Реконструкция фундаментов и усиление оснований лекция

Обновлено: 10.05.2024

Необходимость в повышении прочности оснований фундаментов существующих зданий и сооружений может вызываться различными причинами, к которым можно отнести:

- снижение прочности оснований в процессе эксплуатации;

- неправильный учет свойств грунта основания при проектировании;

- увеличение нагрузок на основание при реконструкции;

- ведение строительных и взрывных работ вблизи здания;

- влияние динамических воздействий;

- аварийные ситуации и другие причины.

Усиление оснований существующих зданий выполняют следующими способами:

- глубинным уплотнением грунта;

- заменой слабого грунта;

- включением в основание элементов повышенной жесткости.

Упрочнение основания существующего здания или сооружения позволяет передать на основание возрастающие нагрузки при реконструкции, в некоторых случаях без замены или усиления фундаментов и без выполнения земляных работ по их отрывке.

Сущность химических способов состоит в том, что в грунт через предварительно погруженные перфорированные трубы (инъекторы) нагнетают маловязкие растворы. Находясь в грунте, растворы вступают в химическую реакцию с грунтом и, отверждаясь, улучшают химические свойства основания.

Химические способы делятся на две группы, к первой относятся способы, использующие силикатные растворы и их производные, ко второй – способы, применяющие органические полимеры (акриловые, карбомидные, резорцинформальдегидные, фурановые смолы и т.п.).

Наиболее распространенные имеют способы силикатизации . Материалом для силикатизации является жидкое стекло – коллоидный раствор силиката натрия.

При однорастворной силикатизации в грунт инъецируется гелеобразующий раствор, состоящий из двух или трех компонентов: растворы силиката натрия и отверждающего реагента (раствор кислот, органических составов). В результате протекающей реакции грунт цементируется гелем кремниевой кислоты.

При двухрастворной силикатизации процесс закрепления сводится к поочередному нагнетанию в грунт раствора силиката натрия и раствора хлористого кальция. В процессе взаимодействия растворов образуется гидрогель кремниевой кислоты. Песок после инъекции становится водонепроницаемым.

При газовой силикатизации в качестве отвердителя силиката натрия используют углекислый газ. Газ нагнетают в грунт для его предварительной активизации. После этого инъецируют силикат натрия, а затем в грунт подают углекислый газ. Способ применяется для песчаных и просадочных лессовых грунтов, а также грунтов с высоким содержанием органических веществ. Закрепленные пески приобретают прочность 0,8…1,5 МПа, а лессовые грунты 0,8…1,2 МПа.

При электросиликатизации используется комбинированное применение постоянного электрического тока и силикатных растворов. Способ предназначен для закрепления переувлажненных мелкозернистых грунтов и супесей, а также лессовых грунтов, в которых жидкое стекло проникает с трудом.

При аэросиликатизации грунтов используют сжатый воздух, который подают в грунт вместе с закрепляющим раствором жидкого стекла. Подача сжатого воздуха позво-

Технология возведения зданий и сооружений.

ляет получить в грунте радиально направленные от инъектора лучеобразные участки закрепленного грунта.

При больших объемах закачки тампонажных материалов применяют глинистосиликатные растворы, представляющие собой смеси водных растворов высокодисперсных глин с небольшой добавкой силиката натрия. Силикат натрия инициирует возникновение в порах грунта эластичного геля, обеспечивающего водонепроницаемость грунтового массива.

К другим химическим методам относятся аммонизация и смолизация .

При аммонизации в грунт под небольшим давлением нагнетается газообразный аммиак. Метод позволяет придать лессовым грунтам свойства непросадочности.

При смолизации в грунты инъецируются водные растворы синтетических смол (карбомидных, эпоксидных, фурановых и др.) вместе с отвердителями (кислотами, кислыми солями). После взаимодействия с отвердителями смола полимеризуется. Смолизация используется при закреплении песчаных с коэффициентом фильтрации 0,5…45 м/сут. и лессовых грунтов. Грунты становятся водонепроницаемыми и имеют прочность на сжатие до 1…5 МПа.

Выбор способа и зон химического закрепления грунта зависит от характеристики основания, формы и размеров фундамента, действующих нагрузок и свойств грунта. Зоны закрепления в плане могут быть ленточными, сплошными, прерывистыми и кольцевыми (рис. 1).

Рисунок 1. Зоны химического закрепления грунтов оснований:

а – ленточная; б – сплошная; в – столбчатая; г – кольцевая.

По характеру расположения инъекторов у фундамента закрепление бывает верти-

кальное, наклонное, горизонтальное и комбинированное (рис. 1).

Рисунок 2. Варианты расположения инъекторов при закреплении грунтов оснований: 1 – фундамент; 2 – инъектор; 3 – зона закрепления; 4 – шахта.

К физико-химическим способам закрепления грунтов относится цементация, грунтоцементация, битуминизация и глинизация.

Технология возведения зданий и сооружений.

При цементации в грунт через инъекторы нагнетается цементный, цементнопесчаный или цементно-глинистый раствор. Метод применяют для закрепления песчаных, крупнообломочных грунтов и трещиноватых скальных пород.

При грунтоцементации для укрепления оснований устраивают грунтоцементные сваи. Для устройства свай, грунт в пробуриваемой скважине перемешивается с вяжущим материалом без выемки его из скважины. Метод применяется для закрепления слабых грунтов при возведении вблизи эксплуатируемых зданий новых, создании подземных конструкций в слабых грунтах, устройстве противофильтрационных завес и др.

При глинизации для заполнения скважин используют глинистые растворы. Применяется в трещиноватых породах.

При битуминизации в качестве инъецируемого вещества используют разогретый битум или холодную битумную эмульсию. Способ рекомендуется для песчаных грунтов с коэффициентами фильтрации 10…50 м/сут. Из-за сложности и не экологичности технологии метод применяется очень ограниченно.

Термическое закрепление грунтов применяется при закреплении просадочных грунтов. В пробуренных в грунте скважинах сжигают газообразное, жидкое или твердое топливо. Одновременно в скважину подают воздух. Обжиг производят при температуре 400…800 °С в течение 5…10 дней. Вокруг скважины образуется столб закрепленного грунта диаметром 1,5…3,0 м с прочностью до 1,2 МПа.

Рисунок 3. Термическое закрепление грунтов: 1- форсунка; 2 – распорные кольца; 3 – грунт; 4 – кран; 5 – эластичная оболочка; 6 – термопара; 7 - усиляемый фундамент.

Иногда в практике применяется электротермический способ обжига грунта. В качестве источника используются нихромовые электронагреватели. Скважины во всех случаях могут пробуриваться вертикально, наклонно и горизонтально.

Работы по усилению оснований методами инъецирования должны выполняться в определенной последовательности:

1. Перед производством работ по закреплению грунтов следует:

- уточнить расположение подземных коммуникаций, а также расположение и состояние сооружений, находящихся вблизи места закрепления;

- подготовить бригаду исполнителей, предварительно прошедших курс обучения технологии производства работ;

- обеспечить наличие предусмотренного проектом комплекта оборудования и материалов;

- выполнить контрольное закрепление грунта и провести его испытания.

2. Закрепление грунтов включает последовательное выполнение следующих видов работ:

- подготовительных и вспомогательных, включая приготовление закрепляющих растворов;

- бурение и оборудование скважин, погружение в грунт инъекторов;

Технология возведения зданий и сооружений.

- нагнетание закрепляющих реагентов в грунты;

- извлечение инъекторов и заделка инъекционных скважин;

Подготовительные и вспомогательные работы выполняют до начала основных работ. К ним относятся: подготовка и планировка территории; подводка электроэнергии, горячего и холодного водоснабжения, канализации; организация мониторинга за осадками фундаментов; размещение на площадке химреагентов и материалов; оборудование стационарного узла приготовления растворов (при объеме закрепления более 10 тыс. м³ грунта); разметка мест погружения инъекторов или бурения инъекционных скважин; согласование возможности проведения работ с организациями, ответственными за подземные коммуникации; приготовление закрепляющих растворов рабочих концентраций; выполнение контрольных работ по закреплению грунтов.

Для повышения прочности оснований за счет уплотнения грунтов используются механические способы : устройство грунтовых свай, включение в основание жестких элементов.

Способ устройства грунтовых свай основан на погружении штампов, которые образуют скважины с вытеснением грунта радиально в стороны. В результате этого грунт вокруг скважины уплотняется. Погружение штампа выполняется продавливанием, забивкой, вибрированием. В отформованную скважину засыпают местный грунт или песок, песчано-гравийную смесь, щебень и снова ее отформовывают. Операции повторяют до тех пор, пока усредненная плотность грунтового массива не станет равной требуемой. Наибольший эффект уплотнения достигается при шахматном расположении скважин. Расстояние между осями скважин зависит от диаметра уплотняющего органа и требуемого коэффициента уплотнения.

Глубинное уплотнение может быть выполнено в виде вертикальных или наклонных скважин, может быть принято комбинированное расположение скважин (рис. 4).

Рисунок 4. Варианты устройства скважин для грунтовых свай:

а – вертикальных; б – наклонных; в – комбинированных; 1 – старый фундамент; 2 – скважина; 3, 4 – уплотненный грунт; 5 – грунт основания; 6 – прочный грунт.

Усиление корневидными сваями заключается в устройстве под фундаментами разветвленных стержневых опор, которые передают нагрузку на более прочные слои грунта (рис. 5). Корневидные сваи выполняют под различными наклонами к вертикали с помо-

Технология возведения зданий и сооружений.

щью буровых установок, например, вращательного бурения, которые позволяют пробуривать скважины через расположенные выше стены и фундаменты.

Рисунок 5. Усиление фундамента корневидными сваями:

1 – усиляемый фундамент; 2 – стена; 3 – корневидная свая.

Буровые установки имеют небольшие габариты и их можно применять в стесненных условиях, даже в подвальных помещениях. Благодаря таким преимуществам устройство корневидных свай не препятствует нормальной эксплуатации реконструируемых зданий и сооружений.

Для обеспечения устойчивости стенок в процессе бурения скважину заполняют глинистым раствором.

В готовые скважины устанавливают каркасы, состоящие из отдельных секций, стыкуемых сваркой. Длина секций лимитируется высотой помещения, в котором проводят работы. Каркас оборудуют фиксаторами, которые предупреждают отклонение от оси скважины.

После установки арматурного каркаса или одновременно с этой операцией в скважину опускают инъекционную трубу диаметром 25—50 мм, через которую нагнетают це- ментно-песчаный раствор, обжимающий стенки скважины.

При нагнетании цементно-песчаного раствора в скважину происходит вытеснение глинистого раствора на поверхность. После заполнения скважины "раствором инъекционная труба извлекается, на верхнюю секцию обсадных труб навинчивается крышка со штуцером для рукава к растворонасосу или компрессору и свежеуложенный раствор опрессовывается по мере извлечения обсадных труб. Регулируя давление и расход раствора, можно получить уширение в свае. При применении бентонитового раствора опрессовку выполняют через инъекционную трубу (рис. 6).

Рисунок 6. Схема инъецирования в скважины цементно-песчаного раствора: I – бурение скважин; II – установка арматурного каркаса; III - бетонирование скважины; IV – готовая скважина; 1 – рабочий орган буровой установки; 2 – обсадная труба; 3 – арматурный каркас; 4 – цементнопесчаный раствор.

Рекомендуется инъекционный раствор следующего состава компонентов по массе:

цемент — песок — вода 1: (1. 1.5): (0,5. 0,7).

Усиление оснований может быть выполнено путем устройства по периметру фундамента (ленточного, столбчатого) ограждающей стенки из шпунта, труб и свай. Стенки глубиной 2,5—3 ширины фундамента должны располагаться на минимальном расстоянии от фундамента, как это позволяет технология производства работ.

Необходимость и повышении прочности оснований фундаментов существующих зданий и сооружений может вызываться различными причинами, к которым можно отнести: снижение прочности оснований в процессе эксплуатации, неправильный учет свойств грунта основания при Проектировании, увеличение нагрузок на основание при реконструкции, ведение строительных и горных работ вблизи здания, влияние динамических воздействий, различного рода аварийные ситуации и другие причины.

Усиление оснований существующих зданий выполняют следующими способами: химическим закреплением; физико-химическим закреплением; термическим закреплением; глубинным уплотнением грунта; заменой слабого грунта; включением в основание элементов повышенной жесткости.

Упрочнение основания существующих зданий и сооружений позволяет передать на основание возрастающие нагрузки при реконструкции, в некоторых случаях без замены или усиления фундаментов. Не требуется также и выполнения земляных работ по отрывке фундаментов.

Выбор схем закрепления зависит от формы и размеров фундамента, конструктивных особенностей здания, характеристики основания и других условий.

По характеру расположения инъ-екторов у фундамента закрепление бывает вертикальное, наклонное, горизонтальное и комбинированное

В настоящее время накоплен богатый опыт закрепления оснований фундаментов существующих зданий методом силикатизации.

Способом одностворной силикатизации были укреплены основания под фундаментами Московского Кремля, Государственного драматического театра им. М. Горького в Куйбышеве, Одесского театра оперы и балета и др.

Для укрепления песчаных оснований аварийных зданий используют газовую силикатизацию. Укрепление выполняют составом водного раствора силиката натрия плотностью 13 кг/ м3 и углекислого газа.

При реконструкции промышленных предприятий, а также жилых и гражданских зданий для усиления оснований применяются карбамидные смолы. Карбамидными смолами закрепляют грунты в основании фундаментов, а также в откосах котлованов для повышения их устойчивости.

Растворы для закрепления грунтов приготовляют непосредственно на строительной площадке. При закреплении песков применяют карбамидные смолы марок КМ, МФ-17 и МСБ. Плотность раствора должна составлять 10,7—10,8 кг/м3.

Подпорная стена в котловане создается инъецированием растворов через вертикальные и наклонные скважины. После устройства подпорной стенки, через закрепленный грунт пробуривают горизонтальные скважины и закрепляют грунт непосредственно под фундаментами колонн.

До последнего времени нагнетание растворов при закреплении грунтов осуществляли через инъекторы, погружаемые вертикально или наклонно с поверхности грунта. Существенным недостатком в этом случае является то, что при выполнении работ нарушается эксплуатация подвалов и нижних этажей, а то и всего здания на длительное время.

В ряде случаев нагнетание закрепляющих растворов производится из горизонтально расположенных инъек-торов, которые погружаются в грунт из специально оборудованных для этой цели шахтных колодцев, приямков или траншей.

В результате истечения срока эксплуатации сооружений, необходимости использования новых технологий при интенсификации или переориентации производства в цехах промышленных зданий, изменения условий эксплуатации строений, прокладки новых подземных коммуникации, возведения зданий рядом с уже существующими, а также развития незатухающей дополнительной осадки требуется оценка обеспечения фундаментами дальнейшей нормальной эксплуатации, а в необходимых случаях — реконструкция и усиление оснований и фундаментов.

Усиление фундаментов необходимо выполнять в следующих условиях:
при увеличении нагрузки на фундаменты, возможной при реконструкции, капитальном ремонте и надстройке зданий;
при разрушении конструкции фундамента при ее расположении в агрессивной среде;
при увеличении деформативности и ухудшении условий устойчивости оснований в результате дополнительного увлажнения или ухудшения свойств грунтов в силу изменения инженерно-геологических условий;
при развитии недопустимых осадок, происходящих, как правило, в результате ошибок, допущенных при проектировании вследствие неправильной оценки несущей способности и деформативности основания или при строительстве и вызвавших нарушение природной структуры грунта.




В настоящее время используют следующие методы усилия оснований и фундаментов: изменение условий передачи давления по подошве фундамента на грунты оснований; повышение прочности конструкции фундамента; увеличение несущей способности грунтов, слагающих основание; пересадка фундаментов на сваи; изменение условий передачи давления по подошве фундамента на грунт оснований с помощью увеличения опорной площади, заглубления фундамента, устройства под зданием фундаментной плиты и введение дополнительных опор.

При недостаточной несущей способности основания увеличивают площадь фундаментов. Уширение выполняют двумя способами: без обжатия грунтов основания и с предварительным Обжатием.

В первом случае уширение производится с помощью дополнительных частей (банкетов), которые могут быть односторонними (при внецентренной нагрузке) или двусторонними (при центральной). Фундаменты под колонны чаще всего усиливают по всему периметру. Банкеты и существующие фундаменты должны быть жестко соединены, для чего используют штрабы (рис. 14.4, а) либо специальные металлические и железобетонные балки (рис. 14.4, б, в).

Ширина банкета в нижней части должна быть не менее 30 см, в верхней—20 см.

При необходимости ряд одиночных фундаментов может быть превращен в ленточный, а несколько ленточных фундаментов — в сплошную железобетонную плиту. Иногда уширение ленточных и отдельных фундаментов выполняют с применением арматуры, располагаемой в банкетах (рис. 14.5, а, б).

При уширении без обжатия (рис. 14.4 и 14.5, а) уширенная часть фундамента вступает в работу только после значительного увеличения внешней нагрузки, когда появятся дополнительные осадки, причем уширения воспримут только часть дополнительной нагрузки, значительная же ее часть будет по-прежнему передаваться через подошву старого фундамента, что вполне допустимо, поскольку выпор грунта из-под старой подошвы затруднен вследствие при-грузки основания уширениями фундамента (рис. 14.5, а).

Рис. 14.4. Уширение ленточных фундаментов монолитными банкетами: а — одностороннее уширение; б, в — двустороннее ушврение соответственно при большом и незначительном увеличении размера подошвы фундамента; 1 — упорный уголок; 2 — подкос; 3 — рабочая балка; 4 — щебеночная подготовка; 5 — анкер; б — распределительная балка; 7 — зачеканкалитымбетдам

При уширении фундамента с обжатием основания (рис. 14.5, б) вдоль боковых граней фундамента разрабатывают траншею и бетонируют примыкающие к граням фундамента банкеты отдельными участками по длине омоноличивания с кладкой. Затем устанавливают в проемах фундаментов пакеты из стальных балок для упоров в них гидравлических домкратов. Домкраты обжимают основание под новыми частями фундамента. До перестановки домкратов банкеты расклинивают, сохраняя тем самым напряжения под их подошвой. После перестановки домкратов пространство между банкетами и стальными пакетами заливают бетоном. В этом случае уширения будут воспринимать большую часть дополнительного давления по сравнению с предыдущим случаем (рис. 14.5, е).

Рис. 14.5. Конструкции уширения подошвы фундаментов: а — без обжатия грунта основания; б, ж — с обжатием грунта домкратами; в — эпюра давления до усиления; г—то же, после обжатия грунта домкратами (эпюра до усиления показана пунктиром); д, е — то же, после усиления и загружения фундаментов; 1 — усиливаемый фундамент; 2 — конструкция уширения; 3 — арматура; 4 — домкрат; 5 — клинья; 6 — пакеты из металлических балок; 7 — бетон; 8 — банкет

Для усиления фундаментов совместно с обжатием грунтов можно применять плоские гидравлические домкраты (рис. 14.6, а), представляющие собой плоские резервуары из двух тонких (1…3 мм) металлических листов, имеющих по периметру валик круглого сечения диаметром 20…80 мм (рис. 14.6, б). В домкраты рекомендуется нагнетать твердеющие жидкости (эпоксидную смолу, цементный раствор), которые фиксируют созданное напряженное состояние.

Рис. 14.6. Усиление фундамента с применением плоских домкратов: а — схема усиления; б — деталь размещения домкрата; 1 — фундамент; 2 — банкеты; 3 — штрабы в фундаменте; 4 — балки; 5 — плоский домкрат; 6 — трубка для нагнетания жидкости в домкрат

Для предварительного уплотнения грунтов применяют и другой метод, заключающийся в установке с двух сторон существующего фундамента дополнительных железобетонных блоков уши рения, нижняя часть которых стягивается гибкими анкерами из арматурной стали, пронизанными сквозь них и существующие фундаменты (рис. 14.7). Верхнюю часть блоков разжимают с помощью домкратов или забивных клиньев. В результате блоки, поворачиваясь вокруг нижней закрепленной точки, обжимают грунт основания, а затем в этом положении щели между фундаментами и блоками заполняются бетоном. Такой способ особенно удобен, если у усиливаемого фундамента отсутствуют развитые консоли.

Рис. 14.7. Усиление фундаментов дополнительными блоками, обжимающими грунты оснований при их повороте: 1 — существующий фундамент; 2 — щель, раскрывшаяся при повороте блоков и заполняемая бетоном; 3 — железобетонный блок; 4 — анкерное крепление; 5 — отверстие для анкеров, заполняемое раствором по окончании работ

Рис. 14.8. Увеличение опорной площади фундаментов: 1 — распределительная монолитная обвязка по периметру стен; 2 — монолитные участки перекрытий; 3 — нажимная рамная конструкция из монолитного железобетона; 4 — дополнительный фундамент из сборных плит; 5 — основной фундамент из сборных плит

В случае необходимости значительного увеличения площади фундаментов может быть предложен другой метод, сущность которого заключается в укладке на щебеночную подготовку дополнительных железобетонных плит (рис. 14.8). Плиты располагают в виде двух (или более) лент, уложенных в продольном направлении, перпендикулярном существующим поперечным стенам. На каждой ленте дополнительного фундамента устанавливают опалубку и арматуру нажимных рам, которые состоят из нижних горизонтальных ригелей сечением 40 ж 60 см, лежащих на новых фундаментах, и наклонных стоек упоров такого же сечения. Рамы передают усилия на пояса-обвязки поперечных стен, по которым ведется кладка кирпичных стен надземных стен здания. Для образования замкнутого контура нажимных рам над ними, в плоскости перекрытия над техническим подпольем, устраивают монолитные участки железобетона в виде полос шириной 60 см, высотой, равной высоте сборных плит перекрытия.

К увеличению глубины заложения фундаментов прибегают реже из-за значительной трудоемкости. Однако этот способ применяют в случае необходимости увеличения глубины подвала, переноса подошвы фундамента на более плотные нижележащие слои грунта и т. д.

Для ленточных фундаментов эту процедуру выполняют в такой последовательности (рис. 14.9). Сначала в несущей стене прорубают отверстия, через которые пропускают разгружающие балки, устанавливаемые на бетонные тумбы или специальные опоры. Учитывая возможность осадки грунта, целесообразно опирать балки на домкраты, что позволяет регулировать положение опор при увеличении деформации основания.

Работы по увеличению глубины заложения ведут отдельными захватками длиной 2,5…3 м.

При заглублении фундамента под колонну применяют подкосы (рис. 14.10) или специальную конструкцию — «ножницы» (рис. 14.11).

Рис. 14.9. Заглубление ленточных фундаментов

Подводка под здание фундаментной плиты снижает давление по подошве и используется при существенном возрастании нагрузок или значительных неравномерных осадках и слабых грунтах оснований. Плиту толщиной до 25 см укладывают на щебеночную подготовку (рис. 14.12); сечение ее второстепенных балок 30×40 см, главных — 50×100 см. Шаг второстепенных балок около 2,5 м. Глубина заделки плиты в существующие стены 30…40 см, ее целесообразно устраивать не на уровне уже существующих фундаментов, а на 75…80 см выше.

Рис. 14.10. Перенос отметки заложения подошвы фундамента под колонну

Рис. 14.11. Подводка фундаментов под колонны на глубоких отметках с помощью приспособления «ножницы»: L— подкос; 2 — воротник; 3 — стальной анкер; 4 – новый фундамент; 5 – старый фундамент

Введение дополнительных опор целесообразно при сплошной замене перекрытий и при больших (более 7,5 м) пролетах. Необходимо соблюдать условие равномерности осадок существующих и вновь возводимых опор, имея в виду, что осадки уже построенных опор стабилизировались и практически равны нулю.

Рис. 14.12. Фундаментные плиты: прогоны фундаментной плиты; 2 — плита; 3 — балки фундаментной плиты; 4 — существующие конструкции

Рис. 14.13. Увеличение прочности оснований и фундаментов: а — наращиванием с помощью обойм; 6 — инъекцией раствора в кладку; в — закреплением грунта под фундаментом; 1 — усиливаемый фундамент; 2 — железобетонная обойма; 3 — трубки для инъекции; 4 — шгьекторы; 5 — закрепленный грунт

Рис. 14.14. Усиление ленточных и одиночных фундаментов набивными сваями: 1 — существующий фундамент; 2 — рандбалка (железобетонная или металлическая); 3 — свайный ростверк; 4— набивная свая

Повышение прочности конструкций фундаментов достигается с помощью устройства железобетонных или металлических (с последующим обетонированием) обойм (рис. 14.13, а) или инъецированием в кладку фундамента цементного раствора (рис. 14.13, б). Иногда оба способа используются одновременно.

Увеличение несущей способности грунтов основания осуществляется с помощью методов закрепления грунтов, рассмотренных в гл. 12. Обычно закрепление осуществляют с помощью инъекторов, погружаемых в грунт под подошвой фундамента (рис. 14.13, в). Применение набивных свай при усилении фундаментов может быть рекомендовано при высокой деформируемости грунтов, наличии подземных вод, осложняющих процесс уширения, и при значительном увеличении внешних нагрузок. Несущую способность и число свай определяют расчетом. Недостатком такого способа является его сложность из-за необходимости подводки набивных свай. Сваи формируются в грунте обычно из подвальных помещений с помощью обсадных труб либо в предварительно пробуренных скважинах (рис. 14.14, а — д).

Кроме набивных свай в последнее время все большее распространение получают вдавливаемые сваи, состоящие из отдельных сборных железобетонных элементов квадратного (20 х 20, 30 х 30) или круглого (со сквозным каналом) поперечного сечения длиной 80… 100 см. Эти звенья последовательно вдавливаются в грунт с помощью домкратов (рис. 14.15).)

Рис. 14.15. Последовательность работ по устройству свай Мега: а — г — этапы выполнения работ; 1 — несущая стена; 2 — домкрат; 3 — насосная станчи; 4 — нижний элемент; 5 — рядовой элемент сваи; б — стойка; 7 — распределитель вал балка; 8 — головной элемент

Рис. 14.16. Изготовление свай в грунте с помощью высоконапорной струи: 1,2 — образование скважин струей; 3,4 — заполнение скважин раствором твердеющего материала

Рис. 14.17. Подведение свайных фундаментов под реконструируемое здание

Наиболее эффективной при усилении фундаментов является струйная технология., позволяющая создавать несущие конструкции в грунте. Она основывается на использовании энергии водяной струи для прорезки в грунте полостей, заполняемых бетонной смесью.

Главным элементом устройства для образования щелей, скважин или полости является струйный гидромонитор, имеющий на боковой поверхности водяные сопла, в нижней — отверстия для подачи бетона, в верхней — подводящие трубопроводы и пггангу для опускания монитора в скважину. Высоконапорная струя воды под большим давлением способна разрезать грунты и другие твердые материалы, а при добавке в струю абразивного материала даже железобетон. Для увеличения разрушающего воздействия струя поступает под защитой воздушного потока или подаваемых одновременно водяного и воздушного потоков.

При опускании монитора в лидерную скважину можно выполнять вертикальные разрезы, разрушая и удаляя грунт высоконапорными струями с последующим заполнением полостей раствором вяжущего материала, получая в грунте плоские элементы (типа щелевых фундаментов). Вращая монитор в грунте с одновременным подъемом, можно получить цилиндрические элементы — сваи (рис. 14.16). Часто струйную технологию используют при реконструкции для устройства цементно-грунтовых свай.

Струйная технология имеет большие преимущества: не вызывает динамических воздействий, может применяться при работе в стесненных условиях, так как не имеет громоздкого оборудования (рис. 14.17) при высокой производительности, и может оказаться незаменимой при укреплении грунтов оснований деформирующихся зданий, устранении кренов, ликвидации неравномерных осадок и т. д.

Для повышения прочности оснований эксплуатируемых зданий и сооружений и предотвращения развития в их конструкциях деформаций аварийного характера, а также для выполнения работ по ремонту и реконструкции существующих фундаментов и их осно­ваний широко применяют различные методы укрепления и усиле­ния оснований. В зависимости от технологии производства и про­цессов, происходящих в грунте, эти методы можно разделить на четыре основных вида:

· Механический (глубинный и поверхностный).

Глубинное уплотнение оснований фундаментов существующих зданий в основном выполняется путем устройства наклонных сква­жин, заполняемых песком.

Таблица 4.1. Рекомендуемые способы закрепления лёссовых фундаментов грунтов оснований
Способ закрепления грунтов Границы примене­ния Сущность технологиче­ского процесса Свойства закреплен­ного грунта
Силикатизация однорастворная Электросилика­тизация Коэффициент фильтрации Кф=0,5. 2 м/сут Кф=0,1 м/сут во влажных грун­тах Нагнетание раство­ра силиката натрия Нагнетание раство­ра силиката натрия в зоне постоянного Непросадочность, прочность 1. 3 МПа Непросадочность, прочность 0,6. 2 МПа
Смолизация Кф=0,1. 0,2 м/сут электрического поля Нагнетание раство­ра карбамидной смо­лы Непросадочность, прочность 0,7 . 1,5 МПа

Поверхностное усиление применимо только для уплотнения ма­ловлажных и влажных грунтов с коэффициентом водонасыщенности менее 0,7. Оно выполняется с помощью катков, виброплит, трамбовок и т. д. и в основном используется при новом строитель­стве или перекладке фундаментов.

Термозакрепление (обжиг) применяется в основном при закреп­лении просадочных грунтов. Топливо сжигают в герметически закрытых затворами скважинах, пробуренных вертикально, наклон­но или горизонтально в толще закрепляемого грунта. Новым в термическом закреплении является применение так называемого электротермического способа обжига грунта, основанного на ис­пользовании нихромных электронагревателей. Благодаря измене­нию мощности теплоисточника по высоте скважины в результате применения погружных элементов можно регулировать форму и размеры образующихся при обжиге термогрунтовых тел с учетом неоднородности напластования грунтов.

К физико-химическим способам закрепления грунтов относится цементация и использование грунтоцементных материалов. Цемен­тация грунта заключается в нагнетании в грунт через инъекторы цементного или цементно-песчаного раствора, который обеспечивает в закрепляемом основании создание отдельных столбов или мас­сивов из сцементированного грунта. Цементацию обычно применя­ют для закрепления песчаных и крупнообломочных грунтов, а так­же трещиноватых скальных пород.

К химическим способамзакрепления грунтов относятся силика­тизация, электросиликатизация, газовая силикатизация, аммониза-ция, смолизация и др. На практике наиболее часто применяется силикатизация и смолизация (табл. 4.1).

Основным материалом для силикатизации является жидкое стекло — коллоидный раствор силиката натрия. В зависимости от вида, состава и состояния закрепляемых грунтов применяется одно-и двухрастворная силикатизация.


Однорастворная силикатизация основана на введении (инъеци­ровании) в грунт гелеобразующего раствора, состоящего из двух или трех компонентов. Однорастворный способ используется для закрепления лёссовых просадочных и песчаных грунтов с коэффи­циентом фильтрации 0,5. 5 м/сут. Двухрастворный способ силика­тизации применяется для закрепления песчаных грунтов с коэффи­циентом фильтрации до 0,5 м/сут и состоит в поочередном нагне­тании в грунт двух растворов: силиката натрия и хлористого кальция.


Аммонизация заключается в нагнетании в грунт под небольшим Давлением газообразного аммиака. Способ применяют для прида­ния лёссовым грунтам свойства непросадочности.

Смолизация представляет собой закрепление грунтов путем инъецирования в них водных растворов синтетических смол.

Технологические схемы инъецирования приведены на рис. 4.2.


4.4. Ремонт и усиление фундаментов

Практика показала, что проектирование усиления фундаментов почти всегда намного сложнее проектирования новых конструкций. Это объясняется тем, что в каждом случае приходится считаться с условиями эксплуатации объекта, со стесненными условиями работы, с разнообразием проявления деформаций зданий и соору­жений и др. Само выполнение работ по ремонту и усилению фунда­ментов — всегда крайне трудоемкий, тяжелый и ответственный процесс.




Наиболее часто приходится увеличивать площадь подошвы фун­даментов, подводить конструктивные элементы под существующие фундаменты, повышать их жесткость, передавать часть нагрузки на дополнительные фундаменты или полностью заменять фунда­менты, когда необходимо пред­отвратить развитие аварийных деформаций зданий и сооруже­ний.

Увеличение опорной площа­ди ленточного фундамента (рис. 4.3) производится сле­дующим образом.

В заводских условиях со­гласно проекту изготовляют железобетонные плиты-обой­мы / со шпонками 2 и анкер­ные стержни 4. Плиты-обоймы имеют отверстия 3. Одновре­менно на ремонтируемом объ­екте производится расчистка поврежденных поверхностей существующего фундамента и устройство углублений под шпонки и отверстий под анкерные стержни. При необходимости проводится разгрузка фундаментов путем устройства системы подкосов и рас­порок или передачи нагрузок на горизонтальные поддерживающие балки. Способы разгрузки указываются в проекте производства работ.

После доставки комплектов усиления производится монтаж плит-обойм с последующей стяжкой их анкерными болтами до обеспечения в них проектного натяжения.

Вертикальные стыки между плитами-обоймами после сварки выпусков рабочей арматуры между ними замоноличиваются бе­тоном.

Усиление существующего фундамента выполняется путем уст­ройства рубашек (рис. 4.4) и набетонок (наращиванием). В обоих случаях старая конструкция соединяется с новой. Качество этого соединения обеспечивает надежность последующей работы фунда­мента под нагрузкой.

Рубашка при усилении фундамента представляет собой сплош­ное обетонирование фундамента со всех сторон, за исключением нижней части, осуществляемое с дополнительным армированием и позволяющее увеличить размеры фундамента. Перед устройством

выполняется бетонная подготовка под нее. Набетонка устраивается при одностороннем усилении фундамента.


Прочность сцепления нового бетона со старым зависит от тща­тельности проведения мероприятий по подготовке конструкции к усилению, что подробно рассматривалось в предыдущей главе. Усиление ленточных фундаментов выносными буронабивными

сваями выполняется в та­кой последовательности(рис. 4.5).

Сначала согласно проек­ту производится устройство скважин и буронабивных свай 1 вдоль существующего ленточного фундамента 7, а затем эти сваи соединяются между собой с помощью ростверка 2. Одновременно выполняются ремонтно-вос-становительные работы су­ществующего фундамента 7 с устройством в нем штраб 8 и сквозных отверстий под балки 5.

После установок балок 5 в этих отверстиях между ростверками 2 и балками 5 устанавливаются домкраты 3 и подставки 4 и с их помо­щью производится передача нагрузки от существующего фундамента 7 на свайный фундамент, а затем осущест­вляется замоноличивание 6. балок 5 с ростверками 2 и бетонирование участков, за­нятых домкратами, после удаления последних. Таким же методом производится усиление столбчатых фунда­ментов неглубокого заложения.

Весьма эффективным для усиления фундаментов является при­менение корневидных свай, называемых также буроинъекционны-ми, что позволяет производить работы без разработки котлованов, обнажения фундаментов и нарушения структуры грунта в осно­вании.


Сущность способа усиления корневидными сваями заключается в устройстве под зданием своего рода подпорок — жестких корней в грунте, которые переносят большую часть нагрузки на более плотные слои грунта. При усилении корневидными сваями может предусматриваться создание единой конструкции в ростверковом и безростверковом варианте. Корневидные сваи могут быть вертикальными или нак­лонными. Скважины для корневидных свай бурят с помощью установок вращательного бурения, которые позволяют пробуривать скважины через расположенные выше стены и фундаменты. Диа­метр буров 80. 250 мм. При бурении для обеспечения устойчивости стенок скважин используются обсадные трубы, вода, глинистая суспензия или сжатый воздух.

По сравнению с другими типами свай корневидные сваи обладают по­вышенным сопротивлением трению вдоль боковой поверхности, что обеспечивается путем частичной це­ментации грунта, находящегося в контакте со сваей. Благодаря про­хождению сквозь существующие конструкции корневидные сваи ока­зываются связанными с сооружени­ем, поэтому не требуется их допол­нительное соединение с существую­щими фундаментами.

После бурения в скважину уста­навливают арматурные каркасы, со­стоящие из отдельных секций, сты­куемых с помощью сварки. Длина секций обычно не превышает 3 м и лимитируется высотой помещения, в котором производят работы. Фиксаторы, устанавливаемые в кар­касе, предупреждают отклонение от оси скважины. После установ­ки или одновременно с ней в скважину опускают инъекционную трубу диаметром 25. 30 мм, через которую нагнетают цементно-песчаный раствор, обжимающий стенки скважины и образующий небольшие местные выступы. Усиление оснований и фундаментов буроинъекционными сваями применяется очень часто для сохра­нения архитектурно-исторических памятников. Например, в Моск­ве Московским специализированным управлением Всесоюзного объединения «Гидроспецстрой» успешно проведено усиление фун­даментов здания МХАТа им. Горького. Проект усиления выполнен институтом «Гидроспецпроект».


В зарубежной практике ремонта и усиления фундаментов^ кор­невидные сваи применяют также при необходимости устройства глубоких выемок в непосредственной близости от существующих зданий. Сооружаемая «решетчатая» подпорная стенка удерживает от обрушения откос вместе с фундаментом. В отдельных случаях корневидные сваи органически связаны с существующим зданием как единое целое.


При усилении или ремонте (реконструкции) фундаментов, про­водимых в непосредственной близости от фундаментов существу­ющих зданий и сооружений на стесненной площадке и в сложных грунтовых условиях, целесообразно применять способ «стена в грунте».

При устройстве глубоких выемок и подвалов в непосредствен­ной близости от фундамента усиление производится глубокими сте­нами или прямоугольными столбами, возводимыми между выемкой и фундаментом (рис. 4.6, а). Для обеспечения устойчивости фунда­мента производится расчет защемления стены в грунте с учетом нагрузок от фундамента и грунта, находящегося за стеной. Если расчетное защемление выполнить затруднительно, то повышение устойчивости стен достигается устройством анкерных креплений, располагаемых между фундаментами (рис. 4.6, б, з).

Несущую способность столбчатых фундаментов можно увели­чить возведением у фундамента глубоких стен или столбов прямо­угольного сечения, опираемых на прочное основание (рис. 4.6, в). Стены или столбы могут иметь в плане двух- и четырехстороннее расположение (рис. 4.6, г, д). В некоторых случаях рационально устройство стен в виде замкнутого короба (рис. 4.6, е, ж). Возве­денные стены или столбы объединяются с усиливаемым фундамен­том железобетонной обоймой.

Для одновременного увеличения устойчивости основания и уси­ления фундамента могут быть устроены параллельные стены в виде глубоких лент, располагаемых с обеих сторон фундаментов. С целью повышения жесткости стены могут соединяться стенами-перемычками, устраиваемыми на меньшую глубину, чем основные параллельные стены. При таком решении устойчивость основания увеличивается, так как оно заключено в жесткую обойму.

В сложных условиях строительства и реконструкции при уси­лении могут применяться комбинации способа «стена в грунте» с устройством набивных и корневидных свай, часто с различными методами химического закрепления (усиления) грунта.

При производстве ремонтов фундаментов иногда возникает не­обходимость их замены, так как другие методы усиления или не обеспечивают требуемой несущей способности фундаментов, или же их выполнение по каким-либо причинам затруднено. К таким случаям относятся: значительное увеличение нагрузок на фунда­менты (предстоящая надстройка здания, недопустимая и угрожа­ющая устойчивости здания осадка фундаментов вследствие умень­шения несущей способности основания из-за резкого повышения или понижения уровня грунтовых вод), прокладка ниже подошвы заложения фундаментов существующего здания в непосредствен­ной близости от него подземных коммуникаций типа коллекто­ров и т. д.

Весь процесс замены фундаментов разделяется на два этапа.

Первый (подготовительный) этап включает осуществление ме­роприятий, обеспечивающих устойчивость здания в процессе выпол­нения работ второго этапа.

Второй этап производства работ по замене фундаментов вклю­чает устройство котлованов и траншей, разборку старого и устройство нового фундамента, а также ряд сопутствующих работ, выполняемых в большинстве случаев в стесненных условиях. Пере­кладка производится обычно отдельными участками длиной 1,5. 2 м. Перекладку очередного участка выполняют не ранее чем через

7 сут после окончания работ на предыдущих смежных участках.

7 первую очередь выполняют работы по перекладке наиболее сла­бых участков фундаментов.

Технологический процесс перекладки состоит из заводки разгрузочных балок, вскрытия и разборки от­дельных мест фундамента и устройства новой кладки. Для укладки разгрузочных балок в кирпичной стене отбойны­ми молотками пробивают горизонтальные борозды высотой и глу­биной соответственно сечению заводимой балки плюс 2. 3 см с зачисткой поверхности. Борозды располагают под тычковым рядом кладки на 2. 3 ряда кирпича выше обреза фундамента.

Пробивку борозд с другой стороны стены производят только после заделки разгрузочной балки в первой борозде. Балки укла­дывают на цементный раствор и закрепляют их деревянными или стальными клиньями, стягивают болтовыми соединениями, про­пущенными через отверстия, высверленные в кладке и стенке бал­ки, пространство между кладкой и вертикальной стенкой разгру­зочной балки заполняют цементным раствором состава 1 : 3 или бетоном на мелком щебне или гравии. Зазор между верхом балки и плоскостью борозды плотно заклинивают полусухим цементным раствором.

В местах, где предусмотрена перекладка фундамента, произво­дят отрывку шурфов с одновременным надежным креплением их стенок. Бутовый фундамент разбирают с помощью отбойных молот­ков, а при слабой расслоившейся кладке — вручную. После выкла­дывания нового фундамента до подошвы стены по выровненной поверхности раствора прокладывают гидроизоляционный слой, который сопрягается с гидроизоляцией соседних участков фунда­мента. Затем пространство между верхом вновь выложенного уча­стка фундамента и кладкой стены заделывают кирпичом и плотной заклинкой горизонтального шва полусухим цементным раствором, после чего производят обратную засыпку шурфа с последующим послойным трамбованием грунта.

Поскольку фундаменты зданий и сооружений испытывают зна­чительные статические, а иногда и динамические нагрузки, недоста­точное уплотнение грунта обратных засыпок приводит к просад­кам, вызывающим впоследствии разрушения строительных конструкций. Для выполнения работ по обратным засыпкам при­меняют бульдозеры, фронтальные и грейферные погрузчики, одно­ковшовые экскаваторы с оборудованием погрузчика и грейфера, для разравнивания грунта — бульдозеры и малогабаритные буль­дозеры-планировщики.

Для уплотнения грунта в стесненных условиях используют пнев­матические и электрические трамбовки, самопередвигающиеся вибрационные плиты, а также отбойные молотки со специальными насадками.

В связи с недостаточным выпуском средств механизации для уплотнения грунта в стесненных условиях на некоторых строитель­ных площадках для обратной засыпки применяют песок с последу­ющим уплотнением его путем замачивания.

Послойное уплотнение грунта в наименее доступных местах (нижняя часть пазух котлованов и траншей) выполняется вручную с помощью простейших деревянных или ручных электрических трамбовок. Применение ручных машин в 4. 5 раз увеличивает про­изводительность труда при уплотнении грунта обратной засыпки по сравнению с выполнением работ вручную, но тем не менее тру­доемкость таких работ остается высокой, а толщина уплотняемого слоя не превышает 40. 60 см при степени уплотнения 0,85. 0,95.

Сокращение трудоемкости уплотнения грунта в стесненных условиях, улучшение качества и снижение стоимости уплотнения достигается при использовании навесного уплотняющего оборудо­вания к кранам, тракторам и экскаваторам, созданного сотрудни­ками ЦНИШЖТП Госстроя СССР.

Уплотнение грунтов в зимних условиях возможно, если отсыпка ведется непереувлажненными талыми грунтами с минимальными перерывами в работе и такой интенсивности, чтобы уложенный грунт не замерзал до его уплотнения. Несвязные грунты уклады­вают и уплотняют так же, как и в летнее время.

Цементация кладки производится путем нагнетания в пустоты фундамента через инъекционные трубки цементно-песчаного раствора состава 1:1. 1:2 под давлением 0,2. 1 МПа. В большинстве случаев цементация кладки производится одновременно с цементацией основания.

При подготовке фундамента к инъецированию выполняют его вскрытие (при необходимости), бурение шпуров, установку инъекторов, их соединение с инъекционной установкой и проверку работы смонтированной системы.

Шпуры для инъекторов бурят или пробивают перфораторами в шахматном порядке на расстоянии 0.8. 1,2 м друг от друга. Затем устанавливают инъекционные трубки (стальные перфорированные трубы диаметром 50 мм), закрепляя их в теле шпуров с помощью цементно-песчаного раствора. Радиус действия инъекторов составляет 0,6. 1,2 м. Расход цементно-песчаного раствора для инъецирования зависит от степени физического износа фундаментов и плотности материала кладки и ориентировочно составляет 0,2. 0.4 от объема усиливаемой кладки фундамента.

При силикатизации нагнетание рабочего раствора по одним и тем же инъекторам выполняют в два этапа: вначале жидкое стекло, а затем хлористый кальций. Технологический перерыв при их нагнетании не должен превышать 6 часов. Жидкое стекло нагнетают до полного насыщения тела фундаментов путем ступенчатого повышения давления от 0,05 до 0,4 МПа. Нагнетание хлористого кальция осуществляется при начальном давлении 0,4 МПа с постепенным его повышением до 0,5 МПа.

Укрепление отдельных камней кладки выполняют при незначительной степени физического износа фундаментов. Камни, которые слабо держатся в кладке фундамента, вынимают; гнездо очищают стальной щеткой от грязи и старого раствора, смачивают водой и заполняют цементно-песчаным раствором. Камни устанавливают обратно в гнезда, втапливая их в раствор с помощью последовательных ударов молотком.
Устройство железобетонных обойм выполняют в тех случаях, когда на отдельных участках фундамента прочность кладки нижележащих слоев меньше прочности вышележащих. Работы выполняют по захваткам длиной 2. 2,5 м. Железобетонные обоймы могут устраиваться с одной или с двух сторон. Способы устройства обойм могут быть различны.


Рассмотрим некоторые из них.
При устройстве двухсторонней железобетонной обоймы (рис. 4, а) в теле фундамента в шахматном порядке через 1. 1,5 м просверливают сквозные поперечные отверстия. Затем с обеих сторон устанавливают арматурные сетки с размерами ячеек от 100x100 до 150x150 мм из арматурной стали диаметром 12. 20 мм.

Арматурные сетки соединяют между собой арматурными стержнями диаметром 12. 20 мм, которые устанавливают в просверленные отверстия.

Затем устанавливают опалубку и выполняют бетонирование литой бетонной смесью (осадка конуса более 15 см) класса бетона В10 и более. Бетонирование может выполняться методом послойного торкретирования. Минимальная толщина обоймы - 150 мм.

При устройстве односторонней железобетонной обоймы (рис. 4, б) поперечные арматурные стержни заделывают в ранее просверленные гнезда в теле фундамента на цементно-песчаном растворе. А затем к ним крепят арматурные сетки.
В отдельных случаях армирование железобетонных обойм выполняют одиночными арматурными стержнями. Для этого по всей длине фундамента отрывают траншею глубиной на 1 м выше отметки заложения фундамента.

На проектной отметке в теле фундамента с шагом 1,5 м пробивают сквозные отверстия, устанавливают в них на цементно-песчаном растворе поперечные балки из двутавра №18. 20. К поперечным балкам в продольном направлении приваривают уголки №75 длиной 500. 700 мм или двутавр №18. Затем после углубления траншеи в теле фундамента в шахматном порядке с шагом 80. 120 см сверлят отверстия Ø18. 20 мм глубиной 150. 180 мм, в которые забивают отдельные стержни Ø18. 20 мм. Устанавливают опалубку и укладывают бетонную смесь с тщательным уплотнением. После набора бетоном требуемой прочности разбирают опалубку и выполняют обратную засыпку пазух с постойным уплотнением.


Устройство буроинъекционных свай

Этот метод позволяет увеличить одновременно несущую способность фундамента и основания. Их применение позволяет производить работы по усилению фундамента без разработки траншей и нарушения структуры грунта в основании.

Сущность способа заключается в устройстве под зданием буроинъекционных (корневидных) свай, которые передают значительную часть нагрузки на более плотные слои грунта (рис. 5). Сваи выполняют вертикальными или наклонными с помощью установок вращательного бурения, которые позволяют пробуривать скважины диаметром от 80 до 250 мм не только в грунтах основания, но и в теле фундамента.
2.Уширение подошвы фундамента

Уширение подошвы фундамента выполняют банкетами из бутовой кладки или из монолитного бетона и железобетона, банкетами балочного типа, а также с помощью монолитных и сборных железобетонных подушек.

Устройство банкет из бутовой кладки выполняется крайне редко из-за большой трудоемкости работ.

Чаще всего применяют одно- и двусторонние банкеты из монолитного бетона и железобетона (рис. 6).

Для этого в стене пробивают сквозные отверстия с шагом 1,5. 2 м. в которые перпендикулярно к стене устанавливают опорные балки из стального швеллера (двутавра) или железобетона. Нагрузка на банкеты передается через распределительные балки из швеллера или двутавра №16. 18, которые располагают вдоль стены.

Читайте также: