Применение золы уноса в бетонах

Обновлено: 14.05.2024

ЗОЛЫ-УНОСА ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ ДЛЯ БЕТОНОВ

Thermal plant fly-ashes for concretes. Specifications

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ им.А.А.Гвоздева) АО "НИЦ "Строительство" при участии ООО "ПЦВ"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 25 сентября 2017 г. N 103-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

5 Настоящий стандарт соответствует европейскому региональному стандарту EN 450-1:2012* "Бетон с применением золы уноса. Часть 1. Определения, требования и критерии соответствия" ("Fly ash for concrete. Definition, specifications and conformity criteria", NEQ) в части требований к золе-уноса и методов испытаний, а также стандарта ASTM С 430-08 (2015) "Стандартный метод определения тонкости помола гидравлического цемента на сите 45 мкм" ("Standard Test Method for Fineness of Hydraulic Cement by the 45-m (No. 325) Sieve", NEQ) в части установления классификационных признаков золы уноса

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

1 Область применения

Настоящий стандарт распространяется на золы-уноса (далее - золы) сухого отбора, образующиеся на тепловых электростанциях в результате сжигания углей или смесей углей в пылевидном состоянии и применяемые в качестве компонента для изготовления тяжелых, легких, ячеистых бетонов и строительных растворов, сухих строительных смесей, а также в качестве тонкомолотой добавки для жаростойких бетонов и минеральных вяжущих для приготовления смесей и укрепленных грунтов в дорожном строительстве.

Стандарт не распространяется на золу, образующуюся от сжигания горючих сланцев.

Требования настоящего стандарта следует соблюдать при разработке новых и пересмотре действующих стандартов и технических условий, проектной и технологической документации.

Рекомендации по применению золы приведены в приложении А.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 15.309-98 Система разработки и постановки продукции на производство (СРПП). Испытания и приемка выпускаемой продукции. Основные положения

ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 310.2-76 Цементы. Методы определения тонкости помола

ГОСТ 310.3-76 Цементы. Методы определения нормальной густоты, сроков схватывания и равномерности изменения объема

ГОСТ 5382-91 Цементы и материалы цементного производства. Методы химического анализа

ГОСТ 5833-75 Реактивы. Сахароза. Технические условия

ГОСТ 6139-2003 Песок для испытаний цемента. Технические условия

ГОСТ 8269.0-97 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний

ГОСТ 8269.1-97 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы химического анализа

ГОСТ 8735-88 Песок для строительных работ. Методы испытаний

ГОСТ 10180-2012. Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 11022-95* Топливо твердое минеральное. Методы определения зольности

* В Российской Федерации действует ГОСТ Р 55661-2013 (ИСО 1171:2010) "Топливо твердое минеральное. Определение зольности".

ГОСТ 16504-81 Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения

ГОСТ 20910-90 Бетоны жаростойкие. Технические условия

ГОСТ 22235-2010 Вагоны грузовые магистральных железных дорог колеи 1520 мм. Общие требования по обеспечению сохранности при производстве погрузочно-разгрузочных и маневровых работ

ГОСТ 23227-78 Угли бурые, каменные, антрацит, горючие сланцы и торф. Метод определения свободного оксида кальция в золе

ГОСТ 24104-2001* Весы лабораторные. Общие технические требования

ГОСТ 24211-2008 Добавки для бетонов и строительных растворов. Общие технические условия

ГОСТ 25192-2012 Бетоны. Классификация и общие технические требования

ГОСТ 25485-89 Бетоны ячеистые. Технические условия

ГОСТ 25820-2014 Бетоны легкие. Технические условия

ГОСТ 26633-2015 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 28013-98 Растворы строительные. Общие технические условия

ГОСТ 30515-2013 Цементы. Общие технические условия

ГОСТ 30744-2001 Цементы. Методы испытаний с использованием полифракционного песка

ГОСТ 31359-2007 Бетоны ячеистые автоклавного твердения. Технические условия

ГОСТ 31384-2008 Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования

ГОСТ 31914-2012 Бетоны высокопрочные тяжелые и мелкозернистые для монолитных конструкций. Правила контроля и оценки качества

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 25192, ГОСТ 24211, ГОСТ 30515, а также следующие термины с соответствующими определениями:

3.1 минеральная добавка: Дисперсный неорганический материал природного или техногенного происхождения, вводимый в бетонную или растворную смесь в процессе их приготовления в целях направленного регулирования их технологических свойств и/или строительно-технических свойств бетонов и/или придания им новых свойств.

3.2 зола-уноса: Мелкая, состоящая преимущественно из шарообразных стекловидных частиц пыль, образующаяся при сгорании мелко смолотого угля и обладающая пуццолановыми свойствами и/или гидравлической активностью.

3.3 стандартный цемент для испытаний: Портландцемент (типа ЦЕМ I) класса по прочности 42,5 или выше согласно ГОСТ 31108 с установленными требованиями по качеству, применяемый для испытаний в целях доказательства соответствия или несоответствия требованиям.

3.4 средняя плотность частиц: Средняя плотность частиц золы-уноса, включая полое пространство внутри частиц.

3.5 индекс активности: Отношение в процентах предела прочности при сжатии испытанных в одном возрасте стандартных призм строительных растворов основного и контрольного составов.

3.6 производственный контроль: Текущий статистический контроль качества золы на основе контроля проб, взятых производителем или его представителем на выходе(ах) установки, производящей золу.

3.7 период наблюдений: Период времени производства и/или поставки, который установлен для оценки результатов контрольных испытаний.

3.8 перцентиль: Характеристика набора данных, выражающая ранг элемента в виде процента (от 0% до 100%) таким образом, что наименьшему значению соответствует нулевой перцентиль, наибольшему - 100-й перцентиль, медиане - 50-й перцентиль и т.д.

3.9 характеристическое значение: Требуемое значение показателя качества, за которым находится установленное процентное число (перцентиль ) всех значений генеральной совокупности.

3.10 установленное характеристическое значение: Характеристическое значение какого-либо химического или физического показателя качества, которое в случае максимально предельного значения не может быть превышено или, как минимум мере*, не должно быть достигнуто в случае достижения минимальной предельной границы.

* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

3.11 предельно допустимое значение единичного результата испытаний: Значение какого-либо химического или физического показателя качества, которое не может быть превышено для каждого отдельного результата испытания или, по меньшей мере, не должно быть достигнуто в случае достижения минимальной предельной границы.

3.12 допустимый риск потребителя; CR: Допустимая вероятность приемки партии продукции, обладающей браковочным уровнем дефектности.

3.13 план отбора проб: Специальный план, который содержит используемое(ые) [статистическое(ие)] значение(я) выборочной(ых) пробы (проб) (перцентиль ) и допустимый риск потребителя CR.


В данной статье приведены результаты исследований по получению и изучению функциональных свойств различных видов бетона на основе золы-уноса, золошлаковых смесей ТЭЦ.

Ключевые слова: зола, золобетон, микрокремнезем, твердение, прочность, плотность.

Использование отходов тепловых электростанций (топливных зол и шлаков) следуеть считать частью общей проблемы сохранения и очистки от загрязнения окружающей среды. Загрязнения окружающей среды — воздуха, воды и почвы — одна из важнейших проблем современности, касающаяся практический всех стран, и в особенности высокоразвитых.

Применяя золы уноса и золошлаковых смесей в качестве мелкого и крупного заполнителя в бетонной смеси значительно снижает себестоимость материала, так как подготовка золы — уноса требует меньше затрат по сравнению с песком, щебнем и т. п. Подготовка золы для производства зола бетона имеющие конструкционно-теплоизоляционные свойства подразумевает первый этап — это сушка, просеивание. А также применяя золы уноса в качестве заполнителя для бетона мы как бы помагаем в некоторой степени улучшаем экологию нашей страны. Мы все знаем что каждый год собирается тонны отходы из теплоэнергетических станции и в результате природных стихии ветра, дождя и т. п. эти летучие материалы загрязняют нашей с вами окружающую среду. Теплоэнергетические станции есть и работают во многих регионах Казахстана. Внедряя эту систему, т. е. использование золы уноса в качестве заполнителя мы снижаем загрязняемость тем самым улучшаем экологию нашей с вами страны.

На сегодняшний день производиться немало видов конструкционно-теплоизоляционного вида материалы. Самые распрастраненные из них — это газо и пено блоки. Главнейшие недостатки этих материалв заключается в их себестоимости и определенные физико-механические свойства.

Утилизация вторичных продуктов промышленности в бетонах позволяет решать важные экологические, экономические и энергетические проблемы.

В работе [1] на основе безобжигового зольного гравия подобраны составы бетонов и определены их физико-механические свойства. По плотности они относятся к облегченным бетонам (1817–1857 кг/м3), прочности ‒ соответствуют классам В10, В12,5 и В25. При введений добавки суперпластификатора происходил снижение водопотребности бетонной смеси и повысился прочность бетона. Состав бетона определялся методом расчета по абсолютному объему компонентов для приготовления бетона, разработанный проф. Б. Г. Скрамтаевым. Фактический расход материалов и физико-механические свойства материалов приведена в таблице 1 и 2.

ООО ЭнергоЗолоРесурс реализация золы-уноса и золошлаковых материалов. Наша работа – забота о будущих поколениях.

Записи (RSS) Комментарии (RSS)




ПРОДУКЦИЯ

Советы технолога

Информация для технологов

Производителям бетонов и растворов

При производстве бетонных смесей и строительных растворов в качестве минеральной добавки, частично заменяющей цемент, а также для частичной или полной замены мелкого заполнителя могут использоваться зола-унос и золошлаковый материал. Наиболее эффективно применение золы-унос в бетонах низких классов (до В20), в частности в бетонах, применяемых для строительства плотин, фундаментов, оснований. Количество вводимой золы колеблется от 30 до 90 кг на 1 м3 бетонной смеси.
Качество применяемой в бетонах и строительных растворах золы-унос должно соответствовать требованиям ГОСТ 25818–91, золошлакового материала – ГОСТ 25592–91. ГОСТ 25818–91 распространяется на золу-унос, которая применяется в качестве компонента для изготовления тяжелых, легких, ячеистых бетонов и строительных растворов, а также в качестве тонкомолотой добавки для жаростойких бетонов и минеральных вяжущих для приготовления смесей и грунтов в дорожном строительстве. Стандарт не распространяется на золу от сжигания горючих сланцев. ГОСТ 25592–91 устанавливает требования к золошлаковому материалу, применяемому в качестве заполнителя для тяжелых и легких бетонов сборных и монолитных бетонных и железобетонных конструкций зданий и сооружений. Данный стандарт не разрешает использовать золошлаковые материалы в качестве заполнителя в бетонах гидротехнических сооружений, дорожных покрытий, труб, шпал, опор линий электропередач и в конструкциях из специальных бетонов.
В соответствии с ГОСТ 25818–91 золы-унос по виду сжигаемого угля подразделяют на антрацитовые (А), образующиеся при сжигании антрацита, полуантрацита и тощего каменного угля; каменноугольные (КУ), образующиеся при сжигании каменного угля; буроугольные (Б) – от сжигания бурых углей. По химическому составу золы подразделяют на типы: кислые (К) – антрацитовые, каменноугольные и буроугольные, содержащие оксид кальция по массе до 10 %; основные (О) – буроугольные, содержащие СаО более 10 %. Однако, такая классификация не отражает имеющиеся особенности химического состава буроугольных зол с высоким содержанием СаО. Поэтому, для буроугольных зол необходимо ввести дополнительный тип − высокоосновные, содержащие СаО более 40 %.

Золы-унос в зависимости от качественных показателей делят на четыре вида:

I – для железобетонных конструкций и изделий из тяжелого и легкого бетона;

II – для бетонных конструкций и изделий из тяжелого и легкого бетона, строительных растворов;

III – для изделий и конструкций из ячеистого бетона;

IV – для бетонных и железобетонных изделий и конструкций, применяемых при строительстве гидротехнических сооружений, дорог, аэродромов и др.

Для изготовления тяжелых и легких бетонов, строительных растворов золы-унос применяют для снижения расхода цемента и заполнителей , улучшения технологических свойств бетонных и растворных смесей, повышения качества бетонов и растворов. При изготовлении ячеистых бетонов кислые золы следует использовать в качестве кремнеземистого компонента смеси, а также с целью экономии цемента в неавтоклавных бетонах . Основные золы с содержанием СаО не менее 30 % рекомендуется применять в качестве минеральной добавки в цементе или компонента другого вяжущего при изготовлении строительных бетонов и растворов, в качестве вяжущего для частичной замены извести или цемента в ячеистых бетонах автоклавного и неавтоклавного твердения. В конструкционно-теплоизоляционных бетонах кислую золу следует использовать для частичной или полной замены пористых песков и снижения плотности бетона. Для конструкций подводных и внутренних зон гидротехнических сооружений следует применять кислую золу IV вида.
Оптимальное содержание золы в тяжелых, легких, ячеистых бетонах и строительных растворах устанавливают в результате подбора составов на конкретных материалах при условии обеспечения требуемых показателей качества бетона и раствора в изделиях, конструкциях и коррозионной стойкости арматуры. В целях обеспечения коррозионной стойкости ненапрягаемой арматуры в железобетонных конструкциях, эксплуатируемых в не агрессивных средах, содержание кислой золы в бетоне не должно превышать по массе расход портландцемента. Возможность увеличения содержания золы в бетонах устанавливают после проведения исследований по коррозионной стойкости арматуры, деформативным свойствам и долговечности бетонов, выполненных на конкретных материалах.
Качественные показатели зол-унос для строительных бетонов и растворов должны соответствовать требованиям, указанным в табл.

Наименование показателя Вид угля Значение показателя для вида золы
I II III IV
1 Содержание оксида кальция, мас. %:
– кислая зола, не более Для всех 10 10 10 10
– основная зола, более, Бурый 10 10 10 10
в том числе свободного СаО, не более:
– кислая зола Для всех - - - -
– основная зола Бурый 5 5 - 2
2 Содержание оксида магния, мас. %,не более Для всех 5 5 - 5
3 Содержание сернистых и сернокислых соединений в пересчете на SO3, мас.%, не более:
– кислая зола Для всех 3 5 3 3
– основная зола Бурый 5 5 6 3
4 Содержание щелочных оксидов впересчете на Nа2О, мас. %, не более:
– кислая зола Для всех 3 3 3 3
– основная зола Бурый 1,5 1,5 3,5 1,5
5 Потери массы при прокаливании, мас. %,
не более:
– кислая зола Антрацит 20 25 10 10
Каменный 10 15 7 5
Бурый 3 5 5 2
– основная зола Бурый 3 5 3 3
6 Удельная поверхность, м2/кг,не менее:
– кислая зола Для всех 250 150 250 300
– основная зола Бурый 250 200 150 300
7 Остаток на сите № 008, мас. %,не более:
– кислая зола Для всех 20 30 20 15
– основная зола Бурый 20 20 30 15

Влажность золы должна быть не более 1 %. Золы-унос в смеси с портландцементом должны обеспечивать равномерность изменения объема при кипячении в воде, основные золы III вида – в автоклаве.
При производстве ячеистого бетона золу-унос используют в качестве вяжущего вещества и кремнеземистого компонента бетонной смеси. По ГОСТ 25485–89 для производства ячеистого бетона в качестве вяжущего вещества может применяться основная зола, содержащая общего СаО не менее 40 %, в том числе свободного СаО – не менее 16 %, SО3 – не более 6 %, сумму оксидов К2О и Nа2О – не более 3,5 %. При использовании золы-унос в качестве кремнеземистого компонента бетонной смеси она должна содержать не менее 45 % SiO2, не более 10 % СаО, не более 3 % К2О+Nа2О, не более 3 % SО3.
Ранее в инструкции по изготовлению изделий из ячеистого бетона СН 277-80 к золам предъявляли следующие требования. Основные золы от сжигания горючих сланцев и бурых углей должны иметь химический состав: содержание общего СаО – не менее 30 %, в том числе свободного СаО – 15…25 %; содержание оксида SiO2 – 20…30 %, оксида SО3 – не более 6 %, сумма окси-дов К2О и Nа2О не более 3 %. Удельная поверхность зол-унос должна быть в пределах от 300 до 350 м2/кг.

Кислая зола-унос должна иметь стекловидных и оплавленных частиц не менее 50 %, потери массы при прокаливании для буроугольной и каменноугольной соответственно не более 3 и 5 %, удельную поверхность для буроугольной и каменноугольной соответственно не менее 400 и не более 500 м2/кг. Зола-унос должна выдержать испытания на равномерность изменения объема.
По ГОСТ 26644–85 из шлаков от сжигания твердого топлива могут быть получены фракционированный щебень с размером зерен 5–10, 10–20 и 5–20 мм, шлаковый песок с размером зерен до 5 мм,рядовой несортированный шлак с размером зерен до 20 мм. Требования к зерновому составу фракционированного щебня, шлакового песка и рядового шлака приведены в табл.

Наименование показателя Величина показателя для различных материалов
Фракциониро-ванный щебень Шлаковый песок Рядовой несортиро-ванный шлак
Полные остатки на ситах с диаметром отверстий, соответствующего
наименьшему номинальному размеру зерен фракций, мас. %
90–100
Полные остатки на ситах с диаметром отверстий, соответствующего
наибольшему номинальному размеру зерен фракций, мас. %
до 10 до 10 до 10
Содержание зерен, проходящих через сито № 0315, мас. %, не более 5 20 10

Насыпная плотность щебня из плотного шлака, применяемого для тяжелого бетона, должна быть не менее 1000 кг/м3, шлакового песка из плотного шлака – не менее 1100 кг/м3. В зависимости от насыпной плотности щебень из пористого шлака, применяемый для легкого бетона, подразделяют на марки 500, 600, 700, 800, 900 и 1000, песок – на марки 600, 700, 800, 900, 1000 и 1100.
Потери массы при прокаливании в плотных шлаковых щебне и песке не нормируют, а в пористых камен-ноугольных и буроугольных шлаках они не должны превышать значений, соответственно, при использовании заполнителей в бетоне 7 и 3 %, в железобетонных изделиях – 5 и 3 %. Содержание сернистых и сернокислых соединений в пересчете на SO3 в шлаковом щебне и песке не должно превышать 3 %, свободного СаО – 1 %.
Щебень должен обладать устойчивой структурой: потери массы шлака при определении стойкости против силикатного и железистого распадов соответственно не должна превышать 8 и 5 %.
Морозостойкость шлакового щебня должна характеризоваться потерей массы не более 8 % при 15 циклах попеременного замораживания и оттаивания для пористого щебня и 100 циклов – для плотного щебня. В щебне и песке не должно быть посторонних засоряющих примесей (растительные остатки, грунт, кирпич и т.п.).
К вредных компонентам в составе золы и шлака относятся соединения серы, несгоревшие частицы твердого топлива (кокс и полукокс), свободные оксиды кальция и магния, особенно в крупнокристаллическом или пережженном состоянии, оксиды щелочных материалов. Кроме того, отрицательное действие на их свойства оказывает наличие в золе и шлаке неустойчивых фаз, приводящих к разрушению частиц золы или гранул шлака в результате объемных изменений необожженного глинистого вещества, присутствующего в шлаках низкотемпературного сжигания. Глинозем другой разновидности (дегидратированный) способен к регидратации и вызывает объемные изменения шлака. Вредное влияние на деформационные свойства строительных материалов и изделий на основе золошлаков оказывают сульфиды железа, окисляющиеся при совместном воздействии воздуха и воды.

В соответствии с ГОСТ 25592–91 к угольному золошлаковому материалу, применяемой в качестве заполнителя для тяжелых и легких бетонов сборных и монолитных бетонных и железобетонных конструкций, предъявляются следующие технические требования.

Показатель Значение показателей для классов
А (тяжелые бетоны) Б (легкие бетоны)
Содержание шлака, мас. % Не менее 50 До 20
Содержание зерен золы и шлака размеромменее 0,315 мм, мас. %:
вид I 20—30 50—100
вид II 20—50 50—100
Содержание зерен размером более 5 мм, мас. % Не нормируется Не более 15
Максимальный размер зерен шлака, мас. % 40 20
Удельная поверхность, м2/кг Не нормируется 150—400
Влажность, мас. % Не более 15 Не более 35
Насыпная плотность в сухом состоянии, кг/м3 Не менее 1300 Не более 1300
Содержание сернистых и сернокислыхсоединений в пересчете на SO3, мас. %, Не более 3 Не более 3
в том числе в сульфидной форме Не более 1 Не более 1
Количество SiO2, мас. % Не менее 40 Не менее 40

Кроме того, потери массы при прокаливании для различных классов и видов золошлакового материала не должны превышать значений, приведенных в табл.

Класс Вид Потери массы при прокаливании, мас. %, не более
Антрацитовой Каменноугольной Буроугольной
А I 5 3 2
II 10 5 2
Б I 15 7 5
II 20 10 5

Дополнительные требования к золошлаковому материалу следующие: суммарное содержание в зольной части (менее 0,16 мм) золошлакового материала свободных оксида кальция и оксида магния не должно превышать 10 %, в шлаке − не более 1 %. Зола, содержащаяся в золошлаковом материале, должна выдерживать испытания на равномерность изменения объема. Шлак с размером зерен крупнее 5 мм, содержащийся в золошлаковом материале класса А (вида I и II) и класса Б (вида I) должен обладать устойчивой структурой. Потери массы шлака при определении стойкости его к силикатному и железистому распаду не должна превышать 5 %. В золошлаковом материале не должно быть посторонних засоряющих примесей. Золошлаковый материал с содержанием шлака от 20 до 50 % допускается применять для тяжелого бетона в сочетании с природными заполнителями.
Золошлаковый материал, применяемый в составе жаростойких бетонов (с температурой эксплуатации до 1800 °С) для экономии цемента и улучшения эксплуатационных свойств, по химическому составу и дисперсности должна соответствовать требованиям ГОСТ 20910–90. К золошлаковому материалу, используемому в качестве тонкомолотой добавки в бетонах на портландцементе и жидком стекле, предъявляются следующие требования: тонкость помола должна быть не менее 50 % при просеивании через сито № 008; содержание свободных СаО и МgО в сумме не должно превышать 3 %, а карбонатов – 2 %.
При применении золошлакового материала в качестве заполнителя жаростойкого бетона его химический состав должен удовлетворять следующим требованиям: общее содержание оксидов SiO2 и A12O3 должно быть не менее 75 %, в том числе оксида SiO2 – не менее 40 %; количество сульфатов в пересчете на SО3 – не более 3 %, сумма свободных СаО и МgО – не более 4 %, потери массы при прокаливании – не более 5 %. Золошлаковые материалы не должны быть загрязнены другими материалами, способными снизить эксплуатационные свойства или привести к разрушению бетона после нагрева (известняк, гранит, доломит, магнезит и др.).


Приведены данные о эффективности применения золы ТЭС в производстве геополимерных вяжущих строительного назначения. Показано, что в России и других странах, не имеющих развитой индустрии утилизации промышленных отходов, применение золы в технологии геополимерных вяжущих является наиболее перспективным направлением ее использования.

Ключевые слова: геополимер, строительное вяжущее, зола ТЭС, утилизация.

Геополимерные вяжущие и материалы на их основе — активно развивающееся в последние годы направление создания ресурсо- и энергосберегающих технологий строительных материалов. В качестве сырья для получения геополимеров использовались алюмосиликатные материалы, которые подвергались термической обработке при температуре 750…850 °С. Это позволяло, в сравнении с портландцементом, сократить на 70…90 % расход энергии и выбросы углекислого газа при производстве вяжущего [1]. Еще менее энергозатратны технологии геополимерных материалов на основе золы-уноса и доменного гранулированного шлака, так как эти промышленные отходы в процессе образования уже прошли термическую обработку.

Анализ многочисленных публикаций, посвященных геополимерным материалам, позволяет сделать вывод о том, что перспективным сырьем для производства этих материалов являются золы ТЭС. Объемы производства топливных зол во всем мире достигают 800 млн т [2], что намного больше по сравнению с производством доменных шлаков, микрокремнезема и других материалов, использующихся в технологии геополимерных материалов.

Золы ТЭС представляют собой неорганическую часть угля после кратковременной температурной обработки. В золе содержится неорганическое и органическое вещество. Последнее представлено несгоревшим углем. Основными минералами золы являются глинистые минералы, а также слюды и кварц. Химический состав зол представлен в основном оксидами кремния, алюминия и кальция. В качестве второстепенных зола содержит оксиды железа, магния, серы, натрия и калия. Минеральный состав включает стекловидные фазы, а также кристаллические составляющие, такие, как различные модификации кварца, мелилит, волластонит и др. Частицы золы имеют сферическую форму с размером от 1 до 100 мкм [3] и развитую внутреннюю поверхность, что облегчает помол золы.

При быстром охлаждении золы в ней образуется значительная доля стекловидных фаз, что, наряду с высокой удельной поверхностью золы-уноса — 200…600 м 2 /кг, является причиной проявления вяжущих или пуццолановых свойств золы. Реакционная способность золы определяется содержанием в ней термодинамически менее устойчивой стеклофазы, кристаллические минералы обычно инертны.

Основное преимущество золы в сравнении с другими сырьевыми материалами — значительная доля в ее составе стекловидных фаз алюмосиликатного состава и высокая дисперсность. Эти два фактора позволяют получать на основе золы геополимеры с высокими техническими характеристиками [1, 4–7] без температурной обработки сырья и его измельчения.

Химико-минералогический состав золы и зольность углей могут значительно различаться, однако в пределах каменноугольных бассейнов и месторождений состав зол имеет схожие черты. По химическому составу золы классифицируются на кислые и основные. Классификационным критерием является содержание в золе СаО. При содержании оксида кальция до 10 % зола относятся к кислым, а свыше 10 % — к основным.

В зарубежной практике по содержанию СаО золы в соответствии со стандартом ASTM С618 Американского общества по материалам и их испытаниям делятся на два класса: класс C и класс F. При содержании в золе оксида кальция менее 10 % она относится классу F, а при большем содержании СаО — к классу C.

Далеко не все золы обладают химико-минералогическим составом, пригодным для получения геополимерных материалов. В основном используются кислые золы с низким содержанием CaO и высоким содержанием оксида алюминия и кремния [6, 7]. Jaarsveld с соавторами [8] отмечают, что активность, сроки схватывания и твердения вяжущего зависят от вида золы-уноса. Зола-унос с высоким содержанием CaO обладает высокой прочностью в ранние сроки твердения, потому что формируются гидроалюминаты кальция.

Имеются данные [9] об успешном использовании для производства геополимерного бетона низкокальциевой золы-унос, содержащей до 80 % алюмосиликатных оксидов, при соотношении Si/Al = 2. В этой золе количество оксида железа составляло около 10…20 %, оксида кальция менее 5 %. Содержание углерода, определяемое по потере при прокаливании, в золе-уносе было менее 2 %. В золе-унос содержалось 80 % частиц с размером менее 50 мкм.

Содержание несгоревшего угольного остатка является важным фактором, влияющим на механические свойства геополимерных вяжущих. Согласно Jaarsveld и др. [8], чем выше содержание несгоревших остатков угля, тем ниже прочность при сжатии и больше пористость геополимеров. Однако требования к содержанию этого снижающего качество золы компонента для производства геополимера менее жесткие по сравнению с требованиями, предъявляемыми при использовании золы в качестве компонента композиционного вяжущего на основе портландцемента.

Европейские стандарты EN 206–1 и EN 206–2 ограничивают содержание в золе-уносе несгоревшего угольного остатка (потери при прокаливании) до 2. 5 %. Результаты испытания золы, содержащей до 80 % аморфного алюмосиликата и 23 % несгоревшего угля, показали, что она не может быть использована в производстве армированного бетона. Однако эта зола с успехом применяется для синтеза геополимера [1].

Многими исследованиями установлено, что к основными факторам, влияющим на прочность геополимерных вяжущих, относятся вид и количество активатора твердения, соотношение в сырьевых материалах Si/Al, режимы твердения.

Для производства геополимерного вяжущего на основе золы в качестве модифицирующего компонента используется доменный гранулированный шлак, доля которого в вяжущем достигает 50 % и более. При таком высоком содержании этого компонента вяжущее можно считать гибридным. Шлак целесообразно вводить в состав вяжущего при использовании высококальциевой золы и активации твердения гидроксидом натрия. Применение добавки шлака позволяет повысить прочность вяжущего и темпы ее набора, а также снизить усадочные деформации.

В качестве активатора процесса геополимеризации используются два вида щелочных соединений — щелочи (NaOH и KOH) и жидкое стекло (натриевое, калиевое или смешанное). Скорость протекания геополимерных реакций выше, если щелочным активатором служит раствор гидроксида щелочного металла, силиката натрия или силиката калия, в сравнении со скоростью реакций при использовании только гидроксида щелочного металла.

Для смешанных вяжущих на основе золы-уноса и шлака, активированных силикатом натрия, предпочтительны нормальные условия твердения, а также низкотемпературная тепловлажностная обработка (20. 80 ºС) в течение непродолжительного периода времени. На этапе тепловой обработки важно не допускать сухого прогрева [10], который затрудняет процессы гидратации шлака и снижает прочность геополимерного вяжущего.

При использовании в качестве активаторов только щелочей для геополимерных вяжущих на основе золы-уноса или метакаолина следует применять только тепловую обработку, а при наличии в составе добавки шлака могут быть выбраны и нормальные условия твердения, и тепловлажностная обработка.

Геополимерные вяжущие на основе золы-уноса обладают [1] свойствами:

- усадка при схватывании

- прочность на сжатие — более 90 МПа через 28 сут, а для быстротвердеющих высокопрочных геополимеров — 20 МПа через 4 часа;

- прочность при изгибе — 10…15 МПа через 28 сут, а для быстротвердеющих высокопрочных геополимеров — 10 МПа после 24 часов;

- модуль упругости — более 2 ГПа;

- после 180 циклов замораживания-оттаивания потеря массы менее 0,1 %, потеря прочности менее 5 %;

- после 180 циклов увлажнения-высушивания потеря массы менее 0,1 %;

- выщелачивание в воде после 180 дней — K2O менее 0,015 %;

- водопоглощение — менее 3 %;

- гидравлическая проницаемость — 10 м/с;

- потеря массы под действием 10 % раствора серной кислоты — 0,1 % в сут;

- потеря массы под действием 50 % KOH — 0,2 % в сут.

Ежегодно на российских тепловых электростанциях образуется около 50 млн т отходов сжигания твердого топлива, а доля их утилизации не превышает 10 % [2]. В результате в золоотвалах накопилось более 1 млрд т золошлаковых отходов [2]. В связи с этим в нашей стране золы-унос — самое перспективное сырье для организации производства геополимерных вяжущих.

Геополимеры на основе зол и шлаков в настоящее время в некоторых странах используются только в порядке опытно-промышленного применения. Наибольшая перспектива роста промышленного производства этих материалов имеется в развивающихся странах, где рынок утилизации отходов еще не сложился и золы и шлаки в основной массе не находят применения, в отличие от промышленно развитых стран.

Значительная часть золы в промышленно развитых странах в настоящее время используется для различных целей — в качестве добавок при производстве цемента, добавки в бетоны, при производстве рулонных кровельных материалов, для замены грунта при различных видах строительства и др.

В связи с этим в промышленно развитых странах со сформировавшимися рынками использования этого отхода в качестве сырья для различных технологий не следует ожидать бурного роста производства геополимерных материалов на основе золы. В развивающихся странах, где существует индустрия утилизации угольной золы, а также зол от сжигания рисовой шелухи, отходов производства пальмового масла, эти материалы можно рассматривать в качестве перспективного сырьевого ресурса для производства геополимерных вяжущих.

3. Иванов И. А. Легкие бетоны с применением зол электростанций [Текст] / И. А. Иванов. — М.: Стройиздат, 1986. — 136 с.

4. Ерошкина Н. А., Коровкин М. О., Коровченко И. В. Свойства геополимерного вяжущего на основе Томь-Усинской ГРЭС // Новый университет. Серия: Технические науки. 2014. № 12 (34). С. 30–34.

5. Ерошкина Н. А. Геополимерные строительные материалы на основе промышленных отходов: моногр. / Н. А. Ерошкина, М. О. Коровкин. — Пенза: ПГУАС, 2014. — 128 с.

Основные термины (генерируются автоматически): материал, KOH, зола, зола ТЭС, основа золы-уноса, потеря массы, основа золы, производство, содержание, высокое содержание.


Приведены результаты исследования геополимерного вяжущего на основе золы-уноса Томь-Усинской ГРЭС. Исследовано влияние содержания щелочи, шлака и растворо/твердого отношения на прочностные свойства и усадку вяжущего. Установлены оптимальные режимы тепловой обработки вяжущего. Показано, что геополимерное вяжущее характеризуется высокой жаростойкостью по показателю прочности.

Ключевые слова: геополимер, зола-унос, шлак, активатор твердения, тепловая обработка, прочность, усадка, водостойкость, водопоглощение.

Россия отстает от промышленных стран в развитии технологий утилизации промышленных отходов в строительной отрасли. Одним из наиболее перспективных промышленных отходов для использования в качестве сырья для строительной индустрии признаются отходы сжигания угля на тепловых электростанциях (ТЭС) [1, 2]. К настоящему времени в золоотвалах накопилось 1,3 млрд. т. золошлаковых отходов [2]. Ежегодно количество золошлаковых отходов увеличивается в среднем от 22 до 50 млн. т., в то время как их степень утилизации и использования не превышает 3–14 % [1].

За рубежом ведутся активные исследования по использованию золы-уноса в качестве сырья для производства безобжигового вяжущего геополимера [3–5]. Однако, как показывают исследования, свойства вяжущих во многом зависят не только от состава золы, но и от содержания активатора [3]. Нами были проведены исследования по изучению влияния количества щелочного активатора, растворо/твердого отношения (Р/Т) и режимов твердения на свойства геополимерных вяжущих на основе золы-уноса.

В качестве сырья для производства геополимерного вяжущего использовалась зола-унос Томь-Усинской ГРЭС, которая по составу относится к кислым. Используемая в исследованиях зола измельчалась до удельной поверхности 600 м 2 /кг, а модифицирующая добавка доменный гранулированный шлак Новолипецкого металлургического комбината — до удельной поверхности 380 м 2 /кг.

Зола-унос и шлак перемешивались между собой до однородного порошка. В качестве активатора использовался гидроксид натрия, который вводился в смесь с водой затворения.

Назначение состава смеси производилось с использованием математического планирования эксперимента. Варьируемыми факторами были приняты: содержание шлака (Ш), количество щелочи (Щ) и растворо/твердое отношение (Р/Т). Допустимые пределы для Ш=0÷16 % от веса твердого вещества, для Щ =2,2÷10,1 % от веса твердого вещества и Р/Т= 0,44÷0,66.

В зависимости от этих факторов у вяжущих определялись прочность при сжатии после тепловой обработки в температурном интервале 60–105°С и после 800°С. Также определялись усадочные деформации вяжущего, его водостойкость по коэффициенту размягчения и водопоглощение.

Для определения прочности при сжатии, водостойкости и водопоглощения были заформованы образцы размером 20×20×20 мм, а для определения усадки — образцы размером 20×20×100 мм.

Для каждой смеси была определена удобоукладываемость по расплыву уменьшенного конуса на встряхивающем столике. Расплыв конуса смесей изменялся в пределах от 80 до 155 мм. При этом смеси с расплывом конуса менее 100 мм укладывались с помощью вибрирования, а более 100 мм — под действием собственного веса.


Рис. 1. Расплыв конуса через 5 мин в мм


Рис.2. Прочность после 60°С в МПа


Рис.3. Прочность после 80°С в МПа


Рис.4. Прочность после 105°С в МПа


Рис.5. Изменение прочности после обжига при температуре 800°С по отношению к прочности достигнутой при температуре 105°С в %


Рис.6. Усадка через 3 суток естественного твердения, мм/м


Рис.7.Усадка после 60°С, мм/м


Рис.8. Усадка после 105°С, мм/м


Рис.9. Водопоглощение в % через 10 суток


Рис.10. Коэффициент размягчения через 10 суток

Основное влияние на текучесть смеси оказывает содержание щелочного компонента и соотношение раствора активатора к твердому веществу (рис.1). С увеличением содержания щелочи и количества активатора подвижность смеси повышается, что объясняется увеличением пластифицирующей способности, присутствующего активатора. Небольшая текучесть геополимерной смеси по сравнению с композициями на основе портландцемента связана с высокой водопотребностью золы и ее высокой реакционной способностью в щелочном растворе.

Исследование влияния условий твердения геополимерного вяжущего под воздействием температуры показало, что при температуре 60°С (рис.2) набор прочности происходит более равномерно, чем при температуре тепловой обработки 80°С (рис.3). Из рис. 2 и 3 видно, что при тепловой обработке до 80°С прочность повышается с увеличением содержания щелочи и шлака, а также с уменьшением отношения Р/Т. Прочность вяжущего в интервале до 20 МПа при температуре тепловой обработки 60°С в меньшей степени зависит от соотношения активирующий раствор/вяжущее, чем от содержания щелочи и шлака (рис.2). Даже при столь низкой температуре твердения 60°С прочность вяжущего может достигать 50–60 МПа при соотношении Р/Т менее 0,55, содержании щелочи и шлака свыше 6,8 и 8 %, соответственно. При температуре тепловой обработки 80°С для достижения прочности 50–60 МПа соотношение Р/Т уменьшается до 0,5 и ниже, и смеси становятся менее технологичными при укладке. Повышение температуры до 105°С сопровождается снижением прочности в составах с наибольшим количеством щелочного активатора (6,8–10 %) при Р/Т от 0,54 до 0,44 (рис.4).

Результаты испытания на жаростойкость, приведенные на рис. 5, показали, что прочность образцов подвергнутых выдержке при температуре 800°С, снижается на 10–60 % при дозировке щелочного компонента 6,8…10 %, по сравнение с прочностью, которой они обладали после твердения при 105°С. Одновременное уменьшение активатора до 5–2 % и увеличение Р/Т отношения до 0,57–0,66 и шлака до 14–16 % повышает прочность вяжущих в 1,5–2 раза.

Развитие усадочных деформаций иллюстрируют графики, представленные на рис. 6–8. При твердении в нормальных условиях усадка вяжущих не превышает 0,4 мм/м (рис. 6). С увеличением количества щелочи и Р/Т отношения при тепловой обработке усадка возрастает с 2 до 5 мм/м (рис. 7 и 8).

Испытание на водостойкость показало, что эта характеристика увеличивается с увеличением количества добавки шлака (рис. 10). Смеси, содержащие свыше 14 % шлака, 5,4–7,7 % щелочи обладают максимальным коэффициентом водостойкости. Водопоглощение таких вяжущих (рис. 9) не превышает 6–9 %.

Результатами работы была доказана перспективность использования золы-уноса в качестве сырья для производства геополимерных вяжущих. Установлены оптимальные режимы твердения геополимерных вяжущих на основе золы-уноса. Показано, что вяжущие набирают максимальную прочность 50–60 МПа при температуре твердения 60 °С при растворо/твердом отношении менее 0,55 и дозировке щелочи и шлака свыше 6,8 и 8 %, соответственно. В случае использования вяжущих при создании жаростойких материалов, содержание щелочи должно быть 5 % и менее, а шлака — свыше 14 %. Полученные вяжущие характеризуются усадкой не более 2 мм. Использование добавки шлака повышает водостойкость, жаростойкость и снижает водопоглощение вяжущих.

1. Целыковский, Ю. К. Экологические и экономические аспекты утилизации золошлаков ТЭС // Энергия. — 2006. — № 4. — С. 27–34

2. Энтин, З. Б. Золы ТЭС — сырье для цемента и бетона / З. Б. Энтин, Л. С. Нефедова, Н. В. Стржалковская // Цемент и его применение. — 2012. — № 2. — С. 40–46.

3. Davidovits, J. Geopolymer Chemistry and Applications / J. Davidovits. — Saint Quentin, France: Geopolymer Institute, 2011. — 632 p.

4. Jaarsveld, J.G. S. The characterisation of source materials in fly ash-based geopolymers / J.G. S. Jaarsveld, J.S. J. Deventer, G. C. Lukey // Materials Letters. –2003. –Vol. 57, Issue 7. — P. 1272–1280.

5. Ерошкина, Н. А. Исследование свойств бетона на основе композиционного геополимерного вяжущего, определяющих его долговечность / Н. А. Ерошкина, М. О. Коровкин, В. И. Логанина, П. А. Полубояринов // Фундаментальные исследования. –2015. — № 3–0. –С. 58–62.

Основные термины (генерируются автоматически): тепловая обработка, качество сырья, прочность, твердое отношение, основа золы-уноса, содержание щелочи, твердое вещество, усадка, шлак, Томь-Усинская ГРЭС.

Читайте также: