Расчетное сопротивление кирпичной кладки

Обновлено: 13.05.2024

Расчеты каменной кладки имеют большое значение при проектировании и строительстве гаражей, ведь подавляющее большинство стеновых конструкций для гаражного строительства — это кладка из блоков или кирпича.

Предварим расчеты несколькими замечаниями:

1) Будем рассматривать элементы прямоугольного сечения (стены, столбы) толщиной не менее 380 мм (полтора кирпича). Кладку будем выполнять из полнотелого керамического кирпича на цементном растворе.

При расчете элементов иного сечения (например, круглого, таврового) вид расчетных зависимостей не меняется, однако чуть усложняется вычисление геометрических характеристик сечений.

Для кладки, выполненной из иных материалов (например, пустотелого кирпича, керамических блоков и т.п.) в расчетные зависимости и расчетные сопротивления вводятся коэффициенты, уточняющие ее поведение.

2) В сечении элемента выделяют высоту (h) и ширину (b). За высоту принимают сторону сечения, расположенную параллельно плоскости действия изгибающего момента; соответственно, перпендикулярная ей сторона принимается за ширину. При центральном сжатии за высоту сечения принимают: любую из сторон – при квадратном сечении, меньшую из сторон – при прямоугольном сечении.


Работа элементов каменных конструкций при центральном сжатии встречается относительно редко. К подобным случаям можно отнести внутренние стены и столбы, при условии, что эксцентриситет приложения равнодействующей нагрузок, приходящих на данные элементы, равен нулю (то есть равнодействующая нагрузок проходит через центр тяжести сечения). Однако и при несоблюдении данного условия многие конструкции можно условно рассматривать как центрально-сжатые (например, тяжело нагруженные стены и столбы нижних этажей; элементы, на которые нагрузка приходит через центрирующие прокладки и т.п.).

Во всех подобных случаях можно считать, что сжимающие напряжения распределены неравномерно только в сечениях, непосредственно примыкающих к площадке передачи давления; ниже распределение приобретает равномерный характер, что и принимается в расчетах.


Расчет по несущей способности элементов, работающих на центральное сжатие, производят из условия равновесия внешних и внутренних сил, действующих в наиболее опасном (расчетном) сечении элемента (bxh):

N ≤ Nu
где N –
продольная сила, действующая в расчетном сечении элемента, кН;
Nu –
минимальная несущая способность расчетного сечения элемента, кН.

Минимальная несущая способность элемента при центральном сжатии


Далее подробнее рассмотрим соотношение


Как известно из курса «Сопротивление материалов» гибкость элемента определяется как отношение расчетной длины элемента к радиусу инерции его поперечного сечения:


Далее, по соответствующим таблицам от гибкости переходят к коэффициенту продольного изгиба, всесторонне оценивающиму эффекты, вызванные потерей устойчивости элемента.
Перепишем выражение для гибкости следующим образом:


Рационально при определении гибкости элемента прямоугольного сечения вычислять не гибкость



При этом таблицы, связывающие гибкость с коэффициентом продольного изгиба дополнить соотношением, что и сделано в Таблице 19 [1].



Стоит отметить, что в большинстве расчетов расчетная схема элементов может быть приведена к элементу, имеющему шарнирное опирание на неподвижные опоры, для которого

Работа элементов каменных конструкций при внецентренном сжатии встречается наиболее часто. К подобным случаям можно отнести наружные столбы и стены (в том числе простенки), а также внутренние столбы и стены, при условии, что эксцентриситет приложения равнодействующей нагрузок, приходящих на данные элементы, отличен от нуля. Внецентренное сжатие может быть вызвано совместным действием вертикальной и горизонтальной нагрузками (например, боковым давлением грунта на стену подвала или действием ветрового давления на вышележащие стены).

Как показывают опыты, внецентренно-сжатые каменные элементы разрушаются при значительно больших нагрузках, чем это получается при расчете их по формулам сопротивления материалов (в среднем в 1,5-2 раза). Данное обстоятельство объясняется тем, что кладка является упругопластическим материалом, в котором напряжения по сечению распределяются не по линейному закону, как у упругих материалов


Виды эпюр напряжений при внецентренном сжатии кладки:
а – все сечение сжато; б – в сечении появились растягивающие напряжения; в – в сечении появилась трещина; 1 – центр тяжести сечения; 2 – трещина; t – глубина трещины

Распределение напряжений зависит от величины эксцентриситета e0: при небольших эксцентриситетах поперечное сечение элемента полностью сжато, но неравномерно; с увеличением эксцентриситета в сечении появляются не только сжимающие, но и растягивающие напряжения.


Расчетная схема для внецентренно сжатого элемента по несущей способности: 1 – центр тяжести всего сечения; 2 – центр тяжести сжатой зоны сечения

При расчете внецентренно сжатых элементов пользуются следующими допущениями:

  • растянутая зона элемента полностью исключается из работы;
  • напряжения в сжатой зоне кладки принимаются равномерно распределенными (прямоугольная эпюра сжимающих напряжений взамен криволинейной);
  • неравномерность распределения напряжений по сечению учитывается коэффициентом, который зависит от эксцентриситета e0:


тем самым учитывая, что при внецентренном сжатии менее загруженная часть кладки сдерживает поперечные деформации более загруженной, что несколько повышает ее несущую способность.

Геометрические параметры сечения сжатой части определяют из условия, что ее центр тяжести совпадает с точкой приложения продольной силы (условие равновесия). Тогда, чисто геометрически:


Расчет по несущей способности элементов, работающих на внецентренное сжатие, производят из условия равновесия внешних и внутренних сил, действующих в наиболее опасном (расчетном) сечении элемента (bxh):

N ≤ Nu
где N –
продольная сила, действующая в расчетном сечении элемента с эксцентриситетом e0, кН;
Nu –
минимальная несущая способность расчетного сечения элемента, кН.
Минимальная несущая способность элемента при внецентренном сжатии


Особенности работы и расчет кладки при местном сжатии


Под местным сжатием понимается работа кладки, когда нагрузка передается не по всему поперечному сечению равномерно, а через некоторую его часть Aс, называемую площадью смятия.

Наиболее часто необходимость в расчете на местное сжатие встречается при передаче нагрузок на каменные элементы от перекрытий/покрытий, конструкций лестниц и т.п. через балки, прогоны или фермы. В этом случае отношение грузовой площади, с которой собирается нагрузка, к площади смятия существенна, и, соответственно, существенна интенсивность напряжений сжатия под площадкой смятия.

Также необходимость в расчете на местное сжатие возникает для кладки под плитами перекрытий/покрытий, перемычками, а также в ряде других случаев, например, при опирании на кладку конструкций, выполненных из более прочных материалов.


Прочность кладки непосредственно под площадкой смятия оказывается выше прочности, если бы нагрузка передавалась через всю площадь равномерно. Объясняется это явление сдерживанием поперечных деформаций, создаваемой кладкой, расположенной вокруг площадки смятия. То есть создается так называемый эффект обоймы и кладка под площадкой смятия, работая в продольном направлении на сжатие, в поперечном направлении также испытывает сжимающие усилия. Причем прочность тем выше, чем меньше отношение площади смятия к площади всего сечения (больший эффект обоймы).

Таким образом, в работу на местное сжатие включается кладка,
расположенная под так называемой расчетной площадью A.

Расчетное сопротивление кладки при местном сжатии

Естественным образом прочность кладки под площадкой смятия
должна зависеть от прочности кладки без учета эффекта обоймы, а также от местоположения нагрузки, что определяет расчетную площадь (например, при приложении нагрузки на край стены, уже нельзя ожидать всестороннего эффекта обоймы).

Расчетное сопротивление кладки при местном сжатии Rс определяется по формуле Баушингера, которая учитывает вышеотмеченное:




Расчет кладки на местное сжатие

Расчет кладки на местное сжатие производят из условия равновесия
внешних и внутренних сил.


Расчет кладки на изгиб, растяжение и срез, а также расчет по образованию и раскрытию трещин

Расчет кладки на изгиб, растяжение и срез производят по элементарным формулам сопротивления материалов. Что же касается сложности поведения кладки при ее работе, неодинаковость сопротивлений отмеченным воздействиям, разность сопротивления определенному воздействию по перевязанному и неперевязанному шву, то все это учтено в расчетных сопротивлениях, которые получены из испытаний кладки.

Расчет кладки на изгиб


На изгиб работает, кладка, которая опирается на конструкции, имеющие конечную жесткость (например, рандбалки, перемычки). Расчет изгибаемых элементов следует производить по формуле


Стоит отметить, что проектирование элементов каменных конструкций, работающих на изгиб по неперевязанному сечению, не допускается.

Расчет кладки на осевое растяжение


На осевое растяжение работают стенки круглых в плане резервуаров, силосов и других емкостей. Расчет элементов каменных конструкций на прочность при осевом растяжении следует производить по формуле


Стоит отметить, что проектирование элементов каменных конструкций, работающих на осевое растяжение по неперевязанному сечению, не допускается.

Расчет кладки на срез




Срез возникает в сечениях элементов, воспринимающих распор сводчатых конструкций, а также на границе стен (пилястр со стеной) при их разной нагруженности. Расчет кладки на срез по горизонтальным неперевязанным швам и перевязанным швам кладки следует производить по формуле Кулона:


Расчет кладки на срез по перевязанному сечению (по кирпичу или камню) следует производить без учета обжатия (2-е слагаемое формулы).

Расчет по образованию и раскрытию трещин

В ряде случаев, при проектировании каменных конструкций выполняют расчет по образованию и раскрытию трещин (швов кладки).


1 – центр тяжести сечения; 2 – трещина; t – глубина трещины

Наиболее часто этот расчет выполняется для внецентренно сжатых элементов при существенном эксцентриситете: е0 > 0,7у, где y – половина высоты сечения.

При расчете принимается линейная эпюра напряжений внецентренного сжатия как для упругого тела. Расчет производится по условному краевому напряжению растяжения, которое характеризует величину раскрытия трещин в растянутой зоне. Краевое напряжение вычисляют по известной формуле сопротивления материалов:


После преобразования данной формулы получим:


Остальные обозначения величин те же, что и при расчете на внецентренное сжатие.

6.1 Расчетные сопротивления сжатию кладки на тяжелых растворах из кирпича всех видов и керамических камней со щелевидными вертикальными пустотами шириной до 12 мм, пустотностью до 27% при высоте ряда кладки 50-150 мм на тяжелых растворах приведены в таблице 2.

Марка кирпича или камня

Расчетные сопротивления , МПа, сжатию кладки из кирпича всех видов и керамических камней со щелевидными вертикальными пустотами шириной до 12 мм при высоте ряда кладки 50-150 мм на тяжелых растворах

при марке раствора

при прочности раствора

Примечание - Расчетные сопротивления кладки на растворах марок от 4 до 50 следует уменьшать, применяя понижающие коэффициенты: 0,85 - для кладки на жестких цементных растворах (без добавок извести или глины), легких и известковых растворах в возрасте до 3 мес; 0,9 - для кладки на цементных растворах (без извести или глины) с органическими пластификаторами.

Уменьшать расчетное сопротивление сжатию не требуется для кладки высшего качества - растворный шов выполняется под рамку с выравниванием и уплотнением раствора рейкой. В проекте указывается марка раствора для обычной кладки и для кладки повышенного качества.

Расчетное сопротивление сжатию кладки из пустотелого керамического кирпича с вертикальными прямоугольными пустотами шириной 12-16 мм и квадратными пустотами сечением 20х20 мм пустотностью до 48% при высоте ряда 77-100 мм определяется по экспериментальным данным. При отсутствии таких данных значение следует принимать по таблице 2 с понижающими коэффициентами:

на растворе марки 100 и выше - 0,9;

на растворе марок 75, 50 - 0,8;

на растворе марок 25, 10 - 0,75;

на растворах с нулевой прочностью и прочностью до 0,4 МПа (4 кгс/см) - 0,65;

при пустотности 39-48% значения понижающих коэффициентов следует умножать на 0,9.

Расчетные сопротивления сжатию кладки из крупноформатных камней с вертикальным соединением "паз-гребень" (без заполнения раствором) из керамики шириной до 260 мм, пустотностью до 56% с вертикально расположенными пустотами шириной до 16 мм при высоте ряда кладки до 250 мм устанавливаются по экспериментальным данным. При отсутствии таких данных расчетные сопротивления следует принимать по таблице 2а.

Расчетные сопротивления сжатию кладки из полистиролбетонных блоков на клею принимаются по экспериментальным данным.

Расчетные сопротивления , МПа, сжатию кладки из керамических крупноформатных камней пустотностью от 40% до 55% со щелевидными вертикально расположенными пустотами шириной до 16 мм при высоте ряда кладки 200-260 мм* на тяжелых растворах при марке раствора

КАМЕННЫЕ И АРМОКАМЕННЫЕ КОНСТРУКЦИИ

Masonry and reinforced masonry structures

__________________________________________________________________
Текст Сравнения СП 15.13330.2012 с СП 15.13330.2020 см. по ссылке.
- Примечание изготовителя базы данных.
__________________________________________________________________

Дата введения 2013-01-01

Сведения о своде правил

1 ИСПОЛНИТЕЛИ - Центральный научно-исследовательский институт строительных конструкций им. В.А.Кучеренко (ЦНИИСК им. В.А.Кучеренко) - институт ОАО "НИЦ "Строительство"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики

Информация об изменениях к настоящему своду правил публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минрегион России) в сети Интернет.

Изменения N 1, 2, 3 внесены изготовителем базы данных по тексту М.: Стандартинформ, 2017; М.: Стандартинформ, 2019

Введение

* Вероятно, ошибка оригинала. Следует читать: от 22.07.2008 г. - Примечание изготовителя базы данных.

Актуализация выполнена авторским коллективом ЦНИИСК им. В.А.Кучеренко - институтом ОАО "НИЦ "Строительство":

кандидаты техн. наук А.В.Грановский, М.К.Ищук (руководители работ), В.М.Бобряшов, Н.Н.Кручинин, М.О.Павлова, С.И.Чигрин; инженеры: A.M.Горбунов, В.А.Захаров, С.А.Минаков, А.А.Фролов (ЦНИИСК им. В.А.Кучеренко); кандидаты техн. наук А.И.Бедов (МГСУ), А.Л.Алтухов (МОСГРАЖДАНПРОЕКТ). Общая редакция - канд. техн. наук О.И.Пономарева (ЦНИИСК им. В.А.Кучеренко).

Изменение N 1 к своду правил СП 15.13330.2012 разработано авторским коллективом ЦНИИСК им.В.А.Кучеренко АО "НИЦ "Строительство" (канд. техн. наук М.К.Ищук - руководитель работы, канд. техн. наук А.В.Грановский, канд. техн. наук О.К.Гогуа, инж. Е.М.Ищук, инж. И.Г.Фролова) при участии ЦНИИЭПжилища (канд. техн. наук Э.И.Киреева), МГСУ (А.И.Бедов, Д.А.Алехина, Д.Ш.Файзова).

Изменение N 3 к СП 15.13330.2012 разработано авторским коллективом АО "НИЦ "Строительство" - ЦНИИСК им.В.А.Кучеренко: канд. техн. наук М.К.Ищук - руководитель работы, канд. техн. наук А.В.Грановский, канд. техн. наук O.К.Гогуа, канд. техн. наук О.И.Пономарев, Е.М.Ищук, И.Г.Фролова, В.А.Черемных, Х.А.Айзятуллин, при участии ГП МО "Институт "Мосгражданпроект" - А.Л.Алтухов; НИУ МГСУ - канд. техн. наук А.И.Бедов.

1 Область применения

Настоящий свод правил распространяется на проектирование каменных и армокаменных конструкций новых и реконструируемых зданий и сооружений различного назначения, эксплуатируемых в климатических условиях России.

Нормы устанавливают требования к проектированию каменных и армокаменных конструкций, возводимых с применением керамического и силикатного кирпича, керамических, силикатных, бетонных блоков и природных камней.

Требования настоящих норм не распространяются на проектирование зданий и сооружений, подверженных динамическим нагрузкам, возводимых на подрабатываемых территориях, вечномерзлых грунтах, в сейсмоопасных районах, а также мостов, труб и тоннелей, гидротехнических сооружений, тепловых агрегатов.

2 Нормативные ссылки

Нормативные документы, на которые в тексте настоящих норм имеются ссылки, приведены в приложении А.

Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных стандартов и классификаторов в информационной системе общего пользования на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим сводом правил следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем своде правил приняты термины и определения, приведенные в приложении Б.

4 Общие положения

4.1 При проектировании каменных и армокаменных конструкций следует применять конструктивные решения, изделия и материалы, обеспечивающие требуемую несущую способность, долговечность, пожаробезопасность, теплотехнические характеристики конструкций и температурно-влажностный режим (ГОСТ 4.206, ГОСТ 4.210, ГОСТ 4.219).

4.2 При проектировании зданий и сооружений следует предусматривать мероприятия, обеспечивающие возможность возведения их в зимних условиях.

4.3 Проектируемые каменные и армокаменные конструкции должны удовлетворять требованиям по безопасности, эксплуатационной пригодности и иметь такие начальные характеристики, чтобы при различных расчетных воздействиях не происходило деформаций и других повреждений, затрудняющих нормальную эксплуатацию зданий.

Безопасность, эксплуатационная пригодность, долговечность, энергоэффективность каменных и армокаменных конструкций и другие требования, установленные заданием на проектирование, должны обеспечиваться выполнением требований к кирпичу, камню, блокам, тяжелым и легким растворам, клеевым растворам, клеям, арматуре, конструктивным решениям, а также требований по эксплуатации.

Нормативные и расчетные значения нагрузок и воздействий, предельные деформации, расчетные значения температуры наружного воздуха и относительной влажности помещения, защита конструкций от воздействий агрессивных сред и др. устанавливаются соответствующими нормативными документами (СП 20.13330, СП 28.13330, СП 22.13330, СП 131.13330).

4.4 Конструктивное исполнение строительных элементов не должно являться причиной скрытого распространения горения по зданию, сооружению, строению.

При использовании в качестве внутреннего слоя горючего утеплителя предел огнестойкости и класс конструктивной пожарной опасности строительных конструкций должны быть определены в условиях стандартных огневых испытаний или расчетно-аналитическим методом.

Методики проведения огневых испытаний и расчетно-аналитические методы определения пределов огнестойкости и класса конструктивной пожарной опасности строительных конструкций устанавливаются нормативными документами по пожарной безопасности.

4.5 Применение настоящего документа обеспечивает выполнение требований Технического регламента "О безопасности зданий и сооружений".

5 Материалы

5.1 Кирпич, камни и растворы для каменных и армокаменных конструкций, а также бетоны для изготовления камней и крупных блоков должны удовлетворять требованиям соответствующих стандартов: ГОСТ 28013; ГОСТ 4.233; ГОСТ 530; ГОСТ 379; ГОСТ 4001; ГОСТ 6133; ГОСТ 9479; ГОСТ 31189; ГОСТ 31357; ГОСТ 4.210; ГОСТ 4.219; ГОСТ 25485; ГОСТ Р 51263; ГОСТ 8462; ГОСТ 5802; ГОСТ 13579; ГОСТ 24211; ГОСТ 30459 и применяться следующих марок или классов:

а) камни - по среднему пределу прочности на сжатие (кирпич - сжатие с учетом его среднего значения предела прочности при изгибе): М7, М10, М15, М25, М35, М50, М75 - камни малой прочности - легкие бетонные и природные камни, керамические, в том числе крупноформатные; M100, M125, M150, М200 - кирпич и камни средней прочности, в том числе крупноформатные, керамические, бетонные и природные; М250, М300, М400, М500, М600, М800 и M1000 - кирпич и камни высокой прочности, в том числе клинкерные природные и бетонные;

б) бетоны классов по прочности на сжатие:

тяжелые - В3,5; В5; В7,5; В12,5; В15; В20; В22,5; В25; В30;

на пористых заполнителях - В2; В2,5; В3,5; В5; В7,5; В12,5; В15; В20; В25; В30;

ячеистые - В1; В2; В2,5; В3,5; В5; В7,5; В12,5;

полистиролбетон - В1,0; В1,5; В2,0; В2,5; В3,5;

крупнопористые - В1; В2; В2,5; В3,5; В5; В7,5;

поризованные - В2,5; В3,5; В5; В7,5;

силикатные - В12,5; В15; В20; В25; В30.

Допускается применение в качестве утеплителей бетонов, предел прочности которых на сжатие 0,5 МПа и более; а для вкладышей и плит не менее 1,0 МПа;

в) растворы по среднему пределу прочности на сжатие - 0,4 МПа, и по маркам по прочности на сжатие - М4, М10, М25, М50, М75, М100, М150, М200;

г) каменные материалы по морозостойкости - F10, F15, F25, F35, F50, F75, F100, F150, F200, F300.

Для бетонов марки по морозостойкости те же, кроме F10.

5.2 Проектные марки по морозостойкости каменных материалов для наружной части стен (на толщину 12 см) и для фундаментов (на всю толщину), возводимых во всех строительно-климатических зонах, в зависимости от предполагаемого срока службы конструкций, но не менее 100, 50 и 25 лет, приведены в 5.3 и таблице 1.

Примечание - Проектные марки по морозостойкости устанавливают только для материалов, из которых возводится верхняя часть фундаментов (до половины расчетной глубины промерзания грунта, определяемой в соответствии с СП 22.13330.

Значения морозостойкости F кладочных материалов при предполагаемом сроке службы конструкций, лет

1 Лицевой слой кладки наружных однослойных стен в зданиях с влажностным режимом помещений:

6.1 Расчетные сопротивления сжатию кладки на тяжелых растворах из кирпича всех видов и керамических камней со щелевидными вертикальными пустотами шириной до 12 мм, пустотностью до 27% при высоте ряда кладки 50-150 мм на тяжелых растворах приведены в таблице 6.1.

Марка кирпича или камня

Расчетные сопротивления , МПа, сжатию кладки из кирпича всех видов и керамических камней со щелевидными вертикальными пустотами шириной до 12 мм при высоте ряда кладки 50-150 мм на тяжелых растворах

при марке раствора

при прочности раствора

1 При определении расчетного сопротивления сжатию кладки марки керамических камней и кирпича пластического формования принимаются по результатам испытаний образцов с выравниванием их опорных поверхностей раствором. При других методах выравнивания поверхности марка кирпича или камня, приведенная в настоящей таблице, принимается с учетом коэффициента перехода в соответствии с ГОСТ 8462.

Требования этого пункта не относятся к камню и кирпичу, поставляемому на строительную площадку со шлифованными поверхностями, соответствующими требованиям ГОСТ 8462.

2 Расчетные сопротивления кладки на растворах марок от 4 до 50 следует уменьшать, применяя понижающие коэффициенты: 0,85 - для кладки на жестких цементных растворах (без добавок извести или глины), легких и известковых растворах в возрасте до 3 мес; 0,9 - для кладки на цементных растворах (без извести или глины) с органическими пластификаторами.

Уменьшать расчетное сопротивление сжатию не требуется для кладки высшего качества - растворный шов выполняется под рамку с выравниванием и уплотнением раствора рейкой. В проекте указывается марка раствора для обычной кладки и для кладки повышенного качества.

Расчетные сопротивления сжатию кладки из пустотелого керамического кирпича с вертикальными прямоугольными пустотами шириной 12-16 мм и квадратными пустотами сечением 2020 мм пустотностью до 48% при высоте ряда 77-100 мм определяются по экспериментальным данным. При отсутствии таких данных значение следует принимать по таблице 6.1 с понижающими коэффициентами:

- на растворе марки 100 и выше - 0,9;

- на растворе марок 75, 50 - 0,8;

- на растворе марок 25, 10 - 0,75;

- на растворах с нулевой прочностью и прочностью до 0,4-0,65 МПа*.

_____________
* Вероятно ошибка оригинала. Следует читать "прочностью до 0,4 МПа - 0,65". - Примечание изготовителя базы данных.

При пустотности 39%-48% значения понижающих коэффициентов следует умножать на 0,9.

6.2 Расчетные сопротивления сжатию кладки из силикатных пустотелых (с круглыми пустотами диаметром не более 35 мм и пустотностью до 25%) кирпичей толщиной 88 мм и камней толщиной 138 мм допускается принимать по таблице 6.1 с коэффициентами:

- на растворах нулевой прочности и прочности 0,2 МПа - 0,8;

- на растворах марок 4, 10, 25 и выше - соответственно 0,85, 0,9 и 1.

6.3 Расчетные сопротивления сжатию кладки из крупноформатных камней с вертикальным соединением "паз-гребень" (без заполнения раствором) из керамики шириной до 260 мм, пустотностью до 55% с вертикально расположенными пустотами шириной до 16 мм при высоте ряда кладки до 250 мм устанавливаются по экспериментальным данным. При отсутствии таких данных расчетные сопротивления следует принимать по таблице 6.2.

Расчетные сопротивления , МПа, сжатию кладки из керамических крупноформатных камней пустотностью от 40% до 55% со щелевидными вертикально расположенными пустотами шириной до 16 мм при высоте ряда кладки 200-250 мм на тяжелых растворах при марке раствора

3.8. Предел прочности всех видов кладок при кратковременном загружении определяется по формуле профессора Л.И. Онищика:


, (1)


где - предел прочности кладки при сжатии;


- предел прочности камня при сжатии;


- предел прочности раствора (кубиковая прочность).


Коэффициент А характеризует максимально возможную, так называемую "конструктивную", прочность кладки. Действительно, из формулы (1) следует, что при .


, (2)

где выражен в .

Примечание. При определении прочности кладки из сплошных легкобетонных крупных блоков принимается коэффициент А = 0,8, а из крупных блоков тяжелого бетона А = 0,9.

Если прочность кирпича при изгибе меньше предусмотренной ГОСТ 530-80, то конструктивный коэффициент А для кладки определяется по формуле


, (3)


где - прочность кирпича при изгибе.


Коэффициент применяют при определении прочности кладки на растворах низких марок (25 и ниже). Эти коэффициенты принимают равными при:


;


210 × 60 пикс.   Открыть в новом окне
. (4)

Для кладки из кирпича и камней правильной формы ; ; для бутовой кладки ; .


Формула (1) установлена для случаев, когда качество кладки соответствует уровню массового строительства, а применяемые растворы достаточно подвижны и удобоукладываемы. Если эти условия не соблюдаются, то влияние ряда факторов учитывается применением дополнительных коэффициентов к значениям , вычисленным по формуле (1). В случае, например, применения жестких, неудобных для кладки цементных растворов (без добавки глины или извести), растворов на шлаковом или другом легком песке, а также сильно сжимаемых (в возрасте до 3 мес) известковых растворов пределы прочности кладки понижаются на 15% по сравнению с вычисленными по формуле (1). В среднем на 15% понижается предел прочности кладки из пустотелых крупных бетонных блоков по сравнению с пределом прочности кладки из сплошных крупных блоков той же марки. Предел прочности кладки из постелистого бута на 50% выше кладки из рваного бута.

3.9. Предел прочности вибрированной кирпичной кладки, в которой обеспечено плотное и равномерное заполнение швов раствором, значительно (в 1,5-2 раза) выше обычной кладки.

3.10. Предел прочности кладки и бетона зависит также от длительности загружения. Пределом длительного сопротивления кладки или бетона является максимальное напряжение, которое может выдержать кладка или бетон неограниченное время без разрушения. Величина для тяжелых бетонов равна , а для ячеистых бетонов неавтоклавного твердения . Для кирпичной кладки на прочных растворах марок 50 и выше ориентировочно , марок и для кладок на известковом растворе .

Следует однако учитывать, что после длительного периода твердения раствора под нагрузкой (более года) вследствие его пластических деформаций происходит выравнивание поверхности раствора в швах кладки, что уменьшает местные концентрации напряжений и позволяет повысить расчетное сопротивление кладки на 15%, см. п. [3.11г].

3.11. Принятое в стандарте СЭВ 384-76 понятие нормативного сопротивления материалов, связанное с контрольной или браковочной их характеристикой, устанавливаемой государственными стандартами на материалы, не применяется к кладке, так как она является композитным материалом и ее прочность не установлена стандартами.

При установлении расчетных сопротивлений для каменных конструкций принята следующая система коэффициентов. Коэффициент изменчивости прочности кирпичной кладки на основании статистических данных принят равным С = 0,15, а условное нормативное сопротивление , при этом обеспеченность величины С равна 0,98. Вероятное понижение прочности кладки по сравнению с уровнем, принятым в нормах, учитывается делением на коэффициент 1,2, а другие второстепенные факторы, не учитываемые расчетом, и дефекты (ослабление кладки пустошовкой, гнездами, небольшие отклонения столбов и стен от вертикали и т. п.) - на коэффициент 1,15. Таким образом, дополнительный коэффициент надежности для кирпичной кладки принят равным 1,2 х 1,15 = 1,4 и расчетное сопротивление .

Расчетные сопротивления кладки сжатию из всех видов каменных и бетонных изделий приведены в табл. 9, пп. [3.1-3.14]. Средние ожидаемые пределы прочности кладки могут быть определены, в случае необходимости, умножением расчетных сопротивлений на коэффициенты безопасности, приведенные в п. [3.20].


3.12. Расчетные сопротивления кладки при сжатии из керамических камней с горизонтальным расположением пустот (см. ГОСТ 530-80, черт. 15-18) следует назначать по п. [3.1] табл. [2] с применением следующих понижающих коэффициентов: D - учитывающего особенности работы кладки (хрупкость разрушения и др.) и - переходный коэффициент от расчетного сопротивления к пределу прочности кладки:


D = 0,6; = 3,3;


D = 0,6; = 3,3;


D = 0,8; = 2,5.


3.13. Расчетное сопротивление кладки из кирпича и пустотелых керамических камней при расчете каменных конструкций на выносливость, а также по образованию трещин при многократно повторяющихся нагрузках определяется путем умножения соответствующих расчетных сопротивлений кладки, принятых по табл. [2, 10 и 11], на коэффициент D. В табл. 3 приведены коэффициенты D для определения расчетных сопротивлений кладки из кирпича и пустотелых керамических камней при расчете на выносливость и по образованию трещин при многократно повторяющихся нагрузках в зависимости от коэффициента асимметрии :


, (5)

где и - соответственно наименьшее и наибольшее значения напряжений в кладке, возникающих от нормативных статических и повторяющихся нагрузок.

Читайте также: