Щелевой фундамент для дома

Обновлено: 27.04.2024

РЕКОМЕНДАЦИИ
ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ ЩЕЛЕВЫХ ФУНДАМЕНТОВ

Рекомендации по проектированию и строительству щелевых фундаментов разработаны ордена Трудового Красного Знамени научно-исследовательским институтом оснований и подземных сооружений имени Н.М.Герсеванова Госстроя СССР.

Рекомендации содержат указания по проектированию, расчету и устройству щелевых фундаментов - столбчатых опор глубокого заложения, сооружаемых способом "стена в грунте".

Рекомендации предназначены для проектирования и строительства гражданских, промышленных и транспортных сооружений.

В разработке Рекомендаций принимали участие: д-р техн. наук М.И.Смородинов, кандидаты техн. наук В.Н.Корольков и Б.С.Федоров и инж. В.Д.Иванов.

В Рекомендациях использованы материалы института Фундаментпроект Минмонтажспецстроя СССР, Уральского политехнического института МинВУЗа РСФСР и Днепропетровского инженерно-строительного института МинВУЗа УССР.

Рекомендации одобрены секцией "Специальных работ" Ученого совета НИИОСП.

ВВЕДЕНИЕ

Разработка Рекомендаций вызвана началом широкого применения в отечественном строительстве щелевых фундаментов. Щелевые фундаменты представляют собой столбчатые опоры глубокого заложения, устраиваемые способом "стена в грунте", т.е. сооружаемые в узких траншеях, как правило, под защитой глинистого раствора (глинистой суспензии), удерживающего грунтовые стенки траншей от обрушения.

В литературе встречаются другие названия щелевых фундаментов: бареты, шлицевые фундаменты и др.

Щелевые фундаменты могут воспринимать значительные вертикальные и горизонтальные нагрузки в пределах допустимых деформаций. Поэтому они представляют собой наиболее рациональный вид опор для высотных зданий, заводских дымовых труб, транспортных эстакад и других сооружений, передающих значительные концентрированные нагрузки на основание.

Применение щелевых фундаментов наиболее эффективно в сложных геологических условиях, при высоком уровне грунтовых вод, а также на застроенных территориях.

Рекомендации разработаны на основе результатов лабораторных и натурных исследований с использованием следующих нормативных материалов: Рекомендаций по технологии устройства подземных сооружений методом "стена в грунте", главы СНиП II-17-77* "Свайные фундаменты" и главы СНиП II-15-74** "Основания зданий и сооружений".

* На территории Российской Федерации документ не действует. Действуют СНиП 2.02.03-85.

** На территории Российской Федерации документ не действует. Действуют СНиП 2.02.01-83. - Примечания изготовителя базы данных.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие рекомендации распространяются на проектирование щелевых фундаментов под промышленные, общественные и жилые здания, транспортные сооружения, опоры линий электропередачи и промышленное оборудование.

1.2. Действие рекомендаций не распространяется на проектирование и устройство щелевых фундаментов в сейсмических районах и районах с вечномерзлыми, просадочными, набухающими и засоленными грунтами.

1.3. Щелевые фундаменты не допускается устраивать в грунтах, в которых для обеспечения устойчивости стенок траншей невозможно применение глинистого раствора (крупнообломочные грунты с незаполненными пустотами, грунты текучей консистенции), а также на закарстованных и подрабатываемых территориях.

1.4. При проектировании щелевых фундаментов, кроме настоящих рекомендаций, следует руководствоваться главой СНиП по проектированию оснований зданий и сооружений и главой СНиП по проектированию бетонных и железобетонных конструкций.

1.5. Щелевые фундаменты под промышленное оборудование с динамическими нагрузками следует проектировать с учетом дополнительных требований, содержащихся в главе СНиП по проектированию фундаментов машин с динамическими нагрузками.

1.6. Щелевые фундаменты, возводимые в среде, обладающей агрессивностью по отношению к бетону, следует проектировать с учетом дополнительных требований, предъявляемых главой СНиП по защите строительных конструкций от коррозии.

2. ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ

2.1. Инженерно-геологические изыскания, необходимые для проектирования щелевых фундаментов, должны производиться в соответствии с требованиями главы СНиП по инженерным изысканиям для строительства; при этом в отчетных материалах изысканий должны содержаться дополнительные данные, характеризующие вид и состояние фундаментов и их оснований расположенных вблизи зданий и сооружений, а также данные о нагрузках, передаваемых этими фундаментами на основание.

2.2. Инженерно-геологическое строение площадки должно быть изучено на глубину не менее 10 м ниже подошвы проектируемых щелевых фундаментов. При опирании на скальный грунт эта величина составляет 1,5 м.

2.3. Щелевые фундаменты выполняются в виде вертикальных несущих элементов ограниченной ширины в плане прямоугольного, крестообразного, таврового, коробчатого и др. поперечных сечений (рис.1), используемых отдельно или образующих фундаментные поля (рис.2).

Рис.1. Поперечные сечения щелевых фундаментов: а - прямоугольное; б - прямоугольное сдвоенное; д - корытообразное; е - двутавровое; ж - коробчатое; з - уголковое

Рис.2. Примеры устройства фундаментных полей с размещением щелевых фундаментов: а - линейное; б, г - радиальное; в - концентрическое

2.4. Конструкция щелевых фундаментов, их размеры и взаимное расположение выбираются в зависимости от размеров надфундаментного сооружения, его очертания в плане, характера и величины расчетных нагрузок, геологических и гидрогеологических условий и других факторов.

2.5. Размеры щелевых фундаментов в плане должны позволять вести их бетонирование по всему поперечному сечению.

2.6. В отдельных случаях щелевые фундаменты могут сооружаться в траншеях, отрываемых насухо без применения глинистого раствора. Это возможно в необводненных связных грунтах.

2.7. Толщина щелевых фундаментов соответствует ширине применяемых грейферов и обычно находится в пределах от 0,4 до 1 м. Длина щелевых фундаментов обычно равна величине максимального раскрытия челюстей грейфера или ее удвоенному значению плюс 40-80 см (перемычка между двумя захватками) и колеблется в пределах от 2 до 7 м.

2.8. Щелевые фундаменты обычно выполняются глубиной от 5 до 20-25 м. В отдельных случаях заложение щелевых фундаментов может достигать большей глубины (30-50 м).

2.9. Рациональность применения щелевых фундаментов определяется на основании технико-экономического сопоставления с другими вариантами. Целесообразно применять щелевые фундаменты в сложных геологических и гидрогеологических условиях, а также при строительстве вблизи существующих зданий и сооружений.

2.10. При проектировании следует стремиться к использованию на одной площадке минимального числа (1-3) типоразмеров поперечного сечения щелевых фундаментов.

2.11. При проектировании щелевых фундаментов должны быть определены и указаны в проекте основные данные по технологии производства работ (плотности глинистого раствора и бетона, тип и параметры землеройного механизма, продолжительность выполнения отдельных операций и др.).

2.12. Щелевые фундаменты следует проектировать монолитными с бетонированием, осуществляемым методом вертикально-перемещающейся трубы (ВПТ) или нагнетанием бетонной смеси насосом с вытеснением глинистого раствора. При технико-экономическом обосновании щелевые фундаменты можно устраивать сборными из цельных железобетонных элементов заводского изготовления или с горизонтальным членением. При устройстве щелевых фундаментов из сборных элементов пространство, остающееся между ними и грунтом, заполняют твердеющим тампонажным раствором. Щелевые фундаменты можно также устраивать сборно-монолитными (сборными в верхней части и монолитными в нижней).

2.13. Глинистый раствор должен обладать свойствами, обеспечивающими устойчивость грунтовых стенок траншеи в процессе ее разработки и бетонирования. Показатели качества глинистого раствора должны содержаться в проекте производства работ.

3. ОСНОВНЫЕ УКАЗАНИЯ ПО ПРОЕКТИРОВАНИЮ

3.1. Щелевые фундаменты следует проектировать из тяжелого бетона марок не ниже М 200 для монолитных и М 300 - для сборных конструкций. Проектную марку бетона по морозостойкости и водонепроницаемости следует назначать в зависимости от температурно-климатических условий района строительства в соответствии с требованиями главы СНиП по проектированию бетонных и железобетонных конструкций.

3.2. Требования к бетону и арматуре устанавливаются в соответствии с главой СНиП по проектированию бетонных и железобетонных конструкций.

3.3. Щелевые фундаменты должны армироваться за исключением случаев, когда по всему поперечному сечению фундамента при неблагоприятных сочетаниях нагрузок возникают только напряжения сжатия, значение которых не превышает соответствующих расчетных сопротивлений бетона. Арматуру надлежит сваривать в каркасы. Расстояние между арматурными стержнями в каркасах должно быть не менее 150 мм и не более 20 диаметров продольной арматуры (но не более 300 мм). Каркасы должны иметь жесткость, обеспечивающую сохранение требуемых размеров при их транспортировке и монтаже.

3.4. В щелевых фундаментах из монолитного бетона в качестве рабочей арматуры должна применяться стержневая арматура периодического профиля. Применение гладкой арматуры для этой цели не допускается.

3.5. Арматурные каркасы для щелевых фундаментов из монолитного бетона должны иметь длину, равную глубине траншеи, ширину и толщину на 10-15 см менее соответствующих размеров фундамента.

3.6. В арматурных каркасах должны быть предусмотрены проемы для пропуска бетонолитных труб. Проемы следует устраивать: один в середине каркаса при ширине щелевого фундамента до 4 м и два (при радиусе растекания бетонной смеси не менее 1,5 м) при ширине щелевого фундамента 46 м.

3.7. Арматурные каркасы должны иметь с наружный стороны направляющие салазки, фиксирующие их положение в траншее для создания требуемой толщины защитного бетонного слоя, а также петли для подъема краном и арматурные выпуски для подвешивания каркасов на воротнике после опускания в траншею.

3.8. Направляющие салазки изготовляют из полосовой стали и приваривают к арматурному каркасу с шагом 2 м по длине и ширине каркаса. Толщина каркаса по направлявшим салазкам должна быть на 10-15 мм меньше ширины грейфера, принятого для разработки траншеи.

3.9. Толщину щелевого фундамента назначают по расчету его прочности и несущей способности, но не менее 400 мм при глубине заложения до 6 м, 500 мм при глубине заложения 615 м и 600 мм при глубине заложения более 15 м.

3.10. Заглубление щелевого фундамента в слой грунта, на который опирается его подошва, должно быть не менее 0,5 м. Толщина этого слоя под подошвой щелевого фундамента должна быть не меньше пятикратной толщины последнего, а глубина заложения слоя не меньше глубины сжимаемой толщи (рис.3).

При сборно-монолитной конструкции щелевого фундамента сборная верхняя часть фундамента должна заглубляться в монолитную не менее чем на 50 см.

Рис.3. Расположение щелевого фундамента относительно слоев грунта: - толщина фундамента; - заглубление в несущий слой; - толщина слоя, на который опирается фундамент; - глубина заложения подошвы несущего слоя; - размер сжимаемой толщи

4. ОСНОВНЫЕ УКАЗАНИЯ ПО РАСЧЕТУ

4.1. При расчете щелевых фундаментов должны учитываться действующие на них нагрузки и воздействия, возникающие в условиях эксплуатации; для сборных элементов - также нагрузки, возникающие при их изготовлении, транспортировке и монтаже.

4.2. Нормативные нагрузки, коэффициенты перегрузки и сочетания нагрузок следует принимать в соответствии с требованиями главы СНиП "Нагрузки и воздействия". В необходимых случаях нагрузки и воздействия следует определять также по главам СНиП: "Проектирование мостов и труб", "Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)", "Линии электропередачи напряжением выше 1 кВ".

4.3. Щелевые фундаменты и их основания следует рассчитывать по первому и второму предельным состояниям (по несущей способности и по деформациям). Щелевые фундаменты рассчитывают по прочности, перемещениям и образованию или раскрытию трещин, а их основания - по несущей способности, устойчивости и осадкам.

4.4. Основания рассчитывают по устойчивости только в случаях, если на них передаются горизонтальные нагрузки и они ограничены откосами или сложены крутопадающими слоями грунта. Расчет оснований по устойчивости можно производить методами круглоцилиндрических поверхностей скольжения в соответствии с требованиями главы СНиП по проектированию оснований зданий и сооружений. При этом коэффициент устойчивости , определяемый по формуле

где и - соответственно суммы моментов всех удерживающих и сдвигающих сил относительно предполагаемого центра вращения, должен быть не менее 1,2.

4.5. Расчет щелевых фундаментов по перемещениям и оснований по осадкам от действия вертикальных нагрузок не производится при опирании щелевых фундаментов на практически несжимаемое основание (скальные, крупнообломочные с песчаным заполнителем и глинистые грунты твердой консистенции).

4.6. Расчет щелевых фундаментов по образованию или раскрытию трещин производится при действии на эти фундаменты горизонтальных нагрузок в соответствии с требованиями главы СНиП по проектированию бетонных и железобетонных конструкций.

4.7. Расчет щелевых фундаментов и их оснований по несущей способности должен производиться на основное сочетание нагрузок с коэффициентами перегрузки, принимаемыми в соответствии с требованиями глав СНиП на нагрузки и воздействия, расчет до деформациям - на основное сочетание нагрузок с коэффициентами перегрузки, равными единице.

5. РАСЧЕТ ЩЕЛЕВЫХ ФУНДАМЕНТОВ ПО НЕСУЩЕЙ СПОСОБНОСТИ

5.1. Щелевые фундаменты, рассчитываемые по несущей способности, должны удовлетворять условию:

где - расчетная нагрузка, передаваемая на щелевой фундамент и определяемая при проектировании здания или сооружения;

- расчетная нагрузка, допускаемая на щелевой фундамент, определяемая в соответствии с указаниями п.5.2.

5.2. Расчетную нагрузку , допускаемую на щелевой фундамент, следует определять как наименьшее из двух найденных значений расчетных сопротивлений щелевого фундамента: по материалу и по грунту , взятыми с соответствующими коэффициентами безопасности:

Щелевой фундамент

Щелевой фундамент является одним из наглядных примеров адаптации традиционного ленточного основания к глинистым грунтам. Отсутствие опалубки по всей высоте заливки и сокращение земельных работ существенно удешевляет стоимость строительства объекта. Щелевые фундаменты популярны для жилых домов малой этажности, гаражей, построек хозяйственного назначения и других строений.

Особенности щелевых ленточных оснований

Конструктивно щелевые фундаменты сопоставимы с монолитными ленточными основаниями, только вместо опалубки используется траншея. Внешне траншея чем-то схожа с щелью в земле, отсюда и название «щелевой» фундамент. Неровные борта земляной траншеи обеспечивают прочное сцепление грунта и залитой бетонной смеси.

Формирование нижней части щелевой опоры происходит посредством грунта, выполняющего роль опалубки под подошву фундамента. Таким образом, нагрузки на грунт со стороны строения передаются всеми поверхностями фундамента – опорной плоскостью и боковыми стенками, то есть фундамент передает полный спектр нагрузок вертикального и горизонтального направлений.

Закладку щелевых оснований производят в глинистых почвах. Заливкой бетонной смеси в распор траншеи создается жесткая пространственная конструкция, обеспечивающая устойчивость строения к весовым нагрузкам и выталкивающим усилиям морозного пучения. Изготовление щелевых фундаментов для домов, возводимых на песчаных почвах, не рекомендуется. Песок не удерживает геометрическую форму стенок, в результате осыпающийся грунт резко ухудшает качество заливаемой бетонной смеси и не способствует созданию работоспособного фундаментного монолита.

К достоинствам щелевых фундаментов относят:

  • Существенное снижение трудоемкости строительных работ. Статистика утверждает, что переход на закладку щелевого фундамента сокращает объемы проводимых земляных работ практически в два раза, объемы работ с опалубкой – до 60-70%;
  • Снижение затратной части по бетону — до 6% и по арматуре – до 20%;
  • Возможность использования траншейных технологий в стесненных условиях при запрете проведения динамических воздействий на грунт, например, вблизи коммуникаций или около построенных зданий.

Армирование щелевого фундамента

Главным недостатком оснований щелевого типа является ограничение его применимости:

  • Допускается заливать только в глинистых грунтах, чтобы обеспечивалось сохранение формы траншеи при заливке бетонной смеси и ее уплотнении;
  • Использовать только на непучинистых грунтах, поскольку морозные пучения высокой интенсивности способны выпучить и перекосить возведенный дом, за счет бокового сцепления фундамента с грунтом;
  • На щелевых опорах не возводятся массивные постройки.

Взаимодействие щелевых оснований с почвой

При охлаждении воздуха в холодный период зимнего сезона начинается процесс промерзания почвы. В пучинистых грунтах характерен следующий процесс: по мере углубления фронта промерзания от поверхности земли в грунтовую толщу возникают касательные силы пучения, приложенные к боковым поверхностям фундаментов. При понижении температуры грунта величины удельных касательных и, соответственно, суммарных сил пучения Qf возрастают практически до 30 тс/м. Смерзание грунта в единое целое поддерживает лед, однако при весеннем потеплении лед теряет свои связующие свойства. При понижении температуры замерзшего грунта значения суммарных сил Qf достигают своего максимума и потом начинают снижаться. В процессе изменения касательных нагрузок пучения возможны два варианта событий:

  1. При превышении нагрузок воздействия со стороны построенного дома над значениями показателей Qf будет соблюдаться устойчивость опоры, деформация пучения – нулевая;
  2. При превышении значений Qf над нагрузками со стороны постройки фундамент теряет устойчивость и начинает перемещаться вверх вместе с замерзшим грунтом. При этом происходит отрыв подошвы фундамента от грунтового основания с образованием под ней объемной мини-полости. В процессе весеннего оседания постройки, связанного со снижением сил пучения, в образовавшуюся полость попадает грунт со стенок траншеи. Опора фундамента уже НЕ МОЖЕТ вернуться в исходное положение. Начинается крен всего строения, с годами все нарастающий.

Методики расчета

В зависимости от глубины заложения щелевые фундаменты подразделяются на два типа:

  • Глубоко заглубленные — заложенные ниже глубины промерзания почвы;
  • Мелкозаглубленные — применяемые на непучинистых почвах.

Применительно к опорам ленточного щелевого типа необходимо использовать указания свода правил СП 22.13330.2011 «Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*», регламентирующие расчеты фундаментов по двум группам предельных состояний (п.5.1.2):

  • Расчеты по несущей способности, относимые СП к первой группе предельных состояний, куда вошли разрушения конструкции, потеря устойчивости положения и т.п.;
  • Расчеты по деформациям, отнесенные СП ко второй группе предельных состояний, в число которых вошли недопустимые перемещения и т.п.

Щелевые конструкции оснований дома, залитые ниже глубины промерзания необходимо рассчитывать на устойчивость от касательных сил пучения и по деформациям осадок. Мелкозаглубленные щелевые основания, залитые в пучинистых почвах, дополнительно рассчитывают по деформациям пучения. Справочные значения удельных касательных сил пучения приведены в табл. 6.10 СП 50-101-2004 «Проектирование и устройство оснований и фундаментов зданий и сооружений». По ним определяется расчетная нагрузка на фундамент для принятия решения о применимости щелевого ленточного основания.

Этапы строительства

При изготовлении щелевых оснований выполняются следующие этапы работ:

  1. Земляные работы по рытью траншеи в соответствии с проектом;
  2. Установка опалубки надземной части на необходимый уровень – будущий цоколь дома;
  3. Армирование в соответствии с проектом;
  4. Заливка бетонной смеси;

Земляные работы

Траншея для щелевого фундамента

Прокладка траншеи начинается со снятия верхнего плодородного слоя и использования его (при необходимости) для выравнивания площадки.

Траншея выкапывается такой же ширины, как ширина фундамента. Глубина траншеи определена в проекте. Боковые грани траншеи должны быть ровными и не обрушаться во время всех подготовительных работ. Если прошел дождь, то образовавшиеся лужи обязательно осушаются. А «поплывший» грунт срезается до сухого слоя.

Допускается расширение нижней части траншеи для опорной подошвы ленточного монолита. Устройство песчаной подушки не является обязательным для монолитных фундаментов глубокого заложения, а иногда может навредить. Если подушка из песка укладывается, необходимо виброуплотнение.

Обустройство опалубки надземной части

Опалубка

Выставляем опалубку и укрепляем боковыми подпорами.

Для подготовки цоколя дома выставляют опалубку по высоте цокольной части от уровня поверхности грунта. Допускается изготовление цоколя как самостоятельной конструкции из кирпичной кладки или блочного типа.

Армирование

Армирование щелевого фундамента

Укладываем арматурный каркас в траншею.

Армирование производится вязкой арматуры. Особое внимание уделяется углам. Более подробно смотрите в материалах: армирование углов ленточного фундамента, как подобрать диаметр арматуры для ленточного фундамента.

Укрепление опалубки

Укрепляем опалубку дополнительными поперечными перемычками сверху.

Заливка бетонной смеси

Заливка бетоном

При подготовке бетонной смеси принято ее готовить, как минимум, на 10% больше расчетной потребности, полное заполнение раствором всех неровностей в грунте.

В подготовленную траншею заливают приготовленную бетонную смесь. Оптимальным вариантом считается заливка непосредственно после подготовки траншеи, пока подсыхающие глинистые края не начали осыпаться. Для укрепления бетонной основы проводится процесс уплотнения, в результате щебень/гравий ложатся максимально плотно с удалением излишков воды и воздуха. Вариантами уплотнения являются штыкование либо виброуплотнение.

Распалубка

Снимаем опалубку и убираем плодородный слой почвы внутри фундамента.

Заключение

Практика строительства легких зданий подтвердила экономичность использования щелевых ленточных оснований. Однако специфика применения этого типа оснований в зависимости от категории грунта требует высокой квалификации проектировщиков в части выполнения расчетов на устойчивость и деформации фундаментов домов. Нередко строители не проводят изыскания для определения свойств грунта на новостройке, а конструкцию фундамента принимают, перестраховываясь, как для сильнопучинистых грунтов, что приводит к удорожанию строительства. Грамотно обоснованное решение щелевого фундамента уменьшит трудоемкость строительства и сократит сроки возведения дома.

Щелевые фундаменты

Щелевым называют монолитный ленточный железобетонный фундамент прямоугольного сечения, особенностью которого является укладка бетона непосредственно в выкопанную траншею - "в распор" грунта . Изготавливают их обычно в связанных глинистых грунтах, в песчаных грунтах их не применяют, так как стенки траншеи в них будут осыпаться. Цоколь можно делать как единую конструкцию с фундаментом или раздельно - из кирпичной или блочной кладки ( рис. 1 а, б ). В первом случае опалубку выставляют от поверхности грунта на высоту цоколя.

Конструкции ленточных фундаментов

Щелевые фундаменты более экономичны по сравнению с традиционными, устроенными в траншеях с применением опалубки ( рис. 1в ). Поэтому они более привлекательны при строительстве малоэтажных зданий. До последнего времени применяли только конструкции, заложенные ниже расчетной глубины промерзания.
В традиционных ленточных фундаментах нагрузка от дома на основание передается через подошву. Сопротивление грунта обратной засыпки в расчетах не учитывают. При устройстве щелевых фундаментов за счет неровности бортов траншей и плотной (с виброуплотнением или штыкованием) укладки бетона получается хорошее сцепление боковой поверхности конструкции с грунтом, который может воспринимать значительную часть нагрузки от дома. Поэтому для получения экономичных конструкций в расчетах учитывают сопротивление грунта как по их подошве, так и по боковой поверхности. Как будет показано ниже, это достижимо не во всех грунтовых условиях.
Щелевые фундаменты, заложенные ниже глубины промерзания, рассчитывают по деформациям осадок и на устойчивость против воздействия касательных сил пучения.
При применении мелкозаглубленных щелевых фундаментов в пучинистых грунтах помимо указанных расчетов следует выполнять расчет по допустимым деформациям пучения. Если размеры подошвы щелевых конструкций определяют по допустимому сопротивлению грунта, рассчитанному на основе физико-механических характеристик, то осадки будут в допустимых пределах и отдельного расчета не требуют.
Так как подавляющее большинство строительных площадок представлено пучинистыми грунтами, для заглубленных щелевых фундаментов под малоэтажными домами основным является расчет на устойчивость, а для мелкозаглубленных - расчет на устойчивость и по деформациям пучения.
Для заглубленных конструкций устойчивость обеспечивается превышением расчетной нагрузки от дома над максимальными суммарными касательными силами пучения ( рис. 2, кривая 2 ). В этом случае деформации пучения равны нулю.

Рис. 2. Характерное изменение величины касательных сил пучения по боковой поверхности заглубленных щелевых фундаментов в сильнопучинистых грунтах в течение зимнего периода при нормативной глубине промерзания 1,4 м: 1 - удельные касательные силы пучения; 2 - суммарные касательные силы пучения; 3 - среднемесячная температура воздуха в зимний период

Для мелкозаглубленных фундаментов деформации пучения должны быть равны нулю при промерзании грунта на глубину заложения их подошвы. Устойчивость в этом случае обеспечивается при гораздо меньших, чем у заглубленных фундаментов, суммарных силах пучения.

Закономерности взаимодействия щелевых фундаментов с пучинистыми грунтами

Промерзание грунта начинается с поверхности. По мере продвижения фронта промерзания в толщу грунта в пучинистых грунтах по боковой поверхности фундаментов возникают касательные силы пучения, удельные значения которых возрастают с понижением температуры воздуха и грунта ( рис. 2, кривая 1 ).
Цементирующим составляющим в грунте является лед, величина смерзания которого с бетонной поверхностью зависит от температуры грунта. Например, в Московской области отрицательные среднемесячные температуры достигают максимума в январе ( рис. 2, кривая 3 ). В этот же период достигают своего максимального значения удельные касательные силы. В дальнейшем, при снижении среднемесячной температуры в феврале, удельные касательные силы уменьшаются, но суммарные силы еще некоторое время продолжают увеличиваться за счет увеличения глубины промерзания, а затем тоже снижаются ( рис.2, кривая 2 ).
Если расчетные нагрузки от дома равны или превышают расчетные суммарные касательные силы пучения, то фундамент будет устойчив, а деформации пучения равны нулю. Если нагрузки от дома меньше суммарных касательных сил пучения, то фундамент будет перемещаться вместе с грунтом. При этом подошва отрывается от основания, и под ней образуется полость, которая становится причиной накопления остаточных деформаций пучения, так как в нее может попасть грунт со стен траншеи при весеннем оседании дома. Фундамент весной может не прийти в исходное положение и в том случае, если нагрузка от дома окажется меньше сил трения грунта. Это явление часто наблюдается при применении заглубленных щелевых фундаментов для малоэтажных домов, строящихся на пучинистых грунтах . Во всех случаях подвижка здания вверх свидетельствует о неустойчивости и, следовательно, о ненадежности фундамента.
Если щелевой фундамент выполнен в виде пространственной жесткой рамы и сопротивление на изгиб поперечного сечения достаточно для сохранения надфундаментных конструкций, то при деформациях пучения повреждения кладки стен в кирпичных домах или в домах, построенных из других кладочных материалов, не происходит. Однако образуется крен всего дома, который с годами может нарастать.
При применении мелкозаглубленных щелевых фундаментов устойчивость здания обеспечивают, выбрав соответствующую глубину заложения ( рис. 3 б ), а допустимые деформации пучения - устроив в траншее под фундаментом противопучинную подушку. В результате получают значительную экономию бетона.
Однако следует иметь в виду, что по мере выглубления фундаментов может потребоваться увеличение ширины их опорной части. При этом цоколь можно оставить прежней ширины ( см. рис. 3 б ).
Если грунтовые воды во время производства работ расположены выше глубины промерзания, то устроить надежное основание трамбованием противопучинной подушки не получится. Поэтому траншею следует разрабатывать глубиной на 10. 20 см выше уровня воды, а допустимые деформации пучения обеспечить за счет уширения траншеи. То есть в этом случае переходят к устройству обычных мелкозаглубленных фундаментов.

Особенности проектирования щелевых фундаментов

Нагрузка от дома воспринимается грунтом по боковой поверхности фундамента и под его подошвой. Если грунты основания - непучинистые, то допустимую нагрузку на фундаменты можно рассчитывать как сумму расчетных сопротивлений грунтов. Если грунты - слабопучинистые, то допустимую нагрузку на фундаменты следует принимать только по расчетному сопротивлению грунта под подошвой. Если же грунты - средне- или сильнопучинистые, то допустимую нагрузку следует принимать по расчетному сопротивлению грунта под подошвой с учетом увеличения нагрузки на фундаменты за счет негативного трения грунта, возникающего весной на их боковой поверхности.
Это - первая особенность проектирования щелевых фундаментов, которая требует пояснений. Весной при оттаивании распученного грунта начинается процесс его консолидации (уплотнения) и оседания. За счет увеличенной шероховатости боковой поверхности происходит зависание части грунта на фундаментах. Появляется так называемое отрицательное (негативное) трение, общая методика определения которого изложена в СНиП 2.02003-85 "Свайные фундаменты", п.п. 4.11-4.13. Общая нагрузка на фундаменты возрастает.
Такое взаимодействие фундаментов с грунтом продолжается лишь короткое время в весенний период, но происходит оно из года в год и может стать причиной повышенных осадок фундаментов.
Вторая особенность , которую следует учитывать при проектировании щелевых фундаментов, состоит в том, что за счет той же шероховатости боковой поверхности возрастают касательные силы пучения, которые следует учитывать при расчете фундаментов на устойчивость.
Методика расчета ленточных фундаментов подробно изложена в статье "Устойчивость фундаментов малоэтажных домов в пучинистых грунтах" в журнале "Советы профессионалов", №6, 2005 г., с. 21. Поэтому отметим только отличие расчетов для щелевых фундаментов.

Рис. 3. Варианты устройства щелевых фундаментов: а - при заглублении ниже расчетной глубины промерзания; б - мелкозаглубленный; 1 - фундамент; 2 - противопучинная подушка; dw - глубина залегания уровня грунтовых вод; df - глубина промерзания УГВ - уровень грунтовых вод

В общем случае условие устойчивости определяется из выражения:

где γ1, γ2 - коэффициенты надежности, равные 1.1 и 0.9 соответственно;
Qд - нормативная нагрузка от дома;
Qf - суммарные касательные силы пучения, действующие по боковой поверхности фундаментов, определяются по формуле:

где τн - удельные касательные силы пучения, определяются по таблице 6.10 СП 50-101-2004 "Проектирование и устройство оснований и фундаментов зданий и сооружений", 2005 г.;
к - коэффициент, учитывающий отношение среднемесячной температуры воздуха при промерзании грунта на глубину заложения мелкозаглубленных фундаментов или на расчетную глубину промерзания для заглубленных фундаментов к отрицательной среднемесячной максимальной температуре за зимний период, для заглубленных фундаментов к = 1;
m - коэффициент, учитывающий ширину пазухи и вид грунта, используемого при обратной засыпке; для щелевых фундаментов m = 1;
ω - коэффициент, учитывающий тепловой режим дома; для неотапливаемых домов ω = 2, для наружных фундаментов отапливаемых домов ω = 1, для внутренних фундаментов отапливаемых домов ω = 0;
Sф - площадь одной стороны боковой поверхности фундамента, находящейся в грунте.

При неровной боковой поверхности железобетонных фундаментов с выступами до 20 мм значение удельной касательной силы пучения (τн) для щелевых фундаментов следует увеличивать до 1,5 раз (СП, табл. 6.10).
Решая выражение (1) относительно величины Qд, можно получить значения нагрузок от дома, при которых обеспечивается устойчивость заглубленных щелевых фундаментов в пучинистых грунтах и, следовательно, возможность их применения. В табл. приведены значения таких нагрузок при нормативной глубине промерзания 1,4 м.

Таблица: Значения нагрузок от дома, при которых обеспечивается устойчивость заглубленных щелевых фундаментов в пучинистых грунтах

* При условии, что во время строительства пучинистый грунт вокруг фундаментов будет предохранен от промерзания.

Опыт многолетних расчетов малоэтажных домов показывает, что диапазон характерных нагрузок для всех домов составляет 2,0. 14,0 тс/м. В кирпичных двухэтажных домах нагрузки на отдельные фундаменты могут достигать значений 18,0 тс/м. Как видим, область надежного применения заглубленных щелевых фундаментов в пучинистых грунтах под малоэтажными домами существенно ограничена.

Условия надежного применения щелевых фундаментов

1. Вертикальные стенки траншей не должны обрушиваться вплоть до окончания укладки бетона.
2. Уровень грунтовых вод во время производства работ должен быть ниже дна траншей. Если в результате прошедших дождей на дне траншей образовались лужи, их необходимо вычерпать. Если грунт в этих местах пришел в текучее или текучепластичное состояние, его необходимо срезать до уровня первоначального состояния.
3. Заглубленные щелевые фундаменты применимы по устойчивости под всеми домами независимо от теплового режима дома в непучинистых грунтах, а также под кирпичными отапливаемыми домами в 2 (и выше) этажа в слабопучинистых грунтах. Во всех остальных случаях по условию надежности под малоэтажными домами в пучинистых грунтах заглубленные щелевые фундаменты не применимы. Контактный телефон 353-55-75

щелевой фундамент

Если бригада, приглашённая вами для изготовления фундамента, предлагает отлить монолитную железобетонную ленту прямо в грунте, будьте внимательны. Для них она проще в изготовлении, а для вас может быть просто неприемлемой. Специалист рассказывает об особенностях применения такой конструкции.

щелевой фундамент

Щелевым называют монолитный ленточный железобетонный фундамент прямоугольного сечения, при изготовлении которого бетон укладывают непосредственно в выкопанную траншею - «в распор» грунта. Делают их обычно в связанных глинистых грунтах, в песчаных грунтах их не применяют, так как стенки траншеи в них будут осыпаться.

Цоколь можно делать как единую конструкцию с фундаментом или раздельно - в виде кирпичной или блочной кладки (рис. 1а, б). В первом случае опалубку выставляют от поверхности грунта на высоту цоколя.

Щелевые фундаменты более экономичны по сравнению с традиционными, устроенными в траншеях с применением опалубки (рис. 1в). Поэтому они более привлекательны при строительстве малоэтажных зданий.

Особенности щелевых фундаментов

В традиционных ленточных фундаментах нагрузка от дома на основание передаётся через подошву. Сопротивление грунта обратной засыпки в расчётах не учитывают.

При устройстве щелевых фундаментов за счёт неровности бортов траншей и плотной (с виброуплотнением или штыкованием) укладки бетона получается хорошее сцепление боковой поверхности конструкции с грунтом, который может воспринимать значительную часть нагрузки от дома. Поэтому для получения экономичных конструкций в расчётах учитывают сопротивление грунта как по их подошве, так и по боковой поверхности. Как будет показано ниже, это достижимо не во всех грунтовых условиях.

Щелевые фундаменты, заложенные ниже глубины промерзания, рассчитывают по деформациям осадок и на устойчивость против воздействия касательных сил пучения. Для мелко-заглублённых щелевых фундаментов в пучинистых грунтах помимо указанных расчётов следует выполнять расчёт по допустимым деформациям пучения. Если площадь подошвы щелевых конструкций определяют по допустимому сопротивлению грунта, рассчитанному на основе его физико-механических характеристик, то осадки будут в допустимых пределах и отдельного расчёта не требуют.

Когда применим щелевой фундамент

Так как подавляющее большинство строительных площадок представлено пучинистыми грунтами, для заглублённых щелевых фундаментов под малоэтажными домами основным является расчёт на устойчивость, а для мелкозаглублённых - расчёт и на устойчивость, и по деформациям пучения.

Для заглублённых конструкций устойчивость обеспечивают превышением расчётной нагрузки от дома над максимальными суммарными касательными силами пучения (рис. 2, кривая 2). В этом случае деформации пучения равны нулю.

Для мелкозаглублённых фундаментов деформации пучения должны быть равны нулю при промерзании грунта на глубину заложения их подошвы. Устойчивость в этом случае обеспечивается при гораздо меньших, чем у заглублённых фундаментов, суммарных силах пучения.

Щелевые фундаменты в пучинистых грунтах

Промерзание грунта начинается с поверхности. По мере продвижения фронта промерзания в толщу пучинистого грунта по боковой поверхности фундаментов возникают касательные силы пучения, возрастающие с понижением температуры воздуха и грунта (рис. 2, кривая 1).

Цементирующей составляющей в грунте является лёд. Смерзание его с бетонной поверхностью зависит от температуры грунта. Например, в Московской области отрицательные среднемесячные температуры достигают максимума в январе (рис. 2, кривая 3). В этот же период достигают своего максимального значения удельные касательные силы. В дальнейшем, при снижении среднемесячной температуры в феврале удельные касательные силы уменьшаются, но суммарные силы ещё некоторое время продолжают увеличиваться за счёт увеличения глубины промерзания, а затем тоже снижаются (рис. 2, кривая 2).

ЕСЛИ НАГРУЗКИ ОТ ДОМА РАВНЫ ИЛИ ПРЕВЫШАЮТ РАСЧЁТНЫЕ СУММАРНЫЕ КАСАТЕЛЬНЫЕ СИЛЫ ПУЧЕНИЯ, ТО ФУНДАМЕНТ БУДЕТ УСТОЙЧИВ, А ДЕФОРМАЦИИ ПУЧЕНИЯ РАВНЫ НУЛЮ.

Если нагрузки от дома меньше суммарных касательных сил пучения, то фундамент будет перемещаться вместе с грунтом. При этом подошва отрывается от основания, и под ней образуется полость, куда может попасть грунт со стен траншеи при весеннем оседании дома. Это становится причиной накопления остаточных деформаций пучения.

Весной фундамент может не прийти в исходное положение и в том случае, если нагрузка от дома окажется меньше сил трения грунта. Это явление часто наблюдается при применении заглублённых щелевых фундаментов для малоэтажных домов, строящихся на пучинистых грунтах.

Подвижка здания вверх свидетельствует о неустойчивости и, следовательно, о ненадёжности фундамента.

Если щелевой фундамент выполнен в виде пространственной жёсткой рамы и сопротивление на изгиб поперечного сечения достаточно для сохранения надфундаментных конструкций, то при деформациях пучения не повреждается кладка стен в домах из кирпича или других кладочных материалов. Однако образуется крен всего дома, который с годами может нарастать.

При применении мелкозаглублённых щелевых фундаментов устойчивость здания обеспечивают, выбрав соответствующую глубину заложения (рис. 36), а допустимые деформации пучения - устроив в траншее под фундаментом противопучинную подушку.

Когда применим щелевой фундамент

В результате получают ещё и значительную экономию бетона.

Однако следует иметь в виду, что по мере выглубления фундаментов может потребоваться увеличение ширины их опорной части. При этом цоколь можно оставить прежней ширины.

Если грунтовые воды во время работ расположены выше глубины промерзания, то устроить надёжное основание трамбованием противопучинной подушки не получится. Поэтому траншею следует разрабатывать глубиной на 10-20 см выше уровня воды, а допустимые деформации пучения обеспечить за счёт уширения траншеи. То есть в этом случае переходят к устройству обычных мелкозаглублённых фундаментов.

Когда применим щелевой фундамент

Особенности проектирования щелевых фундаментов

Нагрузка от дома воспринимается грунтом как по боковой поверхности фундамента, так и под его подошвой. Если грунты основания непучинистые, то допустимую нагрузку на фундаменты можно рассчитывать как сумму расчётных сопротивлений грунтов. Если грунты слабопучинистые, то допустимую нагрузку на фундаменты следует принимать только по расчётному сопротивлению грунта под подошвой. Если же грунты средне- или сильно-пучинистые, то допустимую нагрузку следует принимать по расчётному сопротивлению грунта под подошвой с учётом увеличения нагрузки на фундаменты за счёт негативного трения грунта, возникающего весной на их боковой поверхности.

Это - первая особенность проектирования щелевых фундаментов, требующая пояснений. Весной при опаивании распученного грунта начинается процесс его консолидации (уплотнения) и оседания. За счёт увеличенной шероховатости боковой поверхности происходит зависание части грунта на фундаментах. Появляется так называемое отрицательное (негативное) трение. Общая нагрузка на фундаменты возрастает.

Такое взаимодействие фундаментов с грунтом продолжается лишь короткое время весной, но происходит оно из года в год и может стать причиной повышенных осадок фундаментов.

Вторая особенность, которую следует учитывать при проектировании щелевых фундаментов, состоит в том, что за счёт той же шероховатости боковой поверхности возрастают касательные силы пучения, которые следует учитывать при расчёте фундаментов на устойчивость.

Когда применим щелевой фундамент

Не будем касаться особенности расчётов. Важно, что мы можем получить значения нагрузок от дома, при которых обеспечивается устойчивость заглублённых щелевых фундаментов в пучинистых грунтах и, следовательно, возможность их применения. Ниже в таблице приведены значения таких нагрузок при нормативной глубине промерзания 1,4 м. Опыт многолетних расчётов малоэтажных домов показывает, что диапазон характерных нагрузок для всех домов составляет 2,0-14,0 тс/м. В кирпичных двухэтажных домах нагрузки на отдельные фундаменты могут достигать значений 18,0 тс/м. Как видим, область надёжного применения заглублённых щелевых фундаментов в пучинистых грунтах под малоэтажными домами существенно ограничена.

Условия надёжного применения щелевых фундаментов
1. Вертикальные стенки траншей не должны обрушиваться вплоть до окончания укладки бетона.
2. Уровень грунтовых вод во время работ должен быть ниже дна траншей.

Если в результате прошедших дождей на дне траншей образовались лужи, их необходимо вычерпать. Если грунт в этих местах пришёл в текучее или текучепластичное состояние, его необходимо срезать до уровня первоначального состояния.

3. Заглублённые щелевые фундаменты в непучинистых грунтах применимы по устойчивости под всеми домами независимо от теплового режима дома, а также под кирпичными отапливаемыми домами в два (и выше) этажа в слабопучинистых грунтах. Во всех остальных случаях заглублённые щелевые фундаменты не применимы под малоэтажными домами в пучинистых грунтах по условию надёжности.

На материалах для фундамента экономить нельзя, но иногда можно сохранить время и деньги на строительстве своими руками, используя нестандартный подход. Например, залить бетон для ленты прямо в землю без опалубки. Технология называется щелевой фундамент. В нормативах ее не найти, но на глинистых почвах с низким уровнем грунтовых вод так строят с древних времен.

Обустройство основания без опалубки

Фундаменты называются щелевыми, когда их возводят без опалубки, заливая бетон прямо в траншею. Обязательное условие — надежный глинистый грунт, так как землю с высоким содержанием песка невозможно утрамбовать, стенки все равно начнут осыпаться, что затруднит заливку бетона и понизит его прочность.

Когда можно возводить фундамент без опалубки?

  • Глинистый грунт.
  • Грунтовые воды залегают ниже основы.
  • Морозное пучение минимально.

Только из почвы с большим содержанием глины можно возвести надежную форму для заливки. Но этот тип грунта впитывает влагу лучше других, а значит, и наиболее подвержен морозному пучению. Поэтому возводить такое основание дома можно, зная характеристики участка. Земля, которая обвалилась в траншею, или поднявшиеся грунтовые воды сведут на нет всю экономию.

Приблизительно узнать характеристики грунта можно самому. Но только сделав профессиональную экспертизу, вы будете спать спокойно. Бетон не наберет прочность в неподходящих условиях. Иногда на одной сотке встречаются 2‒3 типа грунта, а подземные воды могут содержать агрессивные соединения.

Самый простой способ определить УГВ ‒ бурение скважин или отслеживание уровня воды в колодце. Но не стоит забывать, что кроме грунтовых вод при возведении фундамента своими руками опасны дожди, начинать бетонирование в промокшей траншее нельзя.

Этот тип фундамента имеет неровную поверхность, поэтому морозное пучение действует на него сильнее. Предотвратить это можно, заложив фундамент ниже уровня промерзания, утеплив, или обеспечив хороший дренаж.

Для строительства щелевого основания подойдет сухая теплая погода. Оптимальная температура твердения +15-20°C. Если днем постоянно светит солнце, рекомендуем укрыть бетон тентом, чтобы он не пересыхал. Первые дни поверхность смачивают водой.

Нужно ли гидроизолировать фундамент?

Если вы строите жилой дом, лучше изолировать фундамент от воды, тогда здание не нужно будет ремонтировать еще долго. Специалисты рекомендуют изолировать основание, даже если у вас почва с низким УГВ, так как этот показатель меняется со временем. По стандартам гидроизоляцию не делают, если строят дом небольшой площади, на хорошем грунте и без подвала. Чтобы не пришлось раскапывать щелевой ленточный фундамент для вторичной гидроизоляции, используйте марку с водонепроницаемостью от W6. Если вы делаете смесь своими силами, обязательно добавлять туда вещества для защиты от влаги.

Ленточные фундаменты

Пошаговое руководство по закладке основания

С участка убирают мусор и растения. Копают траншею, засыпают в нее слой песка 10 см и такой же слой гравия. Выкопанную землю удаляют от будущего дома на 0,5 м, так как место, куда зальют бетон, должно быть ровным, без лишнего грунта и мусора. Песчаная подушка обеспечивает минимальный дренаж и выравнивает поверхность основания, особенно это важно, если участок неровный. Затем измеряют траншею и проверяют отклонение по осям.

Чтобы сделать монолитный фундамент, нужно установить опалубку из ламинированной фанеры или обструганных досок для его надземной части. Даже если участок неровный, важно, чтобы фундамент был без перепадов высот. Иногда цоколь строят из готовых бетонных блоков, тогда опалубка не понадобится.

Не рекомендуем использовать кирпич или легкий бетон, они сильно пропускают влагу, и не выдержат нагрузки от тяжелого строения. Чтобы не пришлось убирать разлившийся бетон, лучше поставить доски на 5‒10 см выше поверхности земли. Если такой возможности нет, не ждите, смесь засохнет и придется работать перфоратором, чтобы отодрать ее.

Схема основания дома

По технологии малозаглубленную ленту обязательно армировать, так как на нее будет действовать морозное пучения, что часто приводит к трещинам. Чтобы при заливке бетона влага не утекла, в траншею укладывают толстую полиэтиленовую пленку, но она не будет выполнять функции гидроизоляции. Для защиты основания используют рубероид, а от морозного пучения, на дно и стенки траншеи экструдированный пенополистирол. Эти материалы закрепляют на верхней части опалубки, если она есть, или связывают с арматурой.

Чем быстрее забетонировать щелевой монолитный фундамент, тем прочнее он получится. При жаркой погоде стенки траншеи начнут осыпаться, а в дождь их может размыть. Лучше начать заливку сразу или на следующий день после земляных работ. Используйте виброуплотнитель, чтобы распределить бетон равномерно.

Смесь набирает марочную прочность 28 дней, если в течение первой недели бетон намокнет, замерзнет или пересохнет, его класс понизится. Только что залитый фундамент часто накрывают пленкой и устанавливают тент, если работы проводят в солнечную погоду.

Из-за морозного пучения мелкозаглубленный фундамент может треснуть, поэтому если не проложить теплоизолирующие материалы перед бетонированием придется раскапывать конструкцию. Также нужно защитить стены основания дома от капиллярной влаги, иначе пространство под полом будет наполняться водой каждую весну. Для этого надо нанести на стенки обмазочную или рулонную гидроизоляцию.

Построить основу для дома без опалубки возможно, но если у вас не глинистый грунт или много воды на участке, лучше возвести каркас, даже, пусть даже не из ламинированной фанеры, а из старых дверей или других подручных материалов. Перед началом работ соберите информацию о вашей почве, попробуйте выкопать ямку, чтобы самому проверить насколько грунт подходит для этой технологии.

Читайте также: