для кладки из полнотелых керамзитобетонных блоков на 17 % – от 0,42 до 0,36 м 2 ·К/Вт.

Среднее значение коэффициента теплоотдачи на поверхности с холодной стороны поверхности кладок αн равно 27,8 Вт/(м 2 ·К).

Отметим, что существенную роль в наблюдающемся в московском жилищном строительстве превышении фактического энергопотребления зданий над проектными значениями играет инфильтрация наружного воздуха через наружные ограждения [1]. Величина удельного расхода тепловой энергии на отопление здания может быть снижена посредством повышения герметичности ограждающих конструкций, стыков, кладочных швов, использования эффективных теплоизоляционных материалов и рационального расположения их в ограждающих конструкциях.

Кроме того, эксплуатационная надежность систем теплоизоляции напрямую зависит от количества мостиков холода теплоизоляционной оболочки, которые являются очагами интенсивного старения слоя утеплителя и преждевременного разрушения системы. При проектировании теплозащиты зданий следует применять конструкции со сплошным контуром утепления и с минимумом теплопроводных включений и стыковых соединений.

Коэффициенты условий работы наружных ограждающих конструкций

Наиболее существенную роль в формировании теплозащитных качеств наружной ограждающей конструкции играют их эксплуатационная влажность, инфильтрация воздуха и изменение теплозащитных свойств конструкции, вызванное деградацией теплоизоляционных материалов.

В табл. 4 приведены результаты испытаний исследуемых ограждающих конструкций во влажном состоянии при условиях эксплуатации Б: R пр К.влаж и отношение величин R пр К.влаж / R пр К, которое в дальнейшем назовем коэффициентом условий работы mвлаж, учитывающим снижение теплозащитных свойств конструкции за счет изменения влажности конструкции.

При проектировании и строительстве наружных ограждающих конструкций зданий особое внимание следует уделять их влажностному режиму. Накопление влаги в слое утеплителя значительно снижает теплотехнические качества наружных ограждающих конструкций зданий, приводит к преждевременному старению и износу. Взаимное расположение отдельных слоев ограждающих конструкций должно способствовать высыханию конструкций и исключать возможность накопления влаги в ограждении в процессе эксплуатации [2, 3].

Аналогично определяем, используя результаты испытаний для величин приведенных термических сопротивлений теплопередаче с учетом инфильтрации воздуха R пр К.инф и с учетом изменения свойств теплоизоляционных материалов в процессе эксплуатации R пр К.долг, коэффициенты условий работы, учитывающие снижение теплозащитных свойств конструкции соответственно:

  • за счет инфильтрации воздуха mинф, равное отношению R пр К.инф / R пр К;
  • за счет деградации теплозащитных свойств конструкции mдолг, равное RпрК.долг / R пр К.

Для сравнения указаны (табл. 4) величины приведенных термических сопротивлений теплопередаче R пр К.СР, полученные по данным производителей материалов.

Для учета данных трех аспектов, влияющих на теплозащитные свойства теплоизоляционных материалов, предлагаем ввести понятие обобщенного коэффициента условий работы наружной ограждающей конструкции mр. Данная величина равна наименьшему значению из коэффициентов условий работы, учитывающих снижение теплозащитных свойств конструкции за счет изменения влажности конструкции, инфильтрации воздуха и деградации теплозащитных свойств конструкции, см. формулу (8). Рекомендуемые значения обобщенного коэффициента условий работы для применения при проектировании наружных ограждающих конструкций приведены в табл. 4.

Резюме

На основании проведенных экспериментальных исследований сделаны следующие выводы.

  1. Для ряда кладочных материалов характерно существенное расхождение значений теплотехнических характеристик, полученных в результате испытаний, с аналогичными значениями, предоставляемыми производителями.
  2. Существенную роль в тепловых потерях зданий играет инфильтрация наружного воздуха через наружные ограждения. Прежде всего это связано с качеством монтажа и герметичностью ограждающих конструкций, стыков и кладочных швов.
  3. При проектировании наружных ограждающих конструкций рекомендуется разделять функциональные элементы конструкций на конструкционные (несущие) и теплозащитные. Наиболее перспективными представляются конструкции с прочной несущей частью и с эффективным слоем наружной теплоизоляции.
  4. Поскольку наиболее существенную роль в формировании теплозащитных качеств наружной ограждающей конструкции играют их эксплуатационная влажность, инфильтрация воздуха и изменение теплозащитных свойств конструкции, вызванное деградацией теплоизоляционных материалов, предлагается ввести понятие обобщенного коэффициента условий работы наружной ограждающей конструкции mр = min(mвлаж, mинф, mдолг).

ФОРМУЛЫ

Литература

  1. Васильев Г. П., Личман В. А., Песков Н. В. Методика инструментального определения энергопотребления вводимых в эксплуатацию зданий // Жилищное строительство. 2014. № 12. С. 32–36.
  2. Vasilyev G. P., Lichman V. A., Peskov N. V., Brodach M. M., Tabunshchikov Y. A., Kolesova M. V. Simulation of heat and moisture transfer in a multiplex structure // Energy and Buildings. 2015. Vol. 86.
  3. Васильев Г. П., Личман В. А., Песков Н. В. Моделирование процесса сушки в ограждающих конструкциях зданий // Жилищное строительство. 2013. № 7.

1 ГОСТ 530–2012 «Кирпич и камень керамические. Общие технические условия», ГОСТ Р 54853–2011 «Здания и сооружения. Метод определения сопротивления теплопередаче ограждающих конструкций с помощью тепломера», ГОСТ Р 54852–2011 «Здания и сооружения. Метод тепловизионного контроля качества теплоизоляции ограждающих конструкций».

2 ГОСТ 21718–84 «Материалы строительные. Диэлькометрический метод измерения влажности».

3 ГОСТ 7025–91 «Кирпич и камни керамические и силикатные. Методы определения водопоглощения, плотности и контроля морозостойкости».

4 СП 50.13330.2012 «Тепловая защита зданий. Актуализированная редакция СНиП 23-02–2003».

5 ГОСТ 31167–2009 «Здания и сооружения. Методы определения воздухопроницаемости ограждающих конструкций в натурных условиях».

Сфера применения материала определяется его эксплуатационными характеристиками. Комплекс рассматриваемых свойств должны соответствовать требованиям, предъявляемых строительному кирпичу при сооружении внешних стен, перекрытий, фундамента. Возведение конструкций подразумевает выбор изделий различного назначения:

  • Силикатный – рядовой, лицевой, пустотелый, полнотелый.
  • Керамический – жаростойкий и все разновидности предыдущего вида.
  • Клинкерный – для облицовки фасадов.

Технические параметры кирпича

Показатели определяют энергопотребление дома, затраты на обогрев помещений. Проектирование сооружений, расчеты ограждающих конструкций учитывают эти параметры.

Коэффициент теплопроводности

Материалы обладают свойством проводить тепло от нагретой поверхности в более холодную область. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Основной показатель величины – коэффициент теплопроводности (λ, Вт/), определяемый как количество теплоты, проходящее через единицу площади сечения за единичный интервал времени. Малое значение положительно влияет на сохранение теплового режима.

Согласно ГОСТ 530-2012 эффективность кладки в сухом состоянии характеризуется коэффициентом теплопроводности:

Чем больше плотность, тем выше теплопроводность – не совсем верное утверждение. Структура содержит закрытые поры и полости (пустотелый), наполненные воздухом с коэффициентом ≈ 0,026. Благодаря этому, изделия со щелевыми отверстиями лучше поддерживают тепловой режим внутри сооружений. В инженерных расчетах необходимо учитывать величину теплопроводности кладочной смеси, значение показателя выбирают от 0.47 и выше, в зависимости от состава.

Вид λ, Вт/м°C
Красный полнотелый 0,56 ~ 0,81
-//- пустотелый 0,35 ~ 0,87
Силикатный кирпич полнотелый 0,7 ~ 0,87
-//- пустотелый 0,52 ~ 0,81

Сравнение кирпича разного типа

Теплопроводность красного изделия ниже, чем у силикатного.

Физические процессы нагрева и удержания тепла можно охарактеризовать величинами:

  • Коэффициент теплоотдачи – теплообмен на границе поверхности твердого тела и воздушной среды. Это мощность теплового потока, приходящаяся на плоскость 1 м², обратно пропорциональная разнице температур тела и теплоносителя (воздух). Чем выше теплопроводность, тем больше теплоотдача.
  • Полное тепловое сопротивление – способность противостоять передаче тепла. Значение обратно пропорционально коэффициенту теплопередачи. Исходя из расчетной формулы R = L/λ, легко рассчитать оптимальную толщину кладки. λ – постоянный параметр, R – тепловое сопротивление указано в таблице 4 СП 131.13330.2012 для климатических зон России.

Необходимое количество тепла, подведенного к телу для увеличения температуры на 1 Кельвин – определение понятия «полная теплоемкость». Единица измерения: Дж/К или Дж/°C. Чем больше объем и масса тела (толщина стен и перекрытий), тем выше теплоемкость материала, лучше поддерживается благоприятный температурный режим. Наиболее точно это свойство подтверждают характеристики:

  • Удельная теплоемкость кирпича – количество тепла, необходимое для нагрева единичной массы вещества за единичный интервал времени. Единица измерения: Дж/кг*К или Дж/кг*°C. Используется для инженерных расчетов.
  • Объемная теплоемкость – количество тепла, потребляемое телом единичного объема для нагрева за единицу времени. Измеряется в Дж/м³*К или Дж/кг*°C.

Силикатные кирпичи

Тепловая конвекция непрерывна: радиаторы нагревают воздух, который передает тепло стенам. При понижении температуры в помещениях происходит обратный процесс. Увеличение удельной теплоемкости, снижение коэффициента теплопроводности стен обеспечивают сокращение затрат на обогрев дома. Толщина кладки может быть оптимизирована рядом действий:

  • Применение теплоизоляции.
  • Нанесение штукатурки.
  • Использование пустотного кирпича или камня (исключено для фундамента здания).
  • Кладочный раствор с оптимальными теплотехническими параметрами.

Теплопроводность блоков

Таблица с характеристиками различных видов кладок. Использованы данные СП 50.13330.2012:

Обыкновенный г линяный кирпич на различном кладочном растворе

Пустотный красный различной плотности (кг/м³) на ЦПС

Морозостойкость кирпичной кладки

Устойчивость к воздействию отрицательных температур – показатель, влияющий на прочность и долговечность конструкции. Кладка в процессе эксплуатации насыщается влагой. В зимний период вода, проникая в поры, превращается в лед, увеличивается в объеме и разрывает полость, в которой находится – происходит разрушение. Морозоустойчивость, как правило, низкая, водопоглощение не должно превышать 20 %.

Морозостойкость блоков

Определение количества циклов замораживания и оттаивания без потери прочности каждого вида изделия позволяет выявить морозоустойчивость (F). Значение получают опытным путем. В лаборатории проводят многократную заморозку в холодильных камерах и естественное оттаивание образцов.

Коэффициент морозостойкости – отношение прочности на сжатие опытного и исходного элемента. Изменение показателя более 5 %, наличие трещин, отколов сигнализируют об окончании испытаний. Марки изделий содержат характеристики по морозостойкости: F15 (20, 25, 35, 50, 75, 100, 150). Цифровой параметр указывает на количество циклов: чем выше число, тем надежнее возводимая система.

Приобретение кирпича высокой марки морозостойкости опустошит бюджет, заложенный на строительство. Меры по улучшению свойств конструкций, продлению срока эксплуатации в зонах холодного климата без увеличения расходов:

  • Применение паро- и гидроизоляции.
  • Обработка кладки гидрофобными составами.
  • Контроль, своевременное исправление дефектов.
  • Надежная гидроизоляция фундамента.

От выбора материала для кладки, его удельной теплоемкости, теплопроводности, морозостойкости зависит срок и комфорт эксплуатации дома. Сложные расчеты, составление сметы расходов лучше доверить опытным специалистам, имеющим опыт в строительстве и проектировании.

Основная цель сферы строительства заключается в обеспечении сохранения тепла в пространстве, поэтому при возведении зданий нужно подбирать материалы, обладающие пониженным уровнем теплопроводности. Чем меньше показатель пропускания тепла, тем прохладнее в доме в жару и теплее в холодную пору. Данная характеристика актуальна и для бетонов. Наша компания предлагает бетон в СПб от производителя всех марок с добавлением необходимых упрочнителей и присадок.

Теплопроводность бетона

Как влияет теплопроводность бетона на микроклимат внутри помещения

Из множества строительных материалов, применяемых для возведения зданий, одним из наиболее распространенных является бетон. Среди главных рабочих характеристик материала выделяется коэффициент теплопроводности бетона. На этапе проектирования необходимо предусмотреть применение в процессе строительства теплоизоляционных материалов, позволяющих превратить возведенную железобетонную конструкцию в жилое строение. Ведь важно возвести не только устойчивое, экологически чистое и оригинальное здание, но и создать благоприятные условия для проживания.

Зная теплопроводность бетонного массива, и правильно выбрав теплоизоляционные материалы, можно добиться значительных результатов:

  • существенно сократить тепловые потери;
  • снизить затраты на обогрев помещения;
  • обеспечить внутри здания комфортный микроклимат.

Влияние уровня теплопроводности на внутренний микроклимат выражается простой зависимостью:

  • при возрастании коэффициента, интенсивность тепловой передачи возрастает, и строение, возведенное из материала с такими характеристиками, быстрее остывает и, соответственно, ускоренными темпами нагревается;
  • снижение способности бетонного массива передавать тепло позволяет на протяжении увеличенного периода времени сохранять внутри помещения комфортную температуру, с соответственным уменьшением тепловых потерь.

Комфортный микроклимат внутри здания


Зная теплопроводность бетонного массива можно обеспечить внутри здания комфортный микроклимат
Если подытожить, то степень теплопроводимости бетона является определяющим фактором, влияющим на комфортность жилища. Различные виды бетона отличаются структурой массива, свойствами применяемого наполнителя и, соответственно, степенью теплопроводности. Важно использовать такие марки бетона совместно с утеплителями, чтобы обеспечить надежное удержание бетонным массивом тепла в помещении. Выбор применяемых для строительства материалов производится на проектной стадии.


Метод измерения теплопроводности

Для точного измерения теплопроводности бетона разработан специальный метод, зафиксированный в государственном стандарте №7076. Отбор образцов регламентируется требованиями ГОСТ 10180.

Данные вопросы требуют более подробного рассмотрения:

  1. Отбор образцов. Требования стандарта 10180 распространяются на бетоны всех видов, используемые в той или иной области строительства. Стандартом устанавливаются методы, позволяющие определить предел прочности бетона на сжатие, растяжение или устойчивость к раскалыванию. ГОСТ 10180 определяет и порядок отбора образцов: форму, размеры и число.
    Форма отливки должна плоской, а длинна ребра — 15 см. Количество подобных образцов регламентируется стандартом на тот или иной тип строительной смеси. Если этот момент в стандарте не освещен, то в соответствии с ГОСТ 7076 на испытания отправляют 5 образцов, взятых по ГОСТ 10180.
  2. Проведение испытаний. Измерение теплопроводности производится на плоских образцах, большая грань которых превышает меньшую в 5 раз. Тепловой поток, направляется сквозь широкую грань образца, после чего специальный прибор измеряет эффективную теплопроводность и термическое сопротивление.

Теплопроводность железобетона и тепловое сопротивление – знакомимся с понятиями

Принимая решение об использовании для строительства здания определенной марки бетона или другого строительного материала, следует обращать внимание на следующие характеристики, обеспечивающие энергоэффективность строения:

  • коэффициент теплопроводности железобетона или бетона. Это специальный показатель, характеризующий объем тепловой энергии, которая может пройти через различные стройматериалы за определенный промежуток времени. При снижении величины коэффициента, способность материала проводить тепло уменьшается, а при возрастании показателя – скорость отвода тепла возрастает;
  • тепловое сопротивление строительных конструкций. Этот параметр характеризует свойства стройматериалов препятствовать потерям тепловой энергии. Тепловое сопротивление является обратным показателем, если сравнивать со степенью теплопроводности. При повышенном значении показателя теплового сопротивления стройматериал может применяться для теплоизоляционных целей, а при пониженном – для ускоренного отвода тепла.

Разрабатывая проект будущего здания, и выполняя тепловые расчеты, необходимо учитывать указанные показатели.

Теплопроводность железобетона


Коэффициент теплопроводности материалов

Коэффициент теплопроводности бетона для различных видов монолита

Определяясь с видом бетона, который будет использоваться для постройки жилого дома, следует оценить, как изменяется теплопроводность монолита для разновидностей этого строительного материала. Поможет сравнить теплопроводность бетона таблица, которая охватывает характеристики всех типов бетона. Рассмотрим, как изменяется уровень теплопроводности бетонного массива, который выражается в Вт/м2х ºC для наиболее распространенных разновидностей материала.

Наименьшее значение коэффициента у бетонных композитов с ячеистой структурой:

  • для сухого пенобетона и газонаполненного бетона величина показателя небольшая, по сравнению с другими видами. Она возрастает при повышении плотности материала. При удельном весе 0,6 т/м3 коэффициент равен 0,14, а при плотности 1 т/м3 уже составляет 0,31. При базовой влажности значения возрастают от 0,22 до 0,48, а при повышенной от 0,26 до 0,55;
  • керамзитонаполненный бетон, в зависимости от плотности массива, также имеет различную величину коэффициента, который изменяется пропорционально возрастанию удельного веса. Так керамзитобетон с плотностью 0,5 т/м3 имеет низкий коэффициент, равный 0,14, а при возрастании плотности до 1,8 т/м3 параметр теплопроводности возрастает до 0,66.

Величина коэффициента определяется также используемым для приготовления бетонной смеси наполнителем:

  • для тяжелого бетона плотностью 2,4 т/м3, содержащего щебеночный наполнитель, показатель составляет 1,51;
  • бетон, где в качестве наполнителя используются шлаки, характеризуется уменьшенной величиной теплопроводности, составляющей 0,3–0,7;
  • керамзитобетон, содержащий кварцевый или перлитовый песок, имеет плотность 0,8–1 и, соответственно, уровень теплопроводности, равный 0,22–0,41.

Показатели теплоотдачи


Коэффициент теплопроводности бетона
надежно теплоизолируют возводимое строение. При сооружении стен зданий из бетона, имеющего пористую структуру и пониженный уровень теплопроводности, необходим тонкий слой теплоизолятора. Применение тяжелых марок бетона требует усиленного утепления строения. Для этого укладывается толстый слой теплоизолятора. При подборе материала следует учитывать, что с возрастанием плотности увеличивается теплопроводность бетонного массива.

Какие факторы влияют на коэффициент теплопроводности железобетона

Уровень теплопроводимости бетона, независимо от его марки и наличия в массиве стальной арматуры, зависит от комплекса факторов. Рассмотрим показатели, каждый из которых оказывает определенное влияние на данную характеристику:

  • структура бетонного массива. При создании внутри монолита воздушных полостей процесс передачи тепла через ячеистый массив осуществляется на небольшой скорости и с минимальными потерями. Если подытожить, то увеличенная концентрация ячеек позволяет снизить потери тепла;
  • удельный вес материала. Плотность бетонного массива влияет на его структуру и, соответственно, на интенсивность процесса теплообмена. При возрастании плотности материала увеличивается степень теплопередачи и возрастает объем тепловых потерь;
  • концентрация влаги в бетонных стенах. Бетонный массив, имеющий пористую структуру, гигроскопичен. Частицы влаги, которые по капиллярам просачиваются вглубь бетона, заполняют воздушные поры и ускоряют тем самым процесс теплопередачи.

Выполняя расчеты необходимо учитывать, что с уменьшением влажности материала снижается степень теплопроводимости, и теряется меньшее количество тепла. Применение пористого заполнителя позволяет снизить потери тепла и обеспечить комфортный микроклимат помещения. Стройматериалы с низкой теплопроводностью целесообразно использовать для теплоизоляционных целей. Зная зависимость теплопроводности бетона от его характеристик можно выбрать оптимальный вид материала для постройки стен.

Теплопроводность железобетона


Коэффициент теплопроводности железобетона

Откуда берется влага в строительных конструкциях?

Проектирование фундаментов, оснований и других бетонных сооружений ведется таким образом, чтобы добиться минимально возможного содержания влаги. Однако вода попадает в них как на стадии строительства, так и во время эксплуатации. Основные причины наличия влаги в бетоне:

  • попадание атмосферных осадков: дождя, снега;
  • поглощение (сорбция) влаги из воздуха;
  • конденсация паров воды на поверхностях конструкций;
  • воздействие грунтовых вод;
  • остаточная технологическая влажность – остатки воды, использованной при затворении смеси.

Наиболее распространенными причинами избыточной влажности считаются нарушение технологического процесса при изготовлении бетона и снижение эффективности гидроизоляции вовремя его эксплуатации.

Избыточная влажность оказывает негативное влияние на нормативный срок службы и свойства строительных конструкций. В перечень наиболее серьезных последствий переувлажнения входят:

  • коррозия стальной арматуры;
  • снижение морозостойкости;
  • увеличение теплопроводности;
  • солевая эрозия;
  • биоповреждение.

Измерение влажности бетона, цементной стяжки и штукатурки играет важную роль в жилом строительстве. Она влияет на прочность сцепления с лакокрасочными материалами и долговечность уложенных поверх финишных покрытий.

Теплопроводность бетона и утепление зданий

Решение о теплоизоляции стен возводимых зданий принимается в зависимости от того, из каких видов бетона производится сооружение стен. Бетонные изделия делятся на следующие виды:

  • конструкционные, применяемые для капитальных стен. Отличаются повышенной нагрузочной способностью, увеличенной плотностью, а также способностью ускоренными темпами проводить тепло;
  • теплоизоляционные, используемые в ненагруженных конструкциях. Характеризуются уменьшенным удельным весом, ячеистой структурой, благодаря которой снижается теплопроводность стен.

Таблица теплопроводности


Таблица теплопроводности строительных материалов: коэффициенты
Для поддержания комфортной температуры в помещении можно возводить стены из различных видов бетона. При этом толщина стен будет существенно изменяться. Одинаковый уровень теплопроводности капитальных стен обеспечивается при следующей толщине:

  • пенобетон – 25 см;
  • керамзитобетон – 50 см;
  • кирпичная кладка – 65 см.

Для поддержания благоприятного микроклимата, в рамках мероприятий по энергосбережению, выполняется теплоизоляция строительных конструкций. На стадии разработки проекта специалисты определяют возможные пути потери тепла и выбирают оптимальный вариант утеплителя.

Сравнительный график коэффициентов теплопроводности


Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Основной объем тепловых потерь происходит из-за недостаточно эффективной теплоизоляции следующих частей здания:

  • поверхности пола;
  • капитальных стен;
  • кровельной конструкции;
  • оконных и дверных проемов.

При профессиональном подходе и выборе эффективных утеплителей можно сделать свой дом более комфортным, а также сэкономить значительный объем денежных средств на отоплении.

Теплопроводность строительных материалов таблица

Конструкционные материалы и их показатели

Конструкционный бетон, теплопроводность которого зависит от применяемых наполнителей, пользуется большой популярностью. Это обусловлено его прочностью и эластичностью, что позволяет возводить надежные и защищенные от потерь тепла постройки.

Чем тяжелее наполняющий компонент, тем выше степень теплопроводности раствора. Тяжелый материал не сможет долго удерживать тепло, поэтому большинство построек из конструкционных материалов требуют дополнительной теплоизоляции, в большинстве случаев — снаружи.

Для таких материалов характерны следующие коэффициенты:

  1. Тяжелый — 1,2-1,5 Вт/м К.
  2. Легкий — 0,25-0,52 Вт/м К.

определение теплопроводности железобетона

Материалы из бетона с добавлением пористых заполнителей

Пористые конструкции характеризуются хорошим удержанием тепла, при этом точный показатель теплопроводности зависит от следующих факторов:

  1. Параметры ячеистости.
  2. Уровень влажности.
  3. Показатели плотности.
  4. Теплопроводность матрицы.

Так, кирпич керамический пустотелый обладает теплопроводностью в 0,4-0,7 Вт/(м град). Полнотелые разновидности проводят тепло в 1,5-2 раза лучше.

Показатели теплоизоляционных материалов

Теплоизоляционные конструкции, состоящие из шлакового наполнителя и керамзита, характеризуются минимальной теплопроводностью. Однако их прочностные свойства остаются невысокими, поэтому основная сфера применения — изоляция несущих стен и пола. Возводить основные конструкции из таких материалов запрещено.

Как производится расчет с учетом коэффициента теплопроводности бетона

Для поддержания комфортной температуры и снижения теплопотерь несущие стены современных зданий выполняются многослойными и включают капитальные конструкции, теплоизоляционные материалы, отделочные покрытия. Каждый слой сэндвича имеет определенную толщину.

Решая задачу по расчету толщины теплоизолятора, необходимо использовать формулу расчета теплового сопротивления – R=p/k, которая расшифровывается следующим образом:

  • R – величина температурного сопротивления;
  • p – значение толщины слоя, указанное в метрах;
  • k – коэффициент теплопроводности железобетона, бетона или другого материала, из которого изготовлены стены.

Используя данную зависимость можно самостоятельно выполнить расчет, используя обычный калькулятор. Для этого необходимо разделить толщину строительной конструкции на коэффициент теплопроводимости бетона или другого материала. Рассмотрим пример расчета для стен толщиной 0,3 метра, возведенных из газобетона с удельным весом 1000 т/м3 и степенью теплопроводности, равной 0,31.

Алгоритм вычислений:

Перемножив коэффициент теплопроводности утеплителя на величину термического сопротивления, получим в результате требуемый размер слоя. Например, толщина листового пенопласта с коэффициентом теплопроводности 0,037 составит – 0,037х2,32=0,08 м.

Читайте также: