Устройство обвязочной балки по стене в грунте

Обновлено: 28.04.2024

Подскажите пожалуйста кто с этим сталкивается: ориентировочные стоимости классической "стены в грунте" и стены в грунте возводимой при помощи буросекущихся свай. Интересует стоимость погонного метра того и другого. Я понимаю есть разные технологические тонкости, но приведите если можно самый общий случай.

И ещё, видел очень издалека такую хитрую машину, которая в одном флаконе сразу:
бурит скважину, опускает туда при этом обсадную трубу, в неё как бетононасос льёт бетон и при этом вынимает эту же трубу и передвинается на новую стоянку!
- кто-нибудь слышал про такого зверя? - если есть - дайте ссылочку посмотреть.

Всем откликнцвшимся заранее спасибо!

GEODATA Engineering S.p.A.

буровые - примерно 30т.р./м3 - но это минимум так сказать, при легких грунтах, малой глубине. Есть случаи когда 100 т.р./м3.

Стена в грунте - надо знать примерно глубину. потому что у тебя она может анкерами преднапряженными крепится, может нет.

очень большая разница в цене в зависимости от диаметра ствола. мне кажется, что буронабивные свааи всегда будут дороже, их использование обязательно при близко стоящем здании

Вообщето странно что инж.-проектировщик, гидротехника, подземка

задаёт такие вопросы [sm2604]

проектирование гидротехнических сооружений

а мне кажется ничего странного - все мы учимся. к тому же сколько я конструкции не считаю - один чёрт смет я в глаза не вижу! - а тут столкнулись с таким вопросом - а наши сметчики руками развели и сказали: "надо считать, вы нам конструкцию и технологию начертите и объёмы дайте, а мы вам посчитаем нормы времени, выработку, машины, смены, водку, пиво и т.д. и т.п. " короче сказали неделю работы. Ну а для того чтоб 2 раза одно и тоже не делать - лучше изначально прикинуть из чего ваять.

Конструкция такая: монтажная камера тоннелепроходческого механизированного комбайна (типа того который под Лефортово и Серебряным Бором ковыряет) + такаяже камера на выходе, и к ним примыкают с обоих концов тоннеля по 2 стенки общей длиной почти 1.5км. Нижняя отметка стены в грунте (либо свай набивных) - примерно от -18 до -50м. Толщина стенки - будет по расчёту определяться и в зависимости от того буросекущиеся сваи или "стена в грунте", но ориентировочно 1.0-1.2м. Анкера преднапряжённые и там и тут будут и в несколько рядов. Возможны и распорки, но очень не просто - между стенками 45-50 метров расстояния. В принципе крепление стен не интересует, нужна примерная стоимость в сранении того и другого варианта. Мне что-то с института помнится что буросекущиеся дешевле, но дольше.
Я уже поизучал литературу - вроде получается что надо обычную стену в грунте делать т.к. быстрее, но при этом сомнения берут - видел как в Лефортово рамповые участки делали - всё буросекущимися - наверно тоже с километр общей длины там вышло.

Технология «стена в грунте» для устройства подземных сооружений

Подземные сооружения в зависимости от гидрогеологических условий и глубины заложения осуществляют разными способами, основные из которых - открытый, «стена в грунте» и способ опускного колодца.

Сущность технологии «стена в грунте» заключается в том, что в грунте устраивают выемки и траншеи различной конфигурации в плане, в которых возводят ограждающие конструкции подземного сооружения из монолитного или сборного железобетона, затем под защитой этих конструкций разрабатывают внутреннее грунтовое ядро, устраивают днище и воздвигают внутренние конструкции.

В отечественной практике применяют несколько разновидностей метода «стена в грунте»:

- свайный, когда ограждающая конструкция образуется из сплошного ряда вертикальных буронабивных свай;

- траншейный, выполняемый сплошной стеной из монолитного бетона или сборных железобетонных элементов.

Технология перспективна при возведении подземных сооружений в условиях городской застройки вблизи существующих зданий, при реконструкции предприятий, в гидротехническом строительстве.

С использованием технологии «стена в грунте» можно сооружать:

- туннели мелкого заложения для метро;

- подземные гаражи, переходы и развязки на автомобильных дорогах;

- емкости для хранения жидкости и отстойники;

- фундаменты жилых и промышленных зданий.

В зависимости от свойств грунта и его влажности применяют два вида возведения стен - сухой и мокрый.

Сухой способ, при котором не требуется глинистый раствор, применяется при возведении стен в маловлажных устойчивых грунтах.

Свайные стены могут возводиться как сухим, так и мокрым способом, при этом последовательно бурят скважины и бетонируют в них сваи.

Мокрым способом возводят стены подземных сооружений в водонасыщенных неустойчивых грунтах, обычно требующих закрепления стенок траншей от обрушения грунта в процессе его разработки и при укладке бетонной смеси. При этом способе в процессе работы землеройных машин устойчивости стенок выемок и траншей достигают заполнением их глинистыми растворами (суспензиями) с тиксотропными свойствами. Тиксотропность - важное технологическое свойство дисперсной системы восстанавливать исходную структуру, разрушенную механическим воздействием. Для глинистого раствора это способность загустевать в состоянии покоя и предохранять стенки траншей от обрушения, но и разжижаться от колебательных воздействий.

В выемках, отрытых до необходимых глубины и ширины под глинистым раствором, этот раствор постепенно замещают, используя в качестве несущих или ограждающих конструкций монолитный бетон, сборные элементы, различного рода смеси глины с цементом или другими материалами.

Наилучшими тиксотропными свойствами обладают бентонитовые глины. Сущность действия глинистого раствора заключается в том, что создается гидростатическое давление на стенки траншеи, препятствующее их обрушению, кроме этого на стенках образуется практически водонепроницаемая пленка из глины толщиной 2 . 5 мм. Глинизация стенок выемок позволяет отказаться от таких вспомогательных и трудоемких работ, как забивка шпунта, водопонижение и замораживание грунта.

При отрывке траншей используют оборудование циклического и непрерывного действия; обычно ширина траншей составляет 500 . 1000 мм, но может доходить до 1500 . 2000 мм.

Для разработки траншей под защитой глинистого раствора применяют землеройные машины общего назначения - грейферы, драглайны и обратные лопаты, буровые установки вращательного и ударного бурения и специальные ковшовые, фрезерные и струговые установки.

Буровое оборудование позволяет устраивать «стену в грунте» в любых грунтовых условиях при заглублении до 100 м.

Нецелесообразно применять метод «стена в грунте» в следующих случаях:

- в грунтах с пустотами и кавернами, на рыхлых свалочных грунтах;

- на участках с бывшей каменной кладкой, обломками бетонных и железобетонных элементов, металлических конструкций и т.д.;

- при наличии напорных подземных вод или зон большой местной фильтрации грунтов.

Наиболее проста технология работ при устройстве противофильтрационных завес, которые обычно выполняют из монолитного бетона, тяжелых, ломовых и твердых глин. Назначение завес - предохранение плотин от проникновения воды за тело плотины.

Противофильтрационная завеса может быть применена при отрывке котлованов для предохранения их от затопления подземными водами. Отпадает потребность в замораживании грунта или понижении уровня грунтовых вод иглофильтровы-ми понизительными установками. Завеса действует постоянно, в то время как остальные методы используются только на период производства работ, хотя грунтовые воды могут быть очень агрессивными.

Работы по отрывке траншей, как и производство последующих работ, в случае близкого расположения фундаментов существующих зданий выполняют отдельными захватками, обычно через одну, т.е. первая, третья, вторая, пятая, четвертая и т.д.

Длину захватки бетонирования назначают от 3 до 6 м и определяют по следующим критериям:

- условиям обеспечения устойчивости траншеи;

- принятой интенсивности бетонирования;

- типу машин, разрабатывающих траншею;

- конструкции и назначению «стены в грунте».

Последовательность работ при устройстве монолитных конструкций по способу «стена в грунте» (рис. 1.1):

1) забуривание торцевых скважин на захватке;

2) разработка траншеи участками или последовательно на всю длину при постоянном заполнении открытой полости бентонитовым раствором, с ограничителями, разделяющими траншею на отдельные захватки;

3) монтаж на полностью отрытой захватке арматурных каркасов и опускание на дно траншеи бетонолитных труб;

4) укладка бетонной смеси методом вертикально перемещаемой трубы с вытеснением глинистого раствора в запасную емкость или на соседний, разрабатываемый участок траншеи.

Арматура «стены в грунте» представляет собой пространственный каркас из стали периодического профиля, который должен быть уже траншеи на 10 . 12 см. Перед опусканием арматурных каркасов в траншею стержни целесообразно смачивать водой для уменьшения толщины налипаемой глинистой пленки и увеличения сцепления арматуры с бетоном.


Рис. 1.1. Технологическая схема устройства «стены в грунте»:

1 - устройство форшахты (укрепление верха траншеи); 2 - рытье траншеи на длину захватки;
3 - установка ограничителей (перемычек между захватками); 4 - монтаж арматурных каркасов;
5 - бетонирование на захватке методом вертикально перемещаемой трубы

Бетонирование осуществляют методом вертикально перемещаемой трубы с непрерывной укладкой бетонной смеси и равномерным заполнением ею всей захватки снизу вверх.

Бетонолитные трубы - металлические трубы диаметром 250 . 300 мм, толщина стенок 8 . 10 мм, горловина - на объем трубы, съемный клапан ниже горловины, пыжи из мешковины.

Ограничители размеров захватки:

- при глубине траншеи до 15 м применяют трубы диаметром, меньшим ширины траншеи на 30 . 50 мм; их извлекают через 3 . 5 ч после окончания бетонирования на захватке, и образовавшаяся полость сразу заполняется бетонной смесью;

- при глубине траншеи до 30 м устанавливают ограничитель в виде стального листа, который приваривают к арматурному каркасу. При необходимости лист усиливается приваркой швеллеров.

При длине захватки более 3 м бетонирование обычно осуществляют через две бетонолитные трубы одновременно. Для повышения пластичности бетона и его удобоукладываемости применяют пластифицирующие добавки - спиртовую барду, суперпластификаторы.

Перерывы в бетонировании - до 1,5 ч летом и до 30 мин - зимой.

Бетонную смесь укладывают до уровня, превышающего высоту конструкции на 10 . 15 см для последующего удаления слоя бетона, загрязненного глинистыми частицами. При использовании виброуплотнения вибраторы укрепляют на нижнем конце бетонолитной трубы. При трубах длиной до 20 м применяют один вибратор, длиной до 50 м - два вибратора.

Трубы на границе захваток обязательно извлекают. Раннее извлечение приводит к разрушению кромок образовавшейся сферической оболочки, что нежелательно, а позднее приводит к защемлению трубы между бетоном и землей, и требуются значительные усилия для ее извлечения. Поэтому часто вместо труб ставят неизвлекаемые перемычки из листового железа, швеллеров или двутавров, обязательно привариваемых к арматурным каркасам сооружения.

Иногда для предохранения устья траншеи от разрушения и осыпания устраивают из сборных элементов или металла форшахты - оголовки траншей глубиной до 1 м для усиления верхних слоев грунта, или это траншея с укрепленными на глубину до 1 м верхними частями стенок.

Недостатки технологии «стена в грунте»: ухудшается сцепление арматуры с бетоном, так как на поверхность арматуры налипают частицы глинистого раствора; много сложностей возникает при ведении работ в зимнее время, поэтому, когда позволяют условия, используют сборный и сборно-монолитные варианты.

Применение сборного железобетона позволяет:

- повысить индустриальность производства работ;

- применять конструкции рациональной формы: пустотные, тавровые и двутавровые;

- иметь гарантии качества возведенного сооружения.

Недостатки сборного железобетона: требуется специальная технологическая оснастка для изготовления изделий, каждый раз индивидуального сечения и длины; сложность транспортирования изделий на строительную площадку; требуются мощные монтажные краны; стоимость сборного железобетона значительно выше, чем монолитного.

Вертикальные зазоры между сборными элементами заполняются цементным раствором при сухом способе производства работ. При мокром способе наружную пазуху траншеи заполняют цементно-песчаным раствором, а внутреннюю - песчано-гравийной смесью. Наружное заполнение в дальнейшем будет служить в качестве гидроизоляции.

Применяют два варианта сборно-монолитного решения:

нижняя часть сооружения до определенного уровня состоит из монолитного бетона, вышележащие конструкции - из сборных элементов;

сборные элементы применяют в виде опалубки-облицовки, которую устанавливают к внутренней поверхности траншеи, наружная полость заполняется монолитным бетоном.

При строительстве туннелей и замкнутых в плане сооружений после устройства наружных стен грунт извлекается из внутренней части сооружения и его отвозят в отвал, днище бетонируют или устраивают фундаменты под внутренние конструкции сооружения.

РЕКОМЕНДАЦИИ
ПО УСТРОЙСТВУ ПОДЗЕМНЫХ КОНСТРУКЦИЙ И ПРОТИВОФИЛЬТРАЦИОННЫХ ЗАВЕС СПОСОБОМ "СТЕНА В ГРУНТЕ"

В Рекомендациях приведены сведения и указания по сооружению в траншеях под глинистой суспензией монолитных и сборных подземных стен, устройству противофильтрационных завес, контролю качества выполнения этих работ и их приемке, а также по технике безопасности.

Характеристика и область применения способа "стена в грунте", указания по проведению подготовительных работ, технологии и механизации разработки траншей под глинистой суспензией изложены в изданных в 1982 г. "Рекомендациях по технологии и механизации разработки траншей для строительства подземных сооружений способом "стена в грунте".

Настоящие Рекомендации разработаны в НИИ оснований и подземных сооружений совместно с управлением "Главмосинжстрой" при Мосгорисполкоме, одобрены и рекомендованы к изданию секцией Научно-технического Совета НИИОСП. Работа выполнена коллективом авторов: Б.М.Гаража (ответственный исполнитель), д-р техн. наук, проф. М.И.Смородинов, канд. техн. наук Б.С.Федоров, А.А.Арсеньев (НИИОСП); Б.М.Прждецкий, В.Г.Лернер, Б.В.Маркин, Ю.И.Минаев (Главмосинжстрой).

Рекомендации предназначены для инженерно-технических работников строительных и проектных организаций.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие Рекомендации распространяются на производство работ по устройству подземных конструкций и противофильтрационных завес способом "стена в грунте", т.е. путем заполнения траншей строительными материалами и конструкциями и замещения ими глинистой суспензии.

1.2. Сведения о сущности и области применения способа "стена в грунте", указания по проведению подготовительных работ, технологии и механизации разработки траншей под глинистой суспензией, приготовлению глинистых суспензий, технике безопасности при проведении этих работ, контролю качества их выполнения и приемке изложены в "Рекомендациях по технологии и механизации разработки траншей для строительства подземных сооружений способом "стена в грунте".

1.3. В зависимости от вида заполнителя способом "стена в грунте" устраивают:

а) монолитные железобетонные подземные стены и фундаменты и опоры глубокого заложения;

б) подземные стены и фундаменты из сборных элементов;

в) противофильтрационные завесы.

1.4. Монолитные железобетонные стены получают путем установки в траншее армокаркасов и заполнения ее бетонной смесью.

1.5. Стены из сборных железобетонных элементов возводят путем их установки в траншее, тампонирования пазух между стенкой траншеи и поверхностью элементов и заделки стыков.

1.6. Противофильтрационные завесы образуют путем заполнения траншеи глинистым материалом, получаемым при разработке траншеи заглинизированным грунтом, или специальными составами, включающими в себя цемент, бентонитовые глины и другие добавки.

1.7. Использование сборных элементов при устройстве подземных сооружений способом "стена в грунте" позволяет:

повысить индустриальность ведения работ;

повысить точность расположения установки закладных и накладных деталей, отверстий, пробок и т.п.;

применять конструкции рациональной формы: пустотные, тавровые, двутавровые и другие;

получать сооружения высокого качества.

Вместе с тем применение сборного железобетона требует специальной технологической оснастки для изготовления элементов, транспортировка его на стройплощадку усложняется, а монтаж в траншеях требует применения мощных грузоподъемных кранов, эксплуатация которых обходится дорого; стоимость 1 м сборного железобетона больше стоимости 1 м монолитного.

1.8. Применяются сборные элементы как заводского производства, так и изготовляемые непосредственно на строительной площадке. Во втором случае их габаритные размеры могут быть больше тех, которые допускаются по условиям транспортировки.

1.9. Решение о целесообразности применения сборного или монолитного железобетона в конструкциях, возводимых способом "стена в грунте", следует принимать на основе технико-экономического анализа с учетом стоимости, трудоемкости и сроков работ, размеров капитальных вложений в основные и оборотные фонды строительной организации, наличия и возможности эффективного использования мощных грузоподъемных кранов и другого оборудования.

2. ТЕХНОЛОГИЯ ВОЗВЕДЕНИЯ МОНОЛИТНЫХ, БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ СТЕН В ГРУНТЕ

2.1. Технология возведения монолитных стен в грунте состоит из следующих этапов: разделение траншеи на отдельные секции-захватки путем установки в траншею ограничителей; заполнение бетонной смесью секций-захваток последовательно или через одну с обеспечением плотного сопряжения секций стены между собой.

2.2. Длина захватки назначается в пределах от 3 до 6 м и определяется:

условиями обеспечения устойчивости траншеи;

принятой интенсивностью бетонирования;

типом машины, разрабатывающей траншею;

конструкцией и назначением стен возводимого сооружения.

При длине захватки более 3 м бетонирование должно проводиться через две трубы одновременно.

2.3. Работы по возведению монолитных стен в грунте должны быть максимально механизированы, выполняться поточным методом с максимальным совмещением работ во времени.

Материалы, применяемые для возведения монолитных конструкций

2.4. Основным материалом конструкций подземных инженерных сооружений, возводимых способом "стена в грунте", является бетон. Состав бетонной смеси должен подбираться таким образом, чтобы он соответствовал условиям производства работ при бетонировании методом вертикально перемещающейся трубы (ВПТ).

2.5. Приготовление бетонной смеси для заполнения траншей методом ВПТ должно производиться в соответствии с указаниями, изложенными в главе СНиП III-15-76* "Бетонные и железобетонные конструкции монолитные" и в настоящих Рекомендациях.

* На территории Российской Федерации документ не действует. Действуют СНиП 3.03.01-87, здесь и далее по тексту. - Примечание изготовителя базы данных.

2.6. Прочность бетона для бетонирования под слоем глинистой суспензии должна быть на 10-20% выше требуемой по техническим условиям.

2.7. При устройстве несущих стен и днищ из монолитного железобетона должен применяться тяжелый бетон плотной структуры марки не ниже 200.

2.8. Состав бетонной смеси подбирается согласно указаниям главы СНиП III-15-76 "Бетонные и железобетонные конструкции монолитные" исходя из требуемой прочности бетона и его удобоукладываемости.

2.9. Бетонная смесь для несущих стен должна удовлетворять следующим требованиям:

иметь связность, обеспечивающую свободное прохождение по бетонолитной трубе и распределение по площади захватки без расслоения;

относительное водоотделение смеси, характеризующее ее связность, должно составлять 0,01-0,02;

в период бетонирования осадка стандартного конуса должна быть 16-20 см;

сохранять подвижность в течение времени, необходимого для транспортировки и укладки ее в траншею (не менее 40 мин);

водоцементное отношение должна составлять не более 0,6, срок схватывания бетонной смеси - не менее 2 ч.

2.10. Для повышения пластичности бетона и его удобоукладываемости без увеличения расхода воды и цемента рекомендуется применять пластифицирующие добавки (сульфитно-спиртовую барду и др.).

Тип добавок и их дозировку следует устанавливать по данным лабораторных исследований в зависимости от вида и качества цемента, а также требований, предъявляемых к бетону.

Запрещается вводить в бетонную смесь химические ускорители твердения бетона (хлористый кальций, поваренную соль и др.).

2.11. Исходные материалы, применяемые для приготовления бетона, должны отвечать требованиям действующих стандартов и обеспечивать получение бетона заданных марок.

2.12. Размеры частиц крупного заполнителя не должны превышать 30 мм.

Арматурные конструкции и требования к ним

2.13. Для изготовления армокаркасов стен подземных сооружений должна применяться горячекатаная арматурная сталь периодического профиля класса А-II (марок Ст.5сп; ВКС Ст.5сп; ВМС Ст.5сп; 1ГТ; 18Г2С), класса A-III (марок 25Г2С; 35Г2С; 18Г2С; 3хГ2С). Для конструктивной арматуры и отгибов допускается использовать арматуру класса A-I. Применение для армокаркасов проката с гладкой поверхностью не допускается.

2.14. Диаметр, количество и расположение в армокаркасе рабочих стержней определяется расчетом в зависимости от вертикальной и горизонтальной нагрузок. Расстояние между стержнями рабочей арматуры 100-250 мм.

2.15. Арматурный каркас должен воспринимать монтажные нагрузки без остаточных деформаций, быть на 10-12 см меньше ширины траншеи и иметь направляющие катки или салазки, расположенные по обе стороны каркаса в трех точках по горизонтали и через 3-4 м по высоте, но не менее чем в трех сечениях, которые обеспечивают правильную установку каркаса в траншее и создание защитного бетонного слоя между арматурой и стенкой траншеи.

2.16. Предусмотренные проектом закладные детали в армокаркасах должны монтироваться до установки каркасов в траншею.

2.17. В армокаркасах проектом должны быть предусмотрены для бетонолитных труб сквозные проемы с направляющими из продольных гладких стержней, предотвращающие зацепление фланцев за арматуру.

2.18. Если стержни рабочей арматуры перед сборкой арматурного каркаса стыкуются, то стержень не должен иметь более трех стыков.

2.19. Стыковка армокаркасов по высоте при укрупнительной сборке должна производиться с соблюдением следующих правил:

стыки продольных стержней выполняются вразбежку;

в плоскости любого поперечного сечения каркаса должно быть не более 50% стыков;

стыки соседних стержней сдвигаются относительно друг друга на величину, равную длине стыка.

2.20. Хранить готовые армокаркасы на стройплощадке следует в штабелях на деревянных подкладках под навесом.

Оборудование и механизмы для бетонирования

2.21. Оборудование для бетонирования траншей под глинистым раствором методом вертикально перемещающейся трубы (ВПТ) должно включать в себя:

комплект металлических бетонолитных труб с длиной звеньев 1-6 м для подачи бетонной смеси в траншею;

загрузочную воронку на трубе в форме опрокинутой усеченной пирамиды или усеченного конуса;

приспособления для изоляции бетонной смеси от глинистого раствора при первоначальном заполнении трубы;

приспособления для подвешивания, подъема и опускания труб;

подмостья для размещения оборудования и людей;

автобетоносмесители, бетононасосы и другие приспособления и устройства для транспортирования бетонной смеси к установке ВПТ.

2.22. Оборудование и механизмы для бетонирования должны обеспечивать непрерывность укладки бетонной смеси в траншею с интенсивностью не менее 0,3 м/м и равномерное заполнение бетонной смесью всей бетонируемой захватки.

2.24. Загрузочный бункер-воронка (рис.2.1) должен изготавливаться из листовой стали толщиной 3-5 мм с обвязкой из угловой стали и иметь уклон примерно 45°. Геометрическая вместимость воронки должна быть не менее внутреннего объема бетонолитной трубы при наибольшей глубине бетонирования.

Рис.2.1. Загрузочный бункер-воронка

2.25. Длина бетонолитной трубы должна приниматься равной высоте бетонируемой секции. При установке в траншею между нижним концом бетонолитной трубы и дном траншеи должен быть обеспечен зазор 6-10 см.

2.26. Стыки бетонолитных труб следует выполнять прочными, плотными и быстроразъемными. Замки между секциями труб не должны иметь выступающих частей, которые могли бы задевать за арматурный каркас при подъеме и опускании труб. До начала работ собранную бетонолитную трубу необходимо проверить на герметичность водой под давлением 0,2-0,3 МПа. Для контроля за заглублением трубы в траншее на ней следует яркой краской нанести через 1 м деления и цифры, обозначающие длину трубы, начиная с нижнего конца.

2.27. Для предохранения бетонной смеси, поступающей в начальный период в бетонолитную трубу, от смешивания с глинистым раствором должны применяться скользящие пробки из мешковины, пакли, мешков с опилками или надувные устройства. При этом в горловине воронки над пробкой должен устанавливаться съемный клапан, удерживающий бетонную смесь в воронке до ее заполнения.

2.28. Для подъема и опускания бетонолитной трубы и воронки применяются грузоподъемные устройства: краны, лебедки ручные и электрические, обеспечивающие точность операций до 5-10 см. Грузоподъемность указанных механизмов должна соответствовать суммарной массе трубопровода, воронки и бетонной смеси в их наибольших значениях.

Конструкции стыков между захватками

2.29. При бетонировании методом ВПТ в связи с применением пластичного бетона с осадкой конуса 16-20 см необходимо в торцах захватки устанавливать ограничители, служащие опалубкой и придающие торцу необходимую форму для устройства принятого стыка между захватками.

2.30. Ограничители, выполненные в виде металлических инвентарных труб, диаметр которых на 30-50 мм меньше ширины траншеи с приваренными уголками (рис.2.2), одновременно служат опалубкой для формирования очертания стыка. Через 3-5 ч после бетонирования захватки они извлекаются, и торцы захватки получают полуцилиндрическое очертание. При бетонировании смежной захватки создается стык, имеющий форму полуцилиндра. Стыки такой конструкции рекомендуется устраивать при глубине траншей до 15 м.

В условиях плотной городской застройки устройство ограждений котлованов технологией “ Стена в грунте ” зачастую является оптимальным, если не единственно возможным методом строительства. Выполненное данным способом ограждение “стена в грунте” способно одновременно воспринимать боковое давление грунта, являться противофильтрационной завесой, воспринять при необходимости вертикальные нагрузки, минимизировать, в отдельных случаях, влияние котлована на окружающую застройку.

ООО “ПСУ Гидроспецстрой” выполняет устройство данной технологии следующими способами:

– Свайный способ устройства – когда ограждающая конструкция выполняется из буросекущихся свай Ø600 мм или из бурокасательных свай Ø600-800 с “замковыми” элементами из микросвай;

– Траншейный способ устройства – выполняется разработка траншей плоским грейфером толщиной 600мм под защитой бентонитового или полимерного тиксотропного раствора, с последующим устройством сплошной стены из монолитного бетона.

При траншейном способе устройства «Стена в грунте» выполняется поэлементно, отдельными захватками, что подразумевает их вертикальное разделение на отдельные секции, бетонируемые в захватках траншеи последовательно или через одну. Для предотвращения деформации, обрушения верха траншеи и фиксирования ее положения в плане выполняется устройство форшахты. Форшахта для стены в грунте прокладывается ниже уровня грунтовых вод и служит фильтром, не допускающим воду к гидротехническим и строительным сооружениям.

Для обеспечения совместной работы секций предусматриваются соответствующие конструктивные решения их стыков и монолитная обвязка по верху стены (устройство монолитной обвязочной балки) с непрерывным горизонтальным армированием.

Нерабочие (конструктивные) стыки должны противодействовать взаимному сдвигу секций в поперечном направлении и выполняются без перепуска и соединения арматуры смежных захваток. Конструктивные особенности рабочего стыка подразумевают обеспечение восприятия растягивающих усилий и совместную работу секций стены для чего предусматривается соединение рабочей арматуры соседних секций.

Метод “ стена в грунте ” обладает рядом преимуществ по сравнению с другими методами строительства. Одним из самых важных отличий метода “стена в грунте” является возможность устройства глубоких котлованов в непосредственной близости от существующих зданий и сооружений, что особенно важно при строительстве в стесненных городских условиях, а также при реконструкции сооружений.

Благодаря технологии “Стена в грунте”, отпадает необходимость в устройстве водопонижения или водоотлива; уменьшаются объемы земляных работ. Появляется возможность одновременно производить работы по устройству подземных частей зданий методом «up&down», что резко сокращает сроки их строительства.

Неоспоримые достоинства технологии «стена в грунте» позволяют ей быть одной из самых востребованных в строительстве и геотехнологии:
– «стена в грунте» позволяет экономить от 25 % до 65 % сметной стоимости строительства объекта. К тому же застройщику нет необходимости проводить дорогостоящие работы по водоотливу, водопонижению, замораживанию и цементированию грунтов.
– невысокая энергоемкость строительства;
– высокая скорость выполнения работ;
– возможность экономии;
– нет необходимости перекрывать транспортное движение во время проведения работ;
– возможность строить сооружения вблизи других построек, а также внутри уже возведенных зданий, так как отсутствует динамическое колебание грунта;
– низкий уровень шума на всех этапах работы.

Кроме того, существует целый ряд заглубленных сооружений, строительство которых возможно исключительно по технологии « стена в грунте »:
– сооружение имеет большой размер в плане, сложную конфигурацию, значительную глубину;
– возведение сооружение выполняется в непосредственной близости от существующей застройки в стесненных условиях;
– сооружение имеет разную глубину заложения стен;
– сооружение линейное или линейно-протяженное (например противофильтрационная завеса или подпорная стенка);
– сооружение должно быть возведено в краткие сроки в водонасыщенных грунтах (например, канализационный коллектор).

Разработка траншеи методом стена в грунте

Метод Стена в грунте – это технология крепления стен котлована и устройство постоянного фундамента здания на его основе. Она состоит в возведении железобетонных стен подземных сооружений в траншеях-щелях до рытья котлована. Применяется при строительстве городских подземных сооружений (транспортных тоннелей и станций метрополитена, парковок и гаражей, многоярусных подземных комплексов и т. п.), фундаментов домов и мостов, подпорных стен, противофильтрационных завес. Метод применим практически в любых типах грунтов. Ограничение: скальные, текучие и плывунные, дисперсные насыпные, грунты с крупными пустотами.

Стоимость

Компания ООО "БЕСТ-СТРОЙ" работает по методу «стена в грунте», стоимость — от 22000 рублей за куб. м.

Устройство стены в грунте

Принципиальная схема основных операций при выполнении стены в грунте

Основные технологические операции устройства стены

Стена в грунте

Траншеи-щели разрабатываются сухим способом в случае глинистых грунтов с невысоким показателем текучести, на небольшую глубину — до 7 м. В остальных случаях при проходке их заполняют тиксотропными суспензиями, которые и удерживают стенки среза от обрушения. После этого тиксотропные суспензии заменяют специальными материалами: бетоном, различными смесями, сборными элементами, которые образуют в грунте несущие и ненесущие конструкции.

Устройство «стены в грунте» целесообразно применять в сложных гидрогеологических условиях, при неглубоком залегании водоупорного горизонта (отпадает необходимость в водопонижении, замораживании и т. п.), в стесненных условиях существующей застройки, при реконструкции действующих предприятий. В условиях больших городов, таких как Москва, когда очень высока плотность застроек, возникает сложность в ограждении строительного котлована. Компания БЕСТ-СТРОЙ удовлетворяет спрос на технологию, при которой во-первых, предотвращается проседание фундамента близ лежащих зданий, во-вторых, становится возможным расположение в непосредственной близости от действующих подземных сетей, в-третьих, конфигурация котлована может быть достаточно сложной — линейной или ломаного очертания.

Применение стены в грунте эффективно при возведениии фундаментов на застроенных территориях, небольших подземных сооружений на значительной глубине (обычно около 20 м). Технологические преимущества позволяют совмещать производство элементов основания и подвала, в том числе многоэтажных подземных сооружений.

Фундамент Стена в грунте

Технология "Стена в грунте" доступна в двух вариантах выполнения: буросекущая и разработкой траншеи. Согласно первой — выполняются буровые сваи на расстоянии, меньшем их диаметра и таким образом они входят в зацепление, «секут» друг друга, в итоге формируя цельное ограждение достаточной прочности. Метод буросекущих свай предоставляет возможность выполнить ограждение строительной площадки, подпорную стену, водопонижение или противофильтрационную завесу, но он не рассчитан на обустройство основания дома. А вот технология «разработкой траншеи» рассчитана! Она даёт технологические преимущества при строительстве многоэтажных зданий, в проекте которых предусмотрен многоярусная заглублённая часть, подземная парковка, гараж, хранилища, подвал. Фундамент по методу стены в грунте одновременно служит стенками подвала здания, упрощает строительство, избавляет от необходимости рытья котлована, экономит время, позволяет снизить расходы. Железобетонная противофильтрационная завеса надёжно защищает подземную часть здания от грунтовых вод, позволяет сократить издержки на водоотведение и откачку воды из фундамента в процессе строительства.

Разработка котлована, ограждённого по методу стена в грунте

Разработка котлована после устройства стены в грунте

Несущая способность основания дома должна соответствовать весу возводимого строения плюс вес самой конструкции основания. Проектирование учитывает грунтовые условия, уровень залегания водоносного горизонта и несущих пластов, близость и давление, передаваемое близлежащими постройками, наличие коммуникаций в земле под территорией строительной площадки. При проектировании фундамента с точкой залегания ниже 3 метров, показатель глубины промерзания не учитывается. Проводится расчёт несущей способности, расчёт давления грунта, теплотехнический расчёт.

«Стена в грунте»: технология

Изготовление стены в грунте

В основе метода лежит технология устройства фундамента, основанная на разрабатывании траншеи. Узкие (0,6-1,2 м) и глубокие (до 20 м и более) выемки разрабатывают под защитой глинистого раствора, который благодаря достаточно высокой плотности защищает срез от обрушения внутрь.

Технологическая карта работ разрабатывается с учётом результатов инженерно-геологических изысканий. Ограничения для применения технологии связаны с наличием определённыз грунтовых условий: группы строительных грунтов выше третей, морёных и песчанных пород с включением валунов более 300 мм в диаметре; карсты, крупнообломочные грунты с пустотами, плывунные грунты, подвижные илы, грунтовые водоносные горизонты с избыточной фильтрацией, превышающей гидростатическое давление защитного глинистого раствора.

Схематично технология состоит из последовательности этапов:

  1. обустройство форшахты;
  2. разработка траншеи;
  3. опускание арматурных каркасов;
  4. заливка бетоном.

Подготовительный этап: вынос всех наземных и подземных коммуникаций за территорию разработки; спланирована плащадка и устроена железо-бетонными плитами; ограждена территория; установлено и подготовлено к работе приготовительно-очистное оборудование для глинистого раствора.

Предварительный этап: поверхностная выемка почвы и выполнение форшахты — жёсткой железобетонной конструкции, ограничивающей просвет зоны выработки и соответствующей по ширине размерам будущей стены. Форшахта защищает от разрушения и опадания верхних слоёв почвы под собственным весом и под весом грейферного оборудования. Выполняется разбивка траншеи на захватки.

Выемка породы происходит под защитой глинистого раствора грейфером или гидрофрезой. Грунт изымается на поверхность, убирается из зоны производства, перемещается за территорию строительной площадки.

Устройство стены в грунте под защитой бентонитового раствора

Разработка и бетонирование стены в грунте по технологии и на оборудовании Bauer

Защита выработки тиксотропным гидрораствором позволяет исключить применение свайных или шпунтовых ограждений, по организации искусственного водопонижения. Снижаются объёмы земляных работ, а значит и трудоёмкость. Сокращаются сроки строительства.

Для разработки задействуют специализированное буровое оборудование, в жёстких грунтах — гидрофрезы, a в мягких — грейферы (двух-челюстные узкие широкозахватные, закреплённые на жёсткой штанге), интегрированные в серийно выпускаемых установках в качестве основного или подвесного оборудования или устанавливаемые на гусеничные экскаваторы.

Траншеи отрывают поэтапно через одну отдельными участками — захватками, по ширине захвата грейфера. И подают в них бентонитовый раствор. В соответствии с технологией та часть раствора, что смешалась с грунтом благодаря постоянной циркуляции попадает в шламоотделитель, очищается от породы и поступает обратно в проходку.

Затем отрытый участок защищается по краям извлекаемыми или оставляемыми ограничителями (в виде железных балок, шпунтин или труб) по всей высоте. В него опускают заранее изготовленный арматурный каркас.

Перед бетонированием забой очищают от осадка, частичек грунта, шлама, смешавшихся с защитной суспензией. Для этого она вся удаляется и закачивается новая, очищенная. Бетонируют методом вертикально перемещающейся трубы. Применяются виброустановки и ковши-бункеры либо бетононасосы с бетоноукладчиком, оснащённым рукавом на телескопической стреле. Бетонолитная труба с приёмной воронкой помещается в траншею, не доходя до дна 0,3 м. Вытесняемый в процессе бетонирования защитный раствор откачивается насосом в накопительную ёмкость.

После того, как бетон наберёт прочность, начинаются землянные работы внутри периметра. Послойно ведётся разработка котлована. При необходимости, согласно расчётов горизонтальной нагрузки на ограждение, проводится укрепление стен грунтовыми анкерами. Особенность конструкции которых позволяет оставлять свободным пространство выемки для проведения строительных работ.

Наша техника

Мы используем следующие установки с подвесным грейферным ковшом:

Мы применяем буроинъекционные грунтовые анкеры вместо монтажа распорной системы, благодаря чему возможности метода значительно расширяются.

Закажите расчёт стоимости Стены в грунте

Заполните данные и отправьте — в ответ вы получите расчёт стоимости в первом приближении. Окончательная стоимость может зависеть от особенностей проекта.

Читайте также: