Трехкальциевый алюминат в цементе на что влияет

Обновлено: 05.05.2024

Химический состав. В отличие от портландцемента, химический состав которого представлен в основном известью и кремнеземом, глиноземистый цемент, кроме оксидов кальция и алюминия, содержит в небольших количествах также оксиды железа, титана, магния и др. Содержание оксидов в глиноземистом цементе характеризуется большими колебаниями, чем в портландцементе, и определяется способом производства клинкера (шлака), а также качеством применяемого сырья. За рубежом путем спекания или плавления в электродуговых печах выпускаются цементы, содержащие Fe203 до 16 мас.

Химический состав цемента — важная характеристика, указывающая на его качество.

Оксид алюминия является основным оксидом, обеспечивающим образование алюминатов кальция. Для получения высокоглиноземистых цементов содержание AI2O3 в смеси должно быть не менее 60%. С увеличением количества оксида алюминия в цементе огнеупорность цемента повышается.

Оксид кальция входит в состав почти всех минералов цемента. Его количество наряду с содержанием AI2O3 обусловливает тот или иной минералогический состав цемента. В глиноземистом цементе содержание СаО составляет 38—42%, в высокоглиноземистом —16—35%. Снижение количества СаО менее 16% предопределяет низкую прочность цементного камня. Содержание СаО в высокоглиноземистом цементе свыше 35% обусловливает образование, наряду с низкоосновными минералами, высокоосновного алюмината кальция состава Ci2A7(12CaO • 7AI2O3).

Количество оксидов железа в цементе обусловливается их содержанием в исходном сырье. Присутствие в цементе 5—10% оксидов железа оказывает благоприятное влияние на процесс минералообразования и на свойства цемента. При количестве Fe203 более 15% качество цемента ухудшается. Предельное содержание Fe203 в глиноземистом цементе не должно превышать 25%.

Однако наличие оксидов железа в высокоглиноземистом цементе вообще нежелательно: в их присутствии снижается огнеупорность цемента, а также ухудшаются технические свойства цементного камня в процессе его службы в составе жаростойкого бетона.

В тепловых агрегатах химической промышленности огнеупорный слой футеровки, соприкасающийся с рабочей средой, должен обладать достаточной устойчивостью к химическому воздействию при высоких температурах газовой среды водорода и оксида углерода.

Восстановительная атмосфера оказывает отрицательное воздействие на футеровку тепловых агрегатов, что выражается в разрушении футеровочных материалов в результате отложения сажистого углерода и изменения в объеме соединений железа, образующихся в результате взаимодействия оксида углерода и водорода с Fe203.

Процесс восстановления оксидов железа твердым углеродом осуществляется в две стадии:
С + С02 = 2СО; Fe203 + 2СО = 2Fe + 2C02.

Последующее взаимодействие Fe с С приводит к образованию РезС. Кристаллизация этого соединения сопровождается значительным увеличением в объеме, приводящем к разрушению структуры материала. Поэтому количественное содержание Fe203 в высокоглиноземистом цементе ограничивается 2%, а в особочистом высокоглиноземистом цементе — 0,2%.

Диоксид кремния также отрицательно влияет на качество цемента вследствие образования негидратирующегося цемента 2СаО • А12Оз • Si02. Более высокой прочностью обладает глиноземистый цемент, в котором содержание Si02 менее 10%. При этом количество СаО должно подбираться в зависимости от содержания SiQ2:

Если СаО в составе цемента меньше 31%, то даже при небольшом содержании Si02 (~6%) прочность цемента будет невысокой.

Отношение А^Оз/ЗЮг является важнейшей характеристикой состава глиноземистого цемента. При А120з/8Ю2 = 2 качество глиноземистого цемента низкое.

В восстановительной среде Si02 взаимодействует с оксидом углерода и углеродом с образованием SiO и Si. Оксид кремния может реагировать с парами воды с образованием гидратов Si(OH)4 или Si(OH)6. Выделение кремния и образование указанных гидратов приводит к внутренним напряжениям в бетоне и разрушению футеровки.

В связи со сказанным количество Si02 в составе высокоглиноземистых цементов ограничивается 5%, а в особочистом высокоглиноземистом цементе — 1%.
Оксид магния понижает температуру плавления и вязкость высокоглиноземистого расплава. По современным представлениям оксид магния в высокоглиноземистых цементах может присутствовать в виде периклаза MgO, акерманита 2СаО • MgO • Si02, или шпинели MgO • AI2O3. При небольшом содержании MgO (до 2—3%) он может войти в твердые растворы с другими минералами.

С увеличением содержания оксида магния в цементе свыше 2% образуется магнезиальная шпинель MgO • AI2O3, что отрицательно сказывается на активности цемента. Однако, ввиду высокой температуры плавления шпинели, равной 2135 °С, такое соединение повышает огнеупорность цемента. Это свойство MgO • AI2O3 используется для получения жаростойких алюми-натно-магнезиальных цементов с огнеупорностью до 1750 °С. В табл. 2.3 показаны свойства этих цементов, выпускаемых в Румынии.

Диоксид титана в высокоглииоземистых цементах присутствует в очень незначительном количестве (менее 0,2%) за исключением цементов, получаемых из шлаков ферротитанового производства.

Рис. 2.1. Диаграмма состояния системы СаО —А12Оз

Высокоглиноземистый цемент алюминотермиче-ского производства содержит 8—12% ТЮг- Диоксид титана в составе цемента образует перовскит СаО • ТЮг — соединение, не подвергающееся гидратации. Количество ТЮг в цементе не должно быть больше 2%.

Оксиды калия, натрия и содержание Р2О5 (более 1%) отрицательно влияют на качество глиноземистого цемента.

Знание химического состава алюминатного цемента само по себе недостаточно, чтобы судить о свойствах последнего. Важно знать, какие соединения (минералы) образуются из сырьевой смеси, имеющей определенный химический состав, под воздействием термического фактора, т. е. применяемой технологии производства.

Система СаО — АОз. Впервые была изучена Ранкиным и Райтом. В последующих работах предложенная ими фазовая диаграмма изменялась. На рис. 2.1 представлена диаграмма состояния системы СаО —AI2O3 с учетом последних опубликованных данных.

В зависимости от соотношения СаО/АОз в системе СаО — А1203 образуются минералы: ЗСаО • А1203 (С3А), 12СаО • 7А1203 (Ci2A7), СаО • А1203 (СА), СаО • 2А1203 (СА2) и СаО • 6А1203 (СА6).

Трехкалъциевый алюминат СзА является важной составляющей портландцемента, в глиноземистом цементе он не присутствует.

Двенадцатикалъциевый семиалюминат 12СаО • 7AI2O3 (в литературе часто представляется в виде 5СаО • 3AI2O3), по данным многих авторов, имеет две модификации: стабильную форму a = Ci2A7 и нестабильную форму a’ = Ci2A7. Стабильная форма С12А7 характеризуется симметрией, плотностью 2,7 г/см3, твердостью 5 (по шкале Мооса), выкристаллизовывается при 1455 °С. a’ = Ci2A7 отличается тем, что в его элементарной ячейке 2 из 66 атомов кислорода не имеют определенного положения, а распределены статистически.

С12А7 способен поглощать пары воды. Даже при 1400 °С содержание воды в нем составляет 1,4%. Поглощение воды сопровождается изменением параметров решетки, показателя светопреломления двенадцатикальциевого семиалюмината и изменением характера плавления (С12А7, содержащий небольшое количество влаги, принято записывать в виде С12А7Н). В сухом воздухе это соединение плавится инкогруэнтно, разлагаясь при 1374 °С на СА и расплав. В присутствии паров воды С12А7 плавится конгруэнтно при 1391,5 °С. Сложность изучения диаграммы состояния в области состава (мас. ) 50А12Оз + 50СаО обусловливает различное мнение авторов относительно температуры и характера плавления С12А7. Характер диаграммы состояния зависит от парционального давления кислорода. В окислительной атмосфере вплоть до 1460±5 °С С12А7 плавится конгруэнтно. В восстановительной атмосфере температура плавления его равна 1480±5 °С. Решетка С12А7 способна включать ионы фтора и хлора с образованием соединения С12А7САХ2, где X есть ОН, F, C1, при этом параметры элементарной ячейки увеличиваются в следующем порядке: фторид — гидрат — хлорид.

Однокальциевый алюминат СаО • AI2O3 относится к много-клинной сингонии. Его структура состоит из тетраэдров [АЮ4] и атомов кальция, нерегулярно координированных с шестью или семью атомами кислорода. Два атома кальция (Са2 и Саз) окружены шестью атомами кислорода, расположенными октаэд-рально с расстояниями Са—О от 0,231 до 0,271 нм. Третий атом кальция (Cai) окружен девятью атомами кислорода.

Особенность структуры СА состоит в том, что Cai расположен в конце вытянутого октаэдра и имеет связи с кислородом от 0,24 до 0,29 нм. С нерегулярной координацией атомов кальция связывают высокую гидратационную активность СА.

Диалюминат кальция СаО • 2AI2O3 (CA2) — соединение моноклинной сингонии, имеет двуосные положительные кристаллы с малым углом между оптическими осями (20 = 12°). В СА2 атомы алюминия тетраэдрально скоординированы кислородом, причем кислород расположен в углу, общем для трех тетраэдров.

Атомы кальция неправильно скоординированы четырьмя Са —О-связями, размер которых превышает 0,35 нм.

САз гидратируется медленно, при повышенной температуре реакция взаимодействия с водой ускоряется.

Гексаалюминат кальция СаО • 6AI2O3 (САб) имеет гексагональную симметрию. Структура аналогична структуре глинозема. Оптические свойства близки к свойствам корунда, кристаллизуется в виде однородных пластин с отрицательным удлинением. САб является инертным минералом, при взаимодействии с водой не гидратируется, поэтому его наличие в цементе снижает прочность цементного камня.

Минералогический состав глиноземистого цемента, содержащего примесные оксиды. В глиноземистом цементе наряду с основными оксидами СаО и AI2O3 всегда присутствуют оксиды железа, кремния, магния, количество которых зависит от состава применяемых сырьевых материалов, поэтому наряду с алюминатами кальция в цементе содержатся и другие фазы.

Кремнезем связывают оксиды алюминия AI2O3 и кальция СаО в геленит 2СаО • AI2O3 • Si02 (C2AS), может образовывать C2S или тройное соединение ЗСаО • 3AI2O3 • Si02, а оксиды Fe203 и СаО —в алюмоферриты кальция различного состава. Оксид магния с AI2O3 образует шпинель MgO • AI2O3. По данным Паркера, в системе СаО — AI2O3 — Si02 — MgO, составляющей глиноземистый цемент, могут присутствовать следующие минералы:
Са – C6A4MS – С12А7 – C2S, СА – C6A4MS – C2S — C2AS, СА – C6A4MS – C12A7 – MgO, C6A4MS – C12A7 – C2S – MgO, CA – C6A4MS – C?AS – MA, CA – C6A4MS – MA – MgO, C6A4MS – C2S – C2AS – MA, C4A4MS – C2S – MA – MgO.

Присутствующие в глиноземистом цементе в небольшом количестве РегОз и FeO образуют соединения C2F, C6A2F или твердые растворы с СА, С12А7 и СА2-
Геленит 2СаО • AI2O3 • Si02 характеризуется мелилитовой структурой и склонен образовывать многочисленные твердые растворы, плавится при 1590 °С. Он не обладает гидратацион-ной активностью. Однако его твердые растворы проявляют это свойство, что и объясняет противоречивость мнений относительно его скрытой вяжущей способности.

Соединение ЗСаО • 3AI2O3 • Si02 разлагается при 1315 °С на геленит, анорит и шестиалюминат кальция САб, соединения гидратационно неактивные.

Шпинель MgOA^Os — кристаллы кубической сингонии с высоким светопреломлением (N= 1,718), гидратационной активностью не обладает.
Феррит кальция C2F характеризуется орторомбической псевдотригональной структурой. Атомы кальция координированы нерегулярно десятью атомами кислорода, что обусловливает гид-ратационную активность C2F.

Алюмоферриты кальция — это твердые растворы в ряду C2F — C8A3F. В составе глиноземистого цемента присутствует C6A2F. Алюмоферриты кальция обладают более слабой гидратационной активностью, чем алюминаты кальция.

В составе высокоглиноземистого цемента указанные выше оксиды находятся в небольшом количестве (до 2—3 ) в виде твердых растворов с алюминатами кальция, обусловливающих изменение гидратационной активности алюминатов кальция.

С12А7 характеризуется быстрым схватыванием, но невысокой прочностью. Внедрение в его решетку ионов Fe3 + , Ti4+ удлиняет период схватывания и повышает прочность цементного камня.

СА обладает высокой гидратационной активностью. Он способен образовывать твердые растворы с моноферритом и монохромитом кальция. Внедрение Si и Fe в решетку СА повышает его гидратационную активность, однако неясно: является ли это обстоятельство положительным фактором для СА. Исходя из анализа сведений по быстрогидратирующимся, но обусловливающим низкую прочность цементного камня минералами С12А7 и СзА, можно ожидать, что увеличение гидратационной активности СА приведет к напряжениям в структуре цементного камня. Следовательно, общепринятое мнение о необходимости повышения гидратационной активности портландцементных клинкерных минералов путем их модифицирования применительно к моноалюминату кальция может оказаться неверным.

Внедрение в решетку медленно гидратирующегося минерала СА2 трехвалентных ионов (Cr3 + , Mn3 + , Fe3 + ) увеличивает скорость гидратации. При этом СА.2 приобретает высокую прочность и в ранние сроки твердения. Ускоряет скорость гидратации СА2 также наличие в его решетке ионов щелочных металлов.

Портландцементный клинкер состоит из ряда искусственных минералов, образовавшихся при обжиге.

Ориентировочное содержание и формулы основных четырех минералов в портландцементном клинкере составляет '(% по массе): алит 3CaO-SiO2(C3S) —- 40. 65, белит 2CaO-SiO2(C2S) — 15. 40, целит ЗСаО-А12О3(С3А) — 5. 15, целит 4СаО-Al2O3-Fe2O3(C4AF) — 10. 20.

Исследования цементного клинкера под микроскопом показывают, что в нем преобладают кристаллы алита и белита, между которыми размещается промежуточное вещество, состоящее из алюминатов и алюмоферритов кальция в кристаллической форме, а также незакристаллизованного стекла и оставшихся в свободном состоянии СаО и MgO.

Трехкальциевый силикат (алит) — главный минерал цементного клинкера — обладает большой активностью в реакции с водой, особенно в начальные сроки (величина тепловыделения к 3 сут достигает примерно 2/з от тепловыделения при полной гидратации).

Алит быстро твердеет и набирает высокую прочность.

Двухкальциевый силикат (белит) значительно менее активен, чем алит. Тепловыделение белита при полной гидратации примерно в 2 раза меньше, чем у алита, и к 3 сут составляет около 10 % от тепловыделения при полной гидратации.

Твердение белита происходит медленно. К месячному сроку продукт его твердения обладает сравнительно невысокой прочностью, но при длительном твердении (несколько лет) в благоприятных условиях (при положительной температуре и влажной среде) его прочность неуклонно возрастает.

Трехкальциевый алюминат — самый активный клинкерный минерал, отличающийся быстрым взаимодействием с водой. Его тепловыделение при полной гидратации почти в 2 раза больше, чем у алита, а за 3 сут составляет не менее 80 % от общего тепловыделения.

основные минералы портландцементного клинкера

Однако продукт его твердения имеет повышенную пористость, низкие прочность и долговечность. Быстрое твердение С3А вызывает раннее структурообразование в цементном тесте и сильно ускоряет сроки схватывания (всего до нескольких минут).

Если не ввести добавку гипса, то получается цемент «быстряк», бетонные смеси на котором из-за преждевременного схватывания не успевают хорошо перемешать и уложить в форму.

Четырехкальциевый алюмоферрит характеризуется умеренным тепловыделением и по быстроте твердения занимает промежуточное положение между трехкальцие-вым и двухкальциевым силикатами. Прочность продуктов его гидратации в ранние сроки ниже, чем у алита,-и несколько выше, чем у белита.

Располагая данными о формуле, минеральном составе клинкера и зная свойства клинкерных минералов, можно заранее предопределить основные свойства цемента и особенности его твердения в различных условиях эксплуатации.

Нежелательными составными частями портландцементого клинкера являются свободные оксиды кальция и магния. Их вредное влияние проявляется в том, что они гидратируются очень медленно в уже затвердевшем цементе (см. с. 133). Содержание свободных СаО и MgO в клинкере допускается соответственно не более 1 и 5 %

В клинкере могут быть также щелочные оксиды №гО и КгО, перешедшие в него из сырьевых материалов и золы твердого топлива. Их вредное влияние может проявиться в тех случаях, когда бетон изготовлен на заполнителях, содержащих опаловидный кремнезем.

Щелочи, реагируя с диоксидом кремния, образуют в водной среде водорастворимые силикаты калия и натрия с увеличением объема, что вызывает растрескивание бетона. Содержание Na2O и КгО в цементах для таких бетонов ограничивается до 0,6 %.

Несмотря на то что среднее содержание С3А в портландцементе составляет 4—11 %, его влияние весьма заметно на начальной стадии гидратации. Он обычно ответствен за феномен «ложного» схватывания; образование различных гидратов алюминатов кальция, кар-бо- и сульфоалюминатов также имеет место при реакциях СзА. Большие количества СзА в портландцементе могут повлиять на долговечность бетона. К примеру, цемент для бетона, который будет выдерживаться в сульфатных растворах, не может содержать более 5 % СзА.

Трехкальциевый алюминат реагирует с водой, образуя С2АНв и C4AHi3 (гексагональные фазы). Эти продукты термодинамически нестабильны, поэтому без стабилизации или добавок они переходят в фазу СзАНб (кубическая фаза).

Ниже приведены соответствующие уравнения

2СзА + 21Н-^С4АН|з + С2АН8;

В насыщенном растворе Са(ОН)2 С2АНв реагирует с Са(ОН)2, образуя в зависимости от условий C4AHi3 или СзАНб- Кубическая форма (СзАН6) может образоваться и в результате непосредственной гидратации С3А при 80 °С или более высокой температуре

При нормальных условиях гидратации камень из СзА дает меньшую прочность, чем из силикатных фаз, вследствие образования кубической фазы СзАН6.

При определенных условиях гидратации, т. е. при низких водотвердых отношениях (В/Т) и высокой температуре, прямое образование С3АН6 (приводящее к возникновению непосредственных связей между частицами) может существенно повысить прочность. В портландцементе гидратация фазы С3А контролируется добавлением гипса. Таким образом снимается «ложное» схватывание.

Фаза С3А реагирует с гипсом в течение нескольких минут, образуя эттрингит,

C3A + 3CSH2 + 26H-^ -^C3A-3CSH32.

После того как весь гипс перейдет в эттрингит, избыток С3А вступает в реакцию с эт-трингитом, образуя низкосульфатную форму гидросульфо-алюмината кальция,

C3A-3CSH32 + 2C3A + 4H-* -^3(C3A.CSH,2).

Гипс — более эффективный замедлитель гидратации С3А, чем известь; вместе они еще более эффективны, чем каждый в отдельности.

В большинстве цементов СзА присутствует в сравнительно небольшом количестве, однако его поведение и структурные связи с другими фазами в цементе представляют определенный интерес. Трехкальциевый гадроалюминат образует призматические кристаллы темноокрашенного вещества, вероятно представляющие твердый раствор с другими соединениями, а часто в виде плоских пластинок, окруженных гидросиликатами кальция

Реакция С3А с водой проходит очень бурно и приводит к немедленному загустеванию теста, известному как ложное схватывание. Для предотвращения этого явления в цементный клинкер добавляют гипс (CaSO4-2H2O). Гипс и С3А взаимодействуют между собой с образованием нерастворимого гидросульфоалюмината кальция (ЗСаО-А12О3-•3CaSO4-31H2O), но со временем образуется трехкальциевый гидроалюминат. Вероятно, что этому предшествует образование метастабильного соединения 3CaO-Al2O3-CaSO4- 12H2O за счет исходной высокосульфатной формы гидросульфоалюмината кальция. По мере перехода С3А в раствор состав изменяется — содержание сульфатов уменьшается непрерывно. Скорость реакции алюминатов довольно высокая, поэтому если это изменение в составе происходит недостаточно быстро, то возможна непосредственная гидратация С3А. В частности, наблюдаемая обычно максимальная скорость тепловыделения в течение 5 мин после добавления воды к цементу означает, что некоторое количество гидроалюмината кальция образуется в тот период, когда условия для замедления гипсом еще не установились.

Устойчивая форма гидроалюмината кальция, образованная в итоге в цементном камне, вероятно, представляет собой кубические кристаллы С3АН6, но возможно, что гексагональный C4AHi2 выкристаллизовывается первым и позже приобретает кубическую форму. Таким образом, окончательную реакцию можно представить в следующем виде: С3А + 6Н->-АН3

Стехиометрические соотношения показывают, что 100 частей С3А реагируют с 40 частями воды (по весу). Это намного больше количества воды, требуемой для гидратации силикатов.

Содержание С3А в цементе нежелательно: его роль в прочности цементного камня незначительна, за исключением прочности в раннем возрасте; в то же время при воздействии сульфатов на цементный камень расширение вследствие образования гидросульфоалюмината кальция из С3А может привести к разрушению цементного камня. Однако С3А необходим при обжиге цементного клинкера. Он действует как плавень — понижает температуру обжига, что содействует соединению окиси кальция и кремнезема при более низких температурах. Поэтому С3А необходим в процессе производства цемента. C4AF является также минералом-плавнем. Следует заметить, что если не будет образовываться некоторого количества жидкой фазы при обжиге, то реакции в печи будут протекать намного медленнее и возможно не пройдут полностью.

Гипс реагирует не только с С3А; с C4AF он образует сульфоферрит, а также сульфоалюминат кальция. Присутствие гипса может способствовать ускорению гидратации силикатов.

Количество гипса, добавляемого в цементный клинкер, необходимо тщательно контролировать, так как избыток гипса приводит к расширению и последующему разрушению цементного камня. Оптимальное содержание гипса определяется на основе наблюдений за теплотой гидратации. Обычно за мгновенным максимумом скорости тепловыделения следует второй максимум спустя 4—8 ч после добавления воды к цементу. При правильно выбранном количестве гипса, после того как весь гипс будет связан, останется лишь небольшое количество С3А, способного участвовать в реакциях. В результате второго максимума на кривой тепловыделения не возникает.

Требуемое количество гипса увеличивается при повышении содержания С3А и щелочей в цементе. Увеличение тонкости помола цемента оказывает то же влияние, что и возрастание количества С3А, поэтому оно требует повышенного содержания гипса.

Количество вводимого в цементный клинкер гипса обычно выражается в расчете на БОз по весу. По стандарту BS 12: 1958 максимальное содержание SO3 2,5% при содержании С3А не более 7 и 3% при содержании С3А более 7%

Глиноземистый цемент — быстротвердеющее гидравлическое вяжущее, состоящее преимущественно из моноалюмината кальция (СаО * А1203). Свое название этот цемент получил от технического названия оксида алюминия А1203 — глинозем.

Промышленное производство глиноземистого цемента началось во Франции в 1912 г. под названием цемент фондю (в Европе этот цемент до сих пор носит такое название). Глиноземистый цемент с успехом использовался французами в ходе Первой мировой войны для срочного восстановления мостов и других инженерных сооружений. В других европейских странах его производство началось только в 20-е годы. Причина этого не только в том, что производство глиноземистого цемента было строго засекречено, но и в том, что Франция в то время была одной из немногих стран, имеющих залежи бокситов и дешевую электроэнергию ГЭС — два фактора, необходимых для производства глиноземистого цемента.

Получение. Сырьем для глиноземистого цемента служат, как уже было сказано, бокситы и чистые известняки. Бокситы — горная порода, состоящая из гидратов глинозема (А1203 * лН20) и примесей (в основном Fe203, Si02, СаО и др.). Бокситы широко используются в различных отраслях промышленности: для получения алюминия, абразивов, огнеупоров, адсорбентов и т. п., а месторождений с высоким содержанием А1203 очень немного.

Производство глиноземистого цемента более энергоемко, чем производство портландцемента. Клинкер глиноземистого цемента получают либо плавлением в электрических или доменных печах (при 1500…1600 °С), либо спеканием (при 1200…1300 °С). Размол клинкера затруднен из-за его высокой твердости. В целом из-за того, что производство глиноземистого цемента очень энергоемко, а сырье (бокситы) — дефицитно, его стоимость в 8… 10 раз выше, чем стоимость портландцемента.

Состав. Химический состав глиноземистого цемента, получаемого разными методами, находится в следующих пределах: СаО — 35…45 %; А1203 – 30…50 %; Fe203 – 0…15 %; Si02 – 5…15 %. В минеральном составе клинкера глиноземистых цементов преобладает однокальциевый алюминат СаО * А1203 (СА), определяющий основные свойства этого вяжущего. Кроме того, в нем присутствуют: алюминаты — СА2, С12А7; двухкальциевый силикат C2S, отличающийся, как известно, медленным твердением, и в качестве неизбежной балластной примеси алюмосиликат кальция — геленит — 2СаО * А1203 * 2Si02, не способный к твердению.

Твердение. Процесс твердения глиноземистого цемента и прочность образующегося цементного камня существенно зависят от температуры твердения. При нормальной температуре (до + 25 °С) основной минерал цемента СА взаимодействует с водой с образованием кристаллического гидроалюмината кальция и гидроксида алюминия в виде гелевидной массы:

2(СаО * А1203) + 11Н20 = 2СаО * А1203 * 8Н20 + 2А1(ОН)3

Суммарное тепловыделение (Q) у глиноземистого цемента немного ниже, чем у портландцемента (около 300…400 кДж/кг), но протекает оно в очень короткие сроки (в первые сутки выделяется 70…80 % от общего количества теплоты). Поэтому в случае больших объемов бетонирования возможен перегрев бетонов на глиноземистом цементе.

Если же температура твердеющего глиноземистого цемента превысит 25…30 °С, то изменяется химизм твердения, и вместо С2АН8 образуется С3АН6; при этом прочность цементного камня будет ниже в 2…2,5 раза.

Поэтому глиноземистый цемент не рекомендуется использовать для бетонирования массивных конструкций, где возможен саморазогрев бетона, а также в условиях жаркого климата. Нельзя также его пропаривать. При работах в зимних условиях, напротив, саморазогрев и быстрое твердение делают глиноземистый цемент очень перспективным.

Свойства. У глиноземистого цемента удивительное сочетание свойств.

Сроки схватывания почти такие же, как у портландцемента: начало — не ранее 30 мин, конец — не позднее 12 ч (реально 4…5 ч).

Твердение. После окончания схватывания прочность нарастает очень быстро (лавинообразно). Уже через сутки глиноземистый цемент набирает до 70 % от марочной прочности, которая у него определяется в 3-суточном возрасте. Марки у глиноземистого цемента такие же, как у портландцемента: 400; 500 и 600.

Усадка глиноземистого цемента при твердении на воздухе ниже, чем у портландцемента, в 3…5 раз. Пористость цементного камня также ниже (приблизительно в 1,5 раза). Это связано с тем, что при одинаковой с портландцементом водопотребности глиноземистый цемент при твердении химически связывает 30…45 % воды от массы цемента (портландцемент — около 20%).

Среда в процессе твердения и в затвердевшем цементном камне у глиноземистого цемента слабощелочная. Свободного Са(ОН)2 цементный камень не содержит. Это обстоятельство в сочетании с пониженной пористостью делает бетоны на глиноземистом цементе более устойчивыми к коррозии в пресной и минерализованной воде.

Области применения. Глиноземистый цемент целесообразно использовать при аварийных и срочных работах, при зимних работах и в тех случаях, когда от бетона требуется высокая водостойкость и водонепроницаемость. Кроме того, глиноземистый цемент является компонентом многих расширяющихся цементов.

Специальная область использования глиноземистых цементов — жаростойкие бетоны. Объясняется это тем, что, во-первых, в продуктах твердения этого цемента нет Са(ОН)2, и, во-вторых, при температуре 700…800 СС между продуктами твердения цемента и заполнителями бетона начинаются реакции в твердой фазе, по мере протекания которых прочность бетона не падает, а повышается, так как бетон превращается в керамический материал (опасность присутствия Са(ОН)2 заключается в том, что при нагреве он переходит в СаО, который при любом контакте с водой гасится, разрушая при этом бетон).

Глиноземистый цемент, называемый иногда алюминатным или высокоглиноземистым, представляет собой гидравлическое вяжущее, основными компонентами которого являются алюминаты кальция, в противоположность портландцементу, который состоит в основном из силикатов кальция. Примерами такого цемента могут служить: французский «ciment fondu», германский «Schmelzzement», американский «lumnite cement».

Спекмэн в США и Вид во Франции независимо друг от друга разработали технологию производства глиноземистого, цемента. Оба исследователя опирались на предшествующие работы Вика, Кандло и Шота. Опыты Бэйтса показали, что можно использовать вращающуюся печь для получения клинкера глиноземистого цемента.

Спекмэн пытался получить вяжущее с высокой прочностью в раннем возрасте, добавляя к извести или портландцементу алю-минатные соединения, изготовленные из боксита и высокоглинозе-мистых шлаков. Примерно в 1910 г. на рынке появились различные натуральные цементы под названием «алька», содержавшие добавку алюминатов Спекмэна. В дальнейшем было организовано производство высокоглиноземистых натуральных цементов, а затем глиноземистого цемента, подобного тому, который был получен Видом.

Вид, работавший во Франции, ставил своей задачей создать глиноземистый цемент с повышенной сульфатостойкостью, который был необходим для строительства в некоторых районах страны, изобиловавших гипсом. Он решил эту задачу путем сплавления бокситов или других глиноземистых и железистых материалов, содержащих мало кремнезема, с известью в соответствующей пропорции.

Полученный продукт обладал не только сульфатостойкоетью, но и высокой прочностью в раннем возрасте. В 1918 г. после пятилетнего опыта применения этого цемента французским правительством для военных нужд, он ‘был выпущен для общего пользования.

Производство

Сырьем для производства глиноземистого цемента служат обычно низкосортные бокситы и известняк (высокосортные бокситы идут на производство глинозема). Точно дозированная и хорошо перемешанная смесь сырьевых материалов нагревается до температуры, при которой известь вступает в реакцию с глиноземом, образуя соединения алюминатов кальция. Сырьевая смесь полностью плавится примерно при 1540° С. Расплав выпускают из печи, дают ему застыть, охлаждают и затем размалывают с добавками или без них. Во избежание рассыпания застывшего расплава необходимо держать на сравнительно низком уровне содержание кремнезема в смеси.

В США глиноземистый цемент производится по способу плавления тонкоизмельченной сырьевой смеси во вращающейся печи. Эта печь отличается от обычной вращающейся печи, применяемой для производства портландцемента спеканием, тем, что разгрузочный конец ее резко сужен; в этой конической части несколько задерживается обжйгаемый материал, что облегчает процесс полного расплавления его. Для ускорения реакции между известью и бокситом прибегают к спеканию сырьевой смеси при температуре ниже точки начала плавления.

В других странах для производства глиноземистого цемента применяют отражательные или электродуговые печи. Шахту печи загружают кусками известняка и боксита, а также бокситовыми брикетами, из которых под действием горячих газов, выделяющихся из печи, удаляются СОо и другие летучие вещества. Материал постепенно опускается и попадает в печь, где происходит плавление его. В отражательной печи выпуск расплава производится непрерывно, а в электрической — периодически.

Скорость охлаждения расплава оказывает большое влияние на сроки схватывания и скорость твердения глиноземистого цемента. Методы охлаждения, применяемые на том или ином заводе, обычно держатся в секрете. Скорость охлаждения влияет также на размалываемость клинкера или застывшего расплава. Ввиду исключительной твердости и абразивности глиноземистого клинкера его приходится молоть значительно крупнее, чем клинкер портландцемента.

Химические и физические свойства

По пределам колебаний химического состава он заметно отличается от глиноземистого цемента, производимого в некоторых странах. Следует отметить, что американский глиноземистый цемент содержит примерно одинаковое количество извести и глинозема. Значительное количество закиси железа ib глиноземистом цементе показывает, что плавление сырья происходит в восстановительной среде.

Петрографическое исследование глиноземистого цемента показывает, что он состоит из кристаллической фазы, главным образом однокальциевого алюмината, который окружен темной аморфной массой, содержащей большое количество железа и немного извести, глинозема и кремнезема, не успевших закристаллизоваться. В кристаллической фазе часто присутствуют небольшие количества устойчивой и неустойчивой модификаций пятикальциевого трехалюмината, причем устойчивая модификация, очевидно, преобладает в тех случаях, когда содержание железа в цементе очень ограничено. Отношение кристаллических компонентов к аморфным колеблется в зависимости от скорости охлаждения и режима обжига в печи.

Работы Ранкина и Райта по изучению системы СаО—А1203— Si02 показали, что в ней должен образовываться также трехкальциевый пятиалюминат, хотя он и не может быть обнаружен при микроскопическом исследовании.

В некоторых цементах кремнезем присутствует в форме кристаллического двухкальциевого алюмосиликата (галенита, C2AS). В большом количестве это соединение может понизить прочность цемента. Кроме того, кремнезем может присутствовать и в форме ортосиликата кальция (C2S). Второстепенные компоненты, иногда наблюдаемые в глиноземистом цементе (окись титана, сульфиды, скись фосфора, щелочи), как полагают, не оказывают существенного влияния на его свойства.

При гидратации глиноземистого цемента образуются большие количества геля, что объясняется реакцией между водой и СА, а также устойчивой и неустойчивой модификациями С5А3. Это геле-образное аморфное вяжущее вещество является носителем высокой прочности твердеющего цементного теста в раннем возрасте, в результате чего цемент приобретает значительную часть своей конечной прочности уже в первые сутки. Но и после этого срока гидратация продолжается, причем образуются новые количества аморфного вещества, способствующего созданию плотной непроницаемой структуры бетона.

Если глиноземистый цемент гидратируется при температуре около 27° С или выше, то образуются кубические кристаллы трехкальциевого гидроалюмината, причем прочность бетона снижается. Поэтому бетон, изготовленный из глиноземистого цемента, в период от начала схватывания до односуточного возраста поливают водой, чтобы рассеять тепло, выделяющееся при быстрой гидратации. По той же причине не применяют пропаривания глиноземистого бетона и укладывают его слоями не толще 30 см. Бетон из глиноземистого цемента, подвергавшийся сильному нагреванию во время твердения, имеет характерный шоколадно-серый оттенок. Орошение бетона водой предупреждает шелушение его поверхности вследствие карбонизации.

Для получения цемента с нормальными сроками схватывания обычно прибегают к регулированию скорости охлаждения расплава. Наряду с этим применяются и некоторые замедлители схватывания, как хлористый натрий, нитрат натрия, глицерин, сахар. Излишнее количество сахара может задержать схватывание на неопределенное время. Гипс, который служит обычно для замедления схватывания портландцемента, ускоряет схватывание глиноземистого цемента. Другие формы серного ангидрида также ускоряют схватывание. Подобным же образом действуют на глиноземистый цемент гидроокись кальция, гидроокись натрия, карбонаты кальция и натрия.

Добавка небольшого количества портландцемента ускоряет начало схватывания теста, раствора и бетона из глиноземистого цемента. В свою очередь небольшая добавка глиноземистого цемента ускоряет схватывание портландцемента. Добавка одного цемента к другому в избыточном количестве может вызвать мгновенное схватывание. Это свойство используется для получения высокопластичного, но быстросхватывающегося цементного раствора, который необходим при укладке дорожных бетонных плит и заделке отверстий в бетонных сооружениях под гидростатическим давлением. Следует иметь в виду, что при смешивании разных цементов известное влияние на сроки начала схватывания оказывают также и колебания в содержании S03 и щелочей в портландцементе.

Объемные деформации твердеющего теста глиноземистого цемента при увлажнении и высыхании в основном такие же, как и у портландцементного теста. Это относится и к усадке при высыхании свежего цементного теста. Коэффициент термического расширения и показатели проницаемости у обоих цементов также одинаковы. Модуль упругости глиноземистого цемента несколько выше и составляет около 315 000 кг/см2. Величина его колеблется в зависимости от прочности, как и у портландцемента, а прочность в свою очередь изменяется с изменением водо-цементного отношения и температуры твердения.

Глиноземистый цемент применяется для изготовления различных специальных бетонов — огнеупорного, жаростойкого, корро-зиестойкого и быетротвердеющего, а также для защиты каменных или бетонных сооружений от действия грунтовых вод. ‘

Хотя усиленное разогревание бетона из глиноземистого цемента во время твердения вредно отражается на его прочности, а в особо неблагоприятных условиях температуры и влажности может даже вызвать разрушение его, тем не менее при правильном подборе заполнителей и хорошей технологии можно изготовить прекрасный огнеупорный бетон для футеровок. Заполнители для такого бетона могут быть кислые, основные или нейтральные. Состав смеси может колебаться от 1 : 4 (цемент — заполнители по объему) для низкотемпературных печей (1090 °С) до 1 : 7 для высокотемпературных (1425 °С и выше). Такие огнеупорные бетоны отличаются хорошей прочностью в холодном состоянии и приобретают очень высокую прочность в условиях огня или высокой температуры благодаря остекловыванию, т. е. поверхностному оплавлению компонентов.

Жаростойкий бетон применяется для строительства фундаментов печей, трубопроводов для пропуска горячих газов, полов под печами и возле печей, т. е. в таких местах, где он подвергается значительному действию тепла при температуре ниже точки плавления. Так как глиноземистый цемент не выделяет извести при гидратации, он является прекрасным вяжущим для изготовления такого бетона. В качестве заполнителей могут быть применены старые огнеупоры, дорожный клинкер, облицовочный клинкерный кирпич, диабаз, наждак, измолотые до предельной крупности 3,75 см. Для улучшения изоляционных свойств бетона можно применить легкие огнеупорные заполнители. Следует избегать заполнителей, которые выделяют известь. Оптимальный состав бетона (по объему): 1 часть цемента на 2,5 части мелкого заполнителя (предельная крупность зерен 6 мм) и на 2,5 части крупного заполнителя. При применении очень плотных заполнителей следует увеличить количество мелких заполнителей по отношению к крупным.

Глиноземистый цемент отличается не только повышенной сульфатостойкостью, но и хорошей устойчивостью против действия органических кислот, различных соединений серы, серной кислоты, молочной кислоты, соляного раствора, крахмала, сахарозы, кислотных масел, тростникового сока, мелассы. Он неустойчив в отношении уксусной, соляной и азотной кислот, сильных растворов сульфатов и каустиков. Бетон состава 1:2:4с высококачественными тяжелыми заполнителями обычно обладает удовлетворительной солестойкостью. Следует избегать применения тощих смесей, которые требуют более длительного перемешивания.

Монолитный бетон из глиноземистого цемента с обыкновенными заполнителями созревает уже через сутки после укладки в нормальных атмосферных условиях. Благодаря повышенному тепловыделению этот бетон можно укладывать при низкой температуре без применения защитных мер или с минимальной защитой. Отпадает также необходимость в добавке хлористого кальция в качестве ускорителя твердения. При изготовлении бетона для большинства строительных работ достаточно, чтобы расход цемента составлял 300—330 кг/м3. при минимальном количестве воды. Выдержка бетона может не превышать 24 час. после укладки.

Смеси глиноземистого цемента и портландцемента обычно применяются для защиты бетонных, кирпичных и каменных сооружений от просачивания воды. Эти смеси наносятся обычным способом или торкретированием.

Читайте также: