Плиты из ячеистого бетона для утепления

Обновлено: 15.05.2024

2.1. Цокольный профиль устанавливают по периметру здания для создания стабильной опоры при приклеивании и выравнивании первого ряда теплоизоляционных плит. Ширина нижней полки цокольного профиля подбирается в соответствии с толщиной теплоизоляционной плиты. В конструкции цокольного профиля на внешнем нижнем ребре должен быть капельник.

2.2. Цокольный профиль устанавливается на проектной отметке (как правило, горизонтально и на высоте не менее 30 см от уровня отмостки) при помощи пластиковых дюбелей и саморезов в количестве 3 шт. на погонный метр. Для правильной установки цокольного профиля используют уровень или нивелир. Положение цокольного профиля относительно плоскости стены следует выравнивать при помощи пластиковых дистанционных подкладок разной толщины. Дистанционные подкладки устанавливаются в местах крепления цокольного профиля к основанию.

2.3. Соседние профили устанавливаются с зазором 2-3 мм между собой и стыкуются при помощи пластиковых соединительных элементов. Установка соседних цокольных профилей внахлест запрещается.

2.4. При установке на внешних углах здания в цокольном профиле необходимо сделать вырез под необходимым углом (для внешних углов 90º делают 2 выреза под 45º), не надрезая внешний вертикальный бортик цокольного профиля. При сгибе в место стыковки полок вставляются пластиковые соединительные элементы.

3. Использование монтажной стартовой рейки

Альтернативой установке цокольного профиля является временная установка монтажной стартовой рейки (бруса) при приклеивании первого ряда теплоизоляционных плит.

3.1. На цоколе здания начертить карандашом линию установки первого ряда плит, соответствующую проектной отметке.

3.2. К основанию надежно крепится ровная монтажная стартовая рейка (брус). Верхняя горизонтальная плоскость рейки должна соответствовать уровню проектной отметки. Ширина рейки (бруса) должна быть более ½ толщины теплоизоляционной плиты.

3.3. Теплоизоляционные плиты приклеивают к стене с опиранием на верхнюю плоскость стартовой рейки. После набора прочности клеевого соединения теплоизоляционные плиты дополнительно крепят дюбелями и стартовую рейку демонтируют.

3.4. Впоследствии на нижнем внешнем ребре теплоизоляционных плит обязательно требуется установить усиливающий пластиковый угловой профиль с капельником со стеклосеткой.

4. Приклеивание теплоизоляционных плит к основанию

Для приклеивания теплоизоляционных плит используется полиуретановый клей Bonolit «Формула тепла», поставляемый в аэрозольных баллонах.

4.1.Условия производства работ:

Температура баллона/ пистолета

-10 0 C до +30 0 C

-10 0 C до +30 0 C

Минимальная относительная влажность воздуха при +23⁰C

4.2. Способ применения полиуретанового клея Bonolit «Формула тепла».

  • Энергично встряхивать баллон в течение 30 секунд.
  • Прикрутить к баллону пистолет. Во время применения всегда держать баллон в положении «дном вверх».
  • Клей нанести на теплоизоляционную плиту тремя полосами шириной 3 см. Две полосы наносят, отступив от коротких торцов на 5 см и одну полосу посредине плиты.
  • Объем валика и скорость нанесения контролируются силой давления на пусковом механизме пистолета. Сопло пистолета необходимо держать в наносимом клее на расстоянии 1 см от поверхности блока.
  • Плиты приклеивать не позже 1 минуты после нанесения клея (согласно параметрам открытого времени клея).
  • Приклеивать плиты необходимо максимально близко к проектному положению.
    Положение плит можно корректировать в течение 3 минут после приклеивания в диапазоне 0,5 см, не отрывая от поверхности.
  • Если произошел отрыв плиты от поверхности во время корректировки, необходимо удалить клей с поверхности плиты (механическим путем после застывания), затем повторно нанести клей и заново приклеить.
  • Для ликвидации мостиков холода, увеличения долговечности и усиления конструкции, клей рекомендуется наносить и в швах между плитами. В этом случае клей наносится полосой шириной 2 см на вертикальный и горизонтальный торец уже приклеенных плит.
  • Полная несущая способность достигается через 24 часа.

4.3. Последовательность выполнения работ:

4.3.1. Всегда следует стремиться к тому, чтобы приклеивать целые теплоизоляционные плиты. Горизонтально должна располагаться длинная сторона плит. Для обеспечения порядной перевязки используют половинки плит. Локально допускается приклеивать также отрезки плит длиной не менее 150 мм, при условии их установки по плоскости, но не на углах, не на окончании утепляемой поверхности и не около проемов.

4.3.2. Первый ряд теплоизоляционных плит необходимо приклеивать с опиранием на цокольный профиль или монтажную рейку. При наличии шва между цокольным профилем и основанием, его необходимо заполнить и зашпаклевать клеевым или иным подходящим составом.

4.3.3. После затвердевания полиуретанового клея, плиты первого ряда необходимо дополнительно закрепить дюбелями (см. п.5). После этого можно приклеивать следующий ряд плит.

4.3.4. Каждый последующий ряд теплоизоляционных плит приклеивается в направлении снизу вверх, соблюдая перевязку (смещение) вертикальных швов в каждом ряду, а также поочередную перевязку на внешних и внутренних углах здания. Не допускать образования крестообразных (+) швов и швов в углах проемов.

4.4. При приклеивании теплоизоляционных плит выполняйте следующие правила:

4.4.1. При разметке линии реза теплоизоляционных плит применяйте стальные линейку и угольник. Режьте плиты аккуратно, используя пилу с жестким лезвием.

4.4.2. Необходимо строго соблюдать ровную плоскость внешней поверхности всего теплоизоляционного слоя. Плоскость приклеиваемой плиты относительно плоскости уже приклеенных соседних плит выравнивают и контролируют 2-х метровым правилом.

4.4.3. Торцы соседних теплоизоляционных плит должны плотно примыкать друг к другу. Для этого торцы можно отшлифовать крупной наждачной бумагой. При образовании швов шириной более 2 мм, их необходимо заполнить полиуретановым клеем.

4.4.4. Расположение вертикальных швов между теплоизоляционными плитами должно быть на расстоянии не менее 100 мм:
- от больших восстановленных неактивных трещин основания;
- от мест с разной толщиной стены, выступающих на внешней поверхности основания;
- от границ оснований, выполненных из разных материалов.

4.4.5.Существующие деформационные швы на основании должны быть сохранены. Не допускается приклеивание плит с перекрытием деформационных швов.

4.5. Подготовка поверхности плит для проведения последующих работ.

Поверхность теплоизоляционных плит после полного набора прочности клеевого соединения (не ранее, чем через 24 часа) необходимо зашлифовать и тщательно обеспылить. Это позволяет ликвидировать неровности и повысить адгезию с последующими отделочными слоями.

5. Механическое крепление теплоизоляционных плит тарельчатыми дюбелями

Дюбели устанавливаются после затвердевания полиуретанового клея.

5.1. При монтаже теплоизоляционных плит должны использоваться только сертифицированные дюбели.

5.2. Для механического крепления теплоизоляционных плит используются специальные тарельчатые дюбели с сердечниками из стали с антикоррозионным покрытием (забивными и винтовыми) и из ударопрочного пластика. Металлические сердечники обязательно должны иметь пластиковую термоизолирующую головку или теплоизоляционную заглушку, не допускающую прямого контакта металлического сердечника и последующих отделочных слоев.

5.3. При выборе подходящих дюбелей следует учитывать: толщину утеплителя, материал несущего основания и его несущую способность, высоту здания, несущую способность дюбелей.
Для определения допустимой нагрузки на дюбель рекомендуется провести полевые испытания дюбелей на вырыв.

5.4. Для оснований из плотных материалов (бетон, полнотелый кирпич и т.п.) используют дюбели с забивными сердечниками. Для оснований из пористых материалов (ячеистобетонные блоки), материалов с пустотами (пустотелые блоки, щелевой кирпич и т.п.) следует применять дюбели с винтовыми сердечниками.

5.5. Глубина анкеровки различных дюбелей устанавливается их производителями и указывается в технической документации.

5.6. При необходимости дюбели устанавливаются по 1 штуке в центре каждой теплоизоляционной плиты.

5.7. Последовательность выполнения работ:

5.7.1. Проверить соответствие длины дюбелей с учетом фактического размера швов между внутренней поверхностью утеплителя и внешней поверхностью несущего основания. При наличии оштукатуренного основания, толщина штукатурки не учитывается. В случае обнаружения недостаточной или чрезмерной длины анкеровки, необходимо подобрать другие дюбели по длине.

5.7.2. Просверлить отверстие в основании. Диаметр отверстия должен соответствовать диаметру гильзы дюбеля. Глубина отверстия в несущем основании равна длине анкеровки распорной части (гильзы) дюбеля плюс 10-15 мм.

5.7.3. Вставить дюбель в отверстие до соприкосновения тарельчатого элемента дюбеля с внешней поверхностью теплоизоляционной плиты.

5.7.4. В зависимости от вида распорного сердечника закрутите или забейте его в пластиковую гильзу дюбеля с таким расчетом, чтобы пластиковая термоизолирующая головка распорного сердечника находилась вровень с плоскостью плиты утеплителя.

5.8. При установке дюбелей соблюдайте следующие правила:

5.8.1.Ось отверстия под дюбель должна быть перпендикулярна поверхности основания.

5.8.2. Диаметр сверла или бура должен соответствовать диаметру гильзы дюбеля. Необходимо контролировать износ используемого сверла и своевременно заменять на новое.

5.8.3. Основания из ячеистобетонных блоков, пустотелых блоков, щелевого кирпича необходимо сверлить без удара.

5.8.4. Для дюбелей с винтовым сердечником используйте малооборотную дрель или шуруповерт. Дюбели с забивным сердечником рекомендуется аккуратно забивать резиновым молотком, чтобы не расколоть теплоизоляционную плиту.

5.8.5. После установки дюбеля в проектное положение тарельчатый элемент дюбеля не должен выступать из плоскости теплоизоляционного слоя (контролируется при помощи правила);

5.8.6. В случае неправильной установки дюбеля (шатается, выступает на поверхности, сломана шляпка и т.п.), изогнут или поврежден иным способом, его необходимо заменить, установив поблизости новый. Неправильно установленный дюбель удалить, отверстие в теплоизоляции заполнить используемым полиуретановым клеем Bonolit «Формула тепла».

Теплоизоляционные материалы занимают особое место среди материалов строительного назначения. Во всем мире нарастает тенденция к сбережению тепловой энергии. Введение в действие новых требований к повышению теплозащитных качеств наружных ограждающих конструкций зданий и сооружений различного функционального назначения требует постоянного расширения номенклатуры теплоизоляционных материалов повышенного качества, создания новых технологий производства высокоэффективных теплоизоляционных материалов для устройства многослойных систем утепления.

Основными теплоизоляционными материалами, широко применяемыми сегодня, являются минеральная вата и полистирольный пенопласт, которые при всех достоинствах имеют очевидные недостатки. Минеральная вата с течением времени при эксплуатации деструктурируется — дает усадку, образуя незащищенные от утечки тепла пространства, а полистирольный пенопласт является горючим материалом.

Теплоизоляционный ячеистый бетон обладает уникальным сочетанием физико-технических свойств (низкая теплопроводность, жесткость, негорючесть, высокая паропроницаемость), что позволит широко использовать его для утепления ограждающих конструкций и исключить основные недостатки, присущие многослойным системам утепления на основе минераловатных и пенополистирольных изделий.

В настоящее время в Республике Беларусь выпускаются плиты теплоизоляционные из ячеистого автоклавного бетона в соответствии с требованиями СТБ 1034—96. Основной номенклатурой теплоизоляционных изделий из ячеистого бетона являются плиты марки средней плотности 350-400 кг/м3. Это ограничение связано прежде всего с недостатками технологии получения ячеистого бетона однородной структуры. Улучшение теплозащитных свойств ячеистого бетона возможно при снижении его средней плотности, при этом снижение этого показателя не должно сопровождаться значительным снижением прочности.

При выпуске изделий пониженной средней плотности перед исследователями и производственниками возникли такие технологические проблемы, как диспергирование сырьевых компонентов при мокром помоле, интенсификация процессов структурообразования и стабилизация смеси во время вспучивания, сокращение времени выдержки изделий до и во время тепловой обработки.

Принципиальное отличие технологии ячеистого бетона автоклавного твердения состоит в длительном разрушающем действии газовых пузырьков на процесс возникновения новообразований, в результате чего процесс твердения сопровождается изменением объема. Эффективному решению всех этих проблем способствует введение различных химических добавок в ячеисто-бетонную смесь.

Единственным предприятием в Республике Беларусь, освоившим с 2002 г. производство плит марки по средней плотности D250, является ОАО «Гродненский комбинат строительных материалов».

Получение ячеистого бетона средней плотности 150-200 кг/м3 и допустимой прочности при сжатии является сложнейшей технологической задачей. У такого бетона 90—98% объема занимают газовые и капиллярные поры, поэтому межпоровый «скелет» должен быть прочным. Для получения такого бетона необходимо применение высококачественных материалов. Так, уже на стадии формования массива необходимо обеспечить безусадочную структуру (за счет тщательно подобранного состава), на стадии разрезки массива на изделия -получение требуемой прочности сырца бетона, исключающей разрушение бетона в местах реза струнами, сохранение формы массива при транспортировании его в автоклав. Величина минимально необходимой прочности ячеистого бетона обуславливается соображениями обеспечения сохранности изделий при транспортировке и укладке в процессе его производства.

Повышение прочности ячеистого бетона возможно за счет проведения направленного синтеза с целью повышения содержания гидросиликатов и наиболее прочных из них тоберморитовой и ксонотлитовой групп, уменьшения дефектов структуры бетона. Повышение содержания гидросиликатов обеспечивается за счет вовлечения в реакции силикатообразования большего количества кремнезема и извести, введением добавок.

В УП «НИИСМ» разработаны комплексные химические добавки для ячеистого бетона на основе солей жирных кислот СПК (ТУ РБ 100122953.312-2002). Добавка СПК разработана двух видов — для конструкционного ячеистого бетона марок по средней плотности D400—700 и для теплоизоляционного — марок по средней плотности D150-400.

Добавка СПК — раствор омыленной абиетиновой смолы, модифицированной жидким стеклом, которое способствует пластическому набору прочности сырцового массива. Техническая характеристика добавки приведена ниже.

Внешний вид……….Жидкость темно-коричневого цвета Массовая доля сухих веществ, %, не менее……………….20 Плотность, г/см3…………………………1,1-1,2 PH ……………………………………….8,5-10

Добавка СПК обладает стабильной пенообразующей способностью с кратностью 15-20, стабильностью пены («время жизни» составляет более 4 ч).

Абиетат натрия, содержащийся в добавке СПК, взаимодействует с портландцементом с образованием резинатов кальция и алюминия, которые в отличие от стеаратов, или солей жирных кислот растворимы в воде, а главное, обладают адсорбирующей способностью диспергировать воздух в строительных растворах, то есть создавать благ оприятные условия для воздухововлечения (до 15% воздуха по объему). Гидросиликаты щелочных металлов стабилизируют массив особо легких ячеистых бетонов после созревания и сокращают время до-автоклавной выдержки.

В процессе исследований при разработке технологии ячеистого бетона пониженной плотности было установлено, что для улучшения качества пористой структуры ячеистого бетона предпочтительно использование газопенной технологии. Поризаиия смеси по этой технологии осуществляется за счет воздухововлечения и газообразования. Данная технология должна включать: аэрацию песчаного шлама в мельнице за счет введения добавки, аэрацию ячеисто-бетонной смеси в смесителе путем введения добавки и поризацию смеси в форме в результате газообразования.
Таблица 1

ПоказательРезультаты испытаний образцов с добавкой СПК, % от сух.
без добавок0,150,30,5
Средняя плотность в сухом состоянии, кг/м3235178187210
Теплопроводность в сухом состоянии при темп (298±5)°К, Вт/(м·К)0,0660,0560,0570,06
Предел прочности при сжатии, МПа0,80,820,90,96
Предел прочности при изгибе, МПа0,180,180,270,29
Сорбционная влажность по массе Wс, % при φ=90% (эксплуатационная влажность для условий эксплуатации «Б», Изменение №2 СНБ 2.04.01-97)4,984,994,985

Таблица 2

ПоказательНорма для марок
150200250300350400
Средняя плотность в сухом состоянии, кг/м3126-175176-225226-275276-325326-375376-425
Теплопроводность в сухом состоянии при температуре (298±5)°К, Вт/(м·К), не более0,0550,060,070,080,090,11
Предел прочности при сжатии, МПа, не менее0,30,450,550,60,81
Предел прочности при изгибе, МПа0,080,090,10,150,20,3
Отпускная влажность, мас. %, не более35353533 (35)29 (35)25 (35)
Примечание. В скобках приведена отпускная влажность для плит теплоизоляционных на основе тонкоголосой извести и отходов ячеисто-бетонного производства.

В результате экспериментальных исследований были выработаны основные технологические требования, которые заключаются в следующем.

  1. В исходном состоянии ячеисто-бетонная смесь должна быть достаточно жидкой с высоким водотвердым отношением (В/Т) для обеспечения наилучших условий для образовании ячеистой структуры. При использовании смесей с более низким В/Т в период вспучивания происходит разрыв структуры и образование щелевидных пустот и свилей.
  2. Вспучивание смеси должно происходить в течение 6—12 мин, для устранения влияния температурных факторов окружающей среды.
  3. Стабилизация массива после завершения процесса вспучивания должна быть зафиксирована путем ускорения процессов схватывания и нарастания структурной прочности.
  4. Процесс вспучивания и стабилизация ячеисто-бетонной массы должен обеспечить получение структуры с диаметром пор менее 0,8 мм, более предпочтительно 0,5 мм, как наименее деформируемой.
  5. Вследствие действия гравитационных сил на нижние слои ячеистого бетона-сырца стабилизация макроструктуры и устранение ее деформаций могут быть достигнуты увеличением эластичности стенок, образующих ячейки. Благодаря этому газ, создающий поры, будет продолжительное время сохранять в них избыточное давление, позволяющее зафиксировать макроструктуру материала в исходном состоянии и ликвидировать оседание сырца.

По предложенной технологии были выпущены опытные партии теплоизоляционного ячеистого бетона марки по средней плотности D200. Технические характеристики образцов из опытно-промышленной партии приведены в табл. 1.

На основании результатов проведенных исследований были внесены изменения в СТБ 1034-96 «Плиты теплоизоляционные из ячеистого бетона» (срок введения 01.01.2004 г.), классификация изделий дополнена марками по средней плотности D150, D200. Физикомеханические показатели плит теплоизоляционных из ячеистого бетона приведены в табл. 2.

Расширение производства и номенклатуры изделий из теплоизоляционного ячеистого бетона пониженной плотности требует повышения его физико-механических свойств. Наряду со значительными технико-экономическими преимуществами, которые способствуют его широкому применению в строительстве, ячеистые бетоны пониженной плотности имеют ряд недостатков. Это прежде всего низкая способность к восприятию растягивающих усилий, а также пониженная трещиностойкость, что создает определенные проблемы уже на стадии транспортировки изделий.

Одним из рациональных способов устранения данных недостатков может быть дисперсное армирование волокнистыми добавками. Наиболее доступным компонентом для дисперсного армирования являются сухие отходы асбестоцементного производства. В результате проведенных исследований было установлено, что присутствие в асбестоцементных отходах клинкерных минералов и гидроксида кальция может определять некоторые вяжущие свойства отходов. В данных отходах присутствуют волокна асбеста, проявляющие не только армирующие, но и структурообразующие свойства. Измельченный асбестоцемент можно рассматривать как кристаллическую затравку, содержащую в своем составе зародыши кристаллизации новообразований, возникшие при гидратации портландцемента.

В результате предварительных исследований нами установлено, что введение в состав ячеисто-бетонной смеси пониженной плотности (D150, D200) асбестоцементных отходов позволяет в 2—3 раза повысить предел прочности при изгибе. Введение асбестоцементных отходов в ячеисто-бетонную смесь целесообразнее на стадии приготовления песчаного шлама. Совместный мокрый помол асбестоцементных отходов и песка позволит сократить длительность помола и обеспечит безопасные условия работы.

Похожее

Приклеивание теплоизоляционных плит к основанию

Для приклеивания теплоизоляционных плит используется полиуретановый клей Bonolit «Формула тепла», поставляемый в аэрозольных баллонах.

4.1.Условия производства работ:

Температура баллона/ пистолета +10⁰C до +30⁰C
Температура применения -100C до +300C
Температура поверхности -100C до +300C
Минимальная относительная влажность воздуха при +23⁰C 45%

4.2. Способ применения полиуретанового клея Bonolit «Формула тепла».

  • Энергично встряхивать баллон в течение 30 секунд.
  • Прикрутить к баллону пистолет. Во время применения всегда держать баллон в положении «дном вверх».
  • Клей нанести на теплоизоляционную плиту тремя полосами шириной 3 см. Две полосы наносят, отступив от коротких торцов на 5 см и одну полосу посредине плиты.
  • Объем валика и скорость нанесения контролируются силой давления на пусковом механизме пистолета. Сопло пистолета необходимо держать в наносимом клее на расстоянии 1 см от поверхности блока.
  • Плиты приклеивать не позже 1 минуты после нанесения клея (согласно параметрам открытого времени клея).
  • Приклеивать плиты необходимо максимально близко к проектному положению. Положение плит можно корректировать в течение 3 минут после приклеивания в диапазоне 0,5 см, не отрывая от поверхности.
  • Если произошел отрыв плиты от поверхности во время корректировки, необходимо удалить клей с поверхности плиты (механическим путем после застывания), затем повторно нанести клей и заново приклеить.
  • Для ликвидации мостиков холода, увеличения долговечности и усиления конструкции, клей рекомендуется наносить и в швах между плитами. В этом случае клей наносится полосой шириной 2 см на вертикальный и горизонтальный торец уже приклеенных плит.
  • Полная несущая способность достигается через 24 часа.

4.3. Последовательность выполнения работ:

4.3.1. Всегда следует стремиться к тому, чтобы приклеивать целые теплоизоляционные плиты. Горизонтально должна располагаться длинная сторона плит. Для обеспечения порядной перевязки используют половинки плит. Локально допускается приклеивать также отрезки плит длиной не менее 150 мм, при условии их установки по плоскости, но не на углах, не на окончании утепляемой поверхности и не около проемов.

4.3.2. Первый ряд теплоизоляционных плит необходимо приклеивать с опиранием на цокольный профиль или монтажную рейку. При наличии шва между цокольным профилем и основанием, его необходимо заполнить и зашпаклевать клеевым или иным подходящим составом.

4.3.3. После затвердевания полиуретанового клея, плиты первого ряда необходимо дополнительно закрепить дюбелями (см. п.5). После этого можно приклеивать следующий ряд плит.

4.3.4. Каждый последующий ряд теплоизоляционных плит приклеивается в направлении снизу вверх, соблюдая перевязку (смещение) вертикальных швов в каждом ряду, а также поочередную перевязку на внешних и внутренних углах здания. Не допускать образования крестообразных (+) швов и швов в углах проемов.

4.4. При приклеивании теплоизоляционных плит выполняйте следующие правила:

4.4.1. При разметке линии реза теплоизоляционных плит применяйте стальные линейку и угольник. Режьте плиты аккуратно, используя пилу с жестким лезвием.

4.4.2. Необходимо строго соблюдать ровную плоскость внешней поверхности всего теплоизоляционного слоя. Плоскость приклеиваемой плиты относительно плоскости уже приклеенных соседних плит выравнивают и контролируют 2-х метровым правилом.

4.4.3. Торцы соседних теплоизоляционных плит должны плотно примыкать друг к другу. Для этого торцы можно отшлифовать крупной наждачной бумагой. При образовании швов шириной более 2 мм, их необходимо заполнить полиуретановым клеем.

4.4.4. Расположение вертикальных швов между теплоизоляционными плитами должно быть на расстоянии не менее 100 мм: — от больших восстановленных неактивных трещин основания; — от мест с разной толщиной стены, выступающих на внешней поверхности основания; — от границ оснований, выполненных из разных материалов.

4.4.5.Существующие деформационные швы на основании должны быть сохранены. Не допускается приклеивание плит с перекрытием деформационных швов.

4.5. Подготовка поверхности плит для проведения последующих работ.

Поверхность теплоизоляционных плит после полного набора прочности клеевого соединения (не ранее, чем через 24 часа) необходимо зашлифовать и тщательно обеспылить. Это позволяет ликвидировать неровности и повысить адгезию с последующими отделочными слоями.

Газобетон.

Газобетон получают из бетонной смеси, твердение которой происходит при большой температуре в специальных печах (автоклаве), поэтому изготовление газобетонных блоков производится на специальных заводах изготовителях. Плотность блоков может быть различной (от 350 до 700 кг/м3). На строительную площадку газобетонные блоки поступают в готовом виде, а стены возводятся по аналогии с кирпичной кладкой.

В настоящее время очень много частных малоэтажных домов в нашей стране строятся из ячеистого бетона, т. е. газобетонных, пенобетонных и газосиликатных блоков. И это не удивительно, ведь ячеистый бетон был придуман как альтернатива традиционному кирпичу с целью удешевления квадратного метра стены. Достигается это удешевление в первую очередь за счет меньшей теплопроводности материала. Так как благодаря именно этому фактору, стена получается тоньше, легче и утеплитель, если и требуется, то существенно меньшей толщины, чем в случае с кирпичной кладкой.

Блоки из ячеистого бетона разделяются по маркам: обычно от D300 до D1200. Цифра в обозначении означает плотность материала в кг/м3. То есть, например, газобетон марки D300 имеет приблизительную плотность 300 кг/м3. В свою очередь эта плотность влияет на другие характеристики блоков: прочность и теплопроводность. А уже по этим характеристикам изделия из ячеистого бетона делятся на 3 группы, дабы обывателю было удобнее определиться с маркой в конструкциях своего дома или другого сооружения. Так, в соответствии с ГОСТ 31359-2007 ячеистые бетоны подразделяются на: теплоизоляционные, конструкционно-теплоизоляционные и теплоизоляционные (см. таблицу 1)

Таблица 1. Виды ячеистых бетонов по назначению.


Говоря о бетоне, многие представляют себе что-то очень тяжелое. И не все знают о том, что существуют различные виды бетонной смеси и изделий из нее с широкой сферой применения в различных областях строительства.

В данной статье мы поговорим о нескольких видах легких бетонов, которые используются в качестве материалов для утепления конструкций. Разберемся, каким образом при изготовлении достигается особая структура и малый вес при сохранении пусть не высокой, но прочности, и проанализируем причины популярности таких материалов.

Утепление стены дома газобетоном низкой плотности

Утепление стены дома газобетоном низкой плотности

Теплоизоляционные плиты из ячеистого бетона имеют плотность 100 — 200 кг/м 3 и коэффициент теплопроводности в сухом состоянии 0,045 — 0,06 Вт/м о К. Примерно такую же теплопроводность имеют минераловатные и пенополистирольные утеплители. Выпускаются плиты толщиной 60 — 200 мм. Класс прочности на сжатие В1,0 (прочность на сжатие не менее 10 кг/м 3 .) Коэффициент паропроницания 0,28 мг/(м*год*Па).

Теплоизоляционные плиты из ячеистых бетонов являются хорошей альтернативой утеплителям из минеральной ваты и пенополистирола.

Известные на строительном рынке торговые марки плит утеплителя из ячеистых бетонов, это «Multipor», «AEROC Energy», «Бетоль».

Преимущества плит теплоизоляции из ячеистых бетонов

Самый главный — это более высокая долговечность. Материал не содержит никакой органики — это искусственный камень. Имеет довольно высокую паропроницаемость. Структура материала содержит большое количество открытых пор. Влага, которая конденсируется в утеплителе зимой, быстро высыхает в теплое время года. Накопления влаги не происходит.

Теплоизоляция не горит, под действием огня не выделяет вредных газов. Утеплитель не слеживается. Плиты утеплителя более твердые и механически более прочные.

Стоимость утепления фасада плитами из ячеистых бетонов, в любом варианте не превышает затрат на теплоизоляцию минераловатным утеплителем или пенополистиролом.

Какие стены дома долговечнее

Долговечность дома в меньшей степени зависит от строительных свойств материала стены.

Значительно большее влияние на долговечность оказывает правильный выбор конструкции фундамента, стен и коробки дома, а также качество строительства и условия эксплуатации здания.

Вокруг можно найти не мало примеров, когда, например, деревянные здания стоят более 100 лет, а фундаменты из монолитного железобетона и стены из кирпича трещат и разваливаются после первой же зимы.

Каменное здание Исаакиевского собора в г.Санкт-Петербург стоит на деревянном фундаменте уже более ста лет. Это наглядный пример того, как правильный учет грунтовых условий и свойств материала, позволил архитектору создать долговечную конструкцию фундамента и поставить тяжелое каменное здание на казалось бы слабое, быстро загнивающее в земле, и потому недолговечное, основание из дерева.

Долговечность дома снижается по следующим причинам:

Из-за ошибок проекта или внесении не просчитанных изменений в проект. Например, не согласованный с проектировщиком перенос внутренних стен, уменьшение длины простенков между окнами или толщины кладки, изменение конструкции перекрытий и т.д., может снизить устойчивость наружных стен к нагрузкам.

Из-за дефектов строительства. Например, отклонение кладки от вертикали, кривизна стены, не полностью заполненные раствором швы кладки, применение поврежденных (со сколами) материалов — все это, и не только, снижают прочность стен дома.

Из-за применения материалов низкого качества. Качество, свойства применяемых на стройке материалов должны соответствовать указаниям проекта. Кладка, выполненная из кирпича или блоков, имеющих меньшую марку прочности или морозостойкости, чем указано в проекте, снизит прочность и долговечность наружной стены дома.

При покупке материалов необходимо убедиться, что материал действительно отвечает заявленным характеристикам.

Из-за недостатков в эксплуатации дома. Например, отсутствие организованного стока воды с участка способствует подъему уровня грунтовых вод, заболачиванию участка.

Неправильно сделанная отмостка приводит к замачиванию грунта в основании фундамента. Все это снижает несущие свойства грунта в основании фундамента, увеличивает степень морозного пучения грунта. В результате растут напряжения и деформации в фундаменте и стенах, что ускоряет их разрушение.

Не своевременный ремонт кровли, наружной штукатурки или облицовки стен приводит к намоканию утеплителя и кладки стен, к их преждевременному разрушению.

Согласно СТО 00044807-001-06 у зданий до 5-ти этажей с наружными стенами из газобетонных блоков автоклавного твердения прогнозируемая долговечность 100 лет, продолжительность эксплуатации до первого капитального ремонта — 55 лет.

Долговечность, срок службы утеплителя

В научных статьях можно встретить утверждения, что продолжительность эффективной эксплуатации зданий, утепленных минераловатными или полистирольными плитами, до первого капитального ремонта составляет 25-35 лет. В этот срок требуется полная замена утеплителя.

На сайте известного производителя изделий из минеральной ваты утверждается, что срок службы теплоизоляционных материалов составляет не менее 50 лет при условии соблюдения рекомендаций компании по технологии монтажа и условиям эксплуатации.

Причем, производитель не поясняет, что происходит с материалом в конце срока службы, и как определить момент, когда необходима его замена. Лишь отмечает отсутствие утвержденной методики по определению долговечности строительных материалов. Возникает вопрос — чем обоснована цифра 50 лет?

Все источники информации сходятся в одном мнении, что долговечность утеплителей из минеральной ваты, из разных видов вспененных полимеров и эковаты заметно меньше, чем материалов, из которых кладут стены.

Известно что органические вещества стареют намного быстрее, чем минеральные. В процессе старения меняется химический состав и физическая структура материала. Материал перестает выполнять свои функции в той или иной строительной конструкции.

Плиты из минеральной ваты содержат 3-10% органических веществ — связующих смол и гидрофобизирующих пропиток. С течением времени связующее вещество постепенно разлагается и перестает скреплять минеральные частицы ваты. Гидрофобизирующая пропитка перестает защищать, и утеплитель все больше насыщается влагой. В результате, частицы ваты осыпаются, утеплитель теряет свою структуру, слеживается, сжимается.

Любой утеплитель постепенно, с годами, теряет свои теплосберегающие свойства.

Установлено, что чем выше плотность плит из минеральной ваты (кг/м 3 ), тем медленнее снижаются их теплосберегающие свойства. Это правило справедливо и для других видов утеплителей. Для увеличения срока службы рекомендуется применять плиты из минеральной ваты с высокой плотностью, более 75 кг/м 3 , хотя они и дороже.

Более долгий прогнозируемый срок службы имеют минеральные утеплители — теплоизоляционные изделия из ячеистого бетона или пеностекла.

Когда менять утеплитель?

Утеплитель следует менять тогда, когда он перестает выполнять свои функции. Как определить этот момент?

Законодательство в сфере строительства и ЖКХ предписывает по окончании строительства здания проводить энергетический аудит. В процессе аудита с помощью замеров приборами (тепловизорами и т.п.) определяются теплосберегающие параметры стен и других ограждающих конструкций.

По результатам аудита составляется энергетический паспорт, здание относят к тому или иному энергосберегающему классу.

В Евросоюзе для новых частных домов эта процедура является обязательной. Класс дома по энергосбережению сильно влияет на стоимость недвижимости.

В РФ энергоаудит частных домов не обязателен и обычно не проводится. И наверное зря.

Через 25 — 30 лет энергоаудит проводят снова. Сравнивают между собой показатели теплосберегающих свойств стен, перекрытий тогда (у нового дома) и теперь.

Если, например, сопротивление теплопередаче стены уменьшилось на 1\3 и более от первоначального, то рекомендуется проводить капитальный ремонт — менять утеплитель и наружную облицовку стены.

Еще через 25 лет (или раньше) проводится следующий очередной аудит. Так, на основании периодических измерений теплосберегающих свойств наружных ограждений дома, и определяется необходимость замены утеплителя в том или ином элементе дома.

Поскольку массовое применение эффективных утеплителей началось лет 20 — 25 назад, а энергетический аудит во многих случаях не проводится, то достоверной статистики о сроках службы утеплителей, применяемых в РФ, нет.

Исходя из необходимости довольно скорой замены утеплителя, выгодно выбирать такую облицовку двухслойных наружных стен, которая бы имела такой же срок службы, что и утеплитель. Например, штукатурку по утеплителю или вентилируемый фасад с облицовкой пластмассовыми, фиброцементными или деревянными материалами.

Какие стены дома дешевле

Расчеты и практика строительства показывают, что строительство однослойной стены обходится дешевле, чем двухслойной стены с таким же сопротивлением теплопередаче.

Разница в стоимости строительства может достигать 20-30%. Правда, эта разница нивелируется необходимостью устройства более широких стен фундамента для однослойной стены. Большая толщина однослойных стен уменьшает площадь помещений дома.

Кроме того, необходимо учитывать, что затраты на сооружение стен составляют 10-15% от общей сметы на строительство дома.

Строить однослойные стены с толщиной кладки более 400-500 мм. считается уже не выгодным.

Какие стены дома тихие

Звукоизоляционные свойства стены тем выше, чем больше масса одного квадратного метра стены. Например, кладка из тяжелого и плотного силикатного кирпича толщиной 250 мм. лучше изолирует дом от звуков улицы, чем стена из легких и пористых газобетонных блоков толщиной 400 мм.

Любые меры по увеличению массы стены способствуют улучшению звукоизоляции. Двухслойная стена с более тяжелой теплоизоляцией из минераловатных плит будет более тихой, чем такая же стена с утеплителем из легкого пенопласта.

Звукоизоляция однослойных стен улучшается, если на стены нанести тяжелый толстый слой традиционной цементно — известковой штукатурки.

Однослойная стена из блоков поризованной керамики или керамзитобетона будет тише, чем кладка из более легкого газобетона.

Звукоизоляционные свойства материала зависят и от его структуры. Наличие щелей в блоках, расположенных параллельно поверхности стены, улучшает звукоизоляцию. И наоборот, если кладку стены вести небрежно, оставлять щели в вертикальных швах, то шум улицы легко проникнет в дом.

Звуковые волны на границе разных материалов преломляются и отражаются. Двухслойные стены, учитывая это обстоятельство, а также большую величину массы стены, обладают лучшей звукоизоляцией, чем однослойные.

Какие стены дома красивее

Под отделкой фасада не видно какие стены у дома. Для отделки стен из разных материалов обычно применяют одни и те же способы.

Для отделки однослойных стен часто применяют обычную цементно-известковую штукатурку. Штукатурный раствор наносят на стену в три слоя. Верхний слой можно сделать гладким или рельефным.

На двухслойные стены наносят по утеплителю тонкослойную штукатурку в один слой с применением штукатурной сетки. Применяют специальные составы — минеральные, акриловые, силикатные или силиконовые штукатурки. Эти составы рекомендуется применять в качестве финишного слоя и для штукатурки однослойных стен. Такое финишное покрытие легко моется водой под давлением.

Снаружи по штукатурке стены красят фасадной краской.

Популярна также облицовка фасада частного дома кирпичом. Кладкой из лицевого керамического или клинкерного кирпича защищают стены из любого материала.

Обшивку стен на каркасе с вентилируемым фасадом чаще применяют для двухслойных стен. Между стойками каркаса удобно размещать плиты утеплителя из минеральной ваты.

Вентилируемый фасад применяют и для защиты однослойных стен, особенно паропроницаемых стен из газобетона.

На каркасе закрепляют облицовку из деревянных погонажных изделий, винилового или цокольного сайдинга, а также металлических, керамических, фиброцементных и др. панелей, листов и плит.

На строительном рынке постоянно появляются все новые виды фасадной отделки из различных материалов.

Какие стены дома экологичнее

Из материалов, которые применяются для устройства стен, в воздух помещений дома постоянно выделяются различные вредные для человека вещества.

Обычно большинство материалов имеет гигиенический сертификат, подтверждающий, что выделения вредных веществ не превышают допустимых норм.

Сертификаты и санитарные нормы выполняют две задачи:

  1. Защищают окружающую человека среду от чересчур вредных веществ и(или) их высоких концентраций.
  2. Узаконивают производство и применение материалов, выделяющих вредные вещества в пределах установленных норм.

Практика жизни показывает, что вторую задачу государственные надзорные органы выполняют лучше — устанавливают санитарные нормы в угоду производителю, а не потребителю. Постоянный рост аллергических, онкологических и других заболеваний, связанных с экологией, подтверждает это.

Неправильное применение материалов при строительстве дома, часто усугубляет дело, порой приводит к тяжелым последствиям для экологии дома. Например, целый микрорайон из почти сотни новых двухэтажных домов стоит пустым, без жильцов, непригодным для жизни из-за недопустимой концентрации формальдегида в воздухе помещений.

Плиты утеплителя из минеральной ваты выделяют не только формальдегид, но и служат источником пыли. При движении воздуха из ваты уносятся микрочастицы, которые могут проникать в помещения. Плиты из ваты всегда необходимо со всех сторон закрывать пароизоляционными или ветрозащитными пленками.

Строительные материалы, используемые для кладки стен, являются источником радионуклидов. В частности, из них постоянно выделяется радиоактивный газ радон. Этот газ может накапливаться в помещениях.

Во всех материалах постоянно идет процесс разложения, деструкции с выделением тех или иных веществ. Органические, полимерные, материалы стареют намного быстрее, чем материалы минерального состава.

Двухслойные стены содержат больше полимерных материалов, чем однослойные. Однослойные стены более экологичны.

Необходимо с одной стороны сокращать объем вредных выделений, а с другой уменьшать их концентрацию за счет увеличения воздухообмена через систему вентиляции.

Существует миф о том, что стены дома должны «дышать». Источник мифа — жители традиционных российских изб из бревна, в которых никогда не было вытяжных каналов вентиляции. Вентиляция помещений в доме осуществлялась за счет высокой воздухопроницаемости, продуваемости стен — «дышащих стен». С воздухом, через стены уходило и тепло из дома.

Не гонитесь за дышащими стенами. Выгоднее сделать современную систему вентиляции — в доме будет всегда свежо, тепло и сухо.

Из чего, из какого материала лучше строить дом?

Если сделали выбор — голосуйте. Если нет — посмотрите результат, что выбрали другие:

Благодаря пористости ячеистые газобетоны обладают низкой теплопроводностью. Это позволяет использовать их не только в качестве конструкционного материала, но и в качестве утеплителя. Лучше всего подходят для утепления блоки марок D200, D300.

Низкая теплопроводность – главное свойство, из-за которого материалы используют в качестве утеплителя. Наличие большого количества заполненных воздухом пор или волокон, задерживающих воздух, существенно снижает теплообмен через стену. На этом принципе основано применение следующих теплоизоляционных материалов:

  • пенополистирол и другие виды пенопласта ,
  • минеральная вата и подобные волокнистые материалы,
  • газобетон марок прочности D200, D300 (в том числе газобетонная крошка любых марок в качестве сыпучего утеплителя для пола),
  • пенополиуретан (монтажная пена),
  • керамзит (используется как насыпной утеплитель для пола).

Иная механика теплоизоляции у фольгированных утеплителей . Они отражают тепловую энергию. Если действие пористых утеплителей уменьшает передачу тепла за счёт теплопроводности, то фольга не пропускает тепловое излучение.

Газобетон – утеплитель стен

Газобетон в качестве утеплителя используется в следующих целях:

  • наружное утепление,
  • внутреннее утепление,
  • монтаж тёплых стяжек,
  • утепление мансард и террас,
  • утепление сложных архитектурных элементов (арки, эркеры и пр.)

Наружный утеплитель стен из газобетона прочностью 200-300 кг/м³ обладает множеством ценных свойств. Он долговечен, имеет высокую морозостойкость, хорошо удерживает тепло. Дома, построенные из газоблоков, с утеплителем из газобетона имеют уровень энергопотребления, близкий к нулю. Это современные энергоэффективные дома.

Для утепления стен используются газобетонные блоки или плиты. Подходит газобетон, произведённый по автоклавной или неавтоклавной технологии. Блоки низкой плотности хрупкие, особенно автоклавные, поэтому работать с ними нужно аккуратно.

Толщина утеплителя из газобетона

Для утепления выпускаются изделия толщиной 10, 15, 20 см. Чтобы увеличить скорость укладывания, размеры блоков делают больше, чем для кладки стен. Например, плиты 50 × 60 см.

Утеплительные блоки укладываются на полиуретановый клей или сухой клей, который фасуется в мешки. Пена наносится на сторону плиты, прилегающую к стене, по периметру или тремя полосами.

Чем тоньше швы между плитами утеплителя, тем лучше будут свойства теплоизолирующего слоя. Если температура на улице выше 25 °C, поверхность блоков перед нанесением клея нужно смачивать. Поверхность, на которую укладывается утеплитель, не должна иметь перепады более 3 мм на погонный метр. В противном случае нужно оштукатурить поверхность или каким-либо ещё образом нивелировать неровности.

Утеплитель из газобетона D200

Самый популярный утеплитель из газобетона – плиты марки прочности D200. Газобетон марок D100 или D150 обладает ещё более высокими теплоизоляционными свойствами, но его не производят, так как ГОСТ на ячеистые бетоны предусматривает наименьшее значение плотности продукции 200 кг/м³.

Фасадный утеплитель из газобетона D200 подходит для домов с ошибками при строительстве, например, с толстыми кладочными швами или неровной кладкой.

Применение утеплителей из газобетона входит в список инновационных технологий строительства, рекомендованных перечнем Росстата.

Утеплитель из газобетона прочнее, чем другие виды утеплителей. На стены, отделанные утеплителем из газобетона, можно крепить лёгкие конструкции: фонари, камеры наблюдения, цветочные кашпо. Ограничений на облицовку стен с газобетонным утеплителем нет: можно использовать штукатурку, облицовочный кирпич, панели и другие материалы.

Простота изготовления и использования, доступность сырья и высокая энергоэффективность позволили газобетону заслужить звание инновационного строительного материала и пользоваться популярностью у профессиональных и частных строителей.

Производить газобетон любой прочности лучше на качественном заводском оборудовании. И мы всегда готовы вам в этом помочь! Подробнее на сайте 👈

Спасибо, что прочитали нашу статью.
Подписывайтесь на наш канал и ставьте "нравится" , чтобы всегда быть в курсе наших обновлений!

Газоблоки – сами по себе являются эффективным утеплителем. Материал, из которого они сделаны – ячеистый бетон, изначально разрабатывался как теплоизолятор. Однако вскоре, благодаря отличным прочностным характеристикам, ГОСТ включил его в группу конструкционных стройматериалов, но оставил при этом характеристику «теплоизоляционные».

Сегодня существует 5 марок газосиликата, подпадающих под эту категорию. Все они используются в строительстве для возведения стен, однако каждая марка обладает индивидуальной способностью удерживать тепло в помещении. В зависимости от плотности, одни газоблоки нуждаются в утеплении при определенных условиях, другие – сами являются отличными теплоизоляторами.

У застройщиков часто возникает вопрос: если для строительства дома использовали газобетон 400 мм, нужно ли утеплять стены? Чтобы ответить на него, следует сначала выяснить:

  • в каком регионе строится дом,
  • газоблоки какой марки при этом используются,
  • будет ли помещение эксплуатироваться непрерывно,
  • какую температуру в комнатах мы будем поддерживать.

Надо ли утеплять газобетон толщиной 400 мм

Если ориентироваться на возможности газобетона относительно других материалов, то можно прийти к выводу, что утеплять стены толщиной 400 не нужно.


Рассмотрим простой пример: газобетон сопротивляется теплопередаче в шесть раз лучше, чем красный кирпич. Т.е., чтобы получить стену с такими же изолирующими свойствами, как у газобетона, кирпича нужно потратить больше в 6 раз.

При этом возникает вопрос: если дома из кирпича эксплуатируются без утепления, зачем же утеплять газобетон? Ведь его характеристика и так гораздо лучше?

Проект FH-90 Windows

Проект FH-114 Optimus

Проект дома FH-115 Status

Однако есть точные параметры микроклимата, который должен быть в помещении. Один из них – средняя температура в комнате. Наиболее комфортной считается температура 22°С. А теперь попробуем ответить на вопрос: во многих ли домах в лютые морозы поддерживается температура 22°С?

Виталий Кудряшов

Очевидно одно: чтобы создать такие условия в кирпичных зданиях, потребуется огромное количество тепловой энергии. А в газобетонном доме такое возможно: средняя температура 22°С в комнатах может быть создана при среднем расходе газа. или электричества.

Однако мы уже выяснили, что теплопроводность зависит от марки блока. Следовательно, нужно конкретизировать наименование газобетона и выбрать блок какой-то одной плотности.

Остановимся на d500: эта марка сегодня наиболее популярна. Итак, уточняем задание для анализа: - нужно ли утеплять стены из газобетона марки D500, толщина которых 400 мм?

Чтобы ответить на этот вопрос, следует сделать теплотехнический расчет стены, выложенной из газобетона данной марки. Имеем задачку в три действия:

  1. сначала нужно определить – с какой силой стена сопротивляется утечкам тепла;
  2. необходимо выяснить – каким коэффициентом теплоизоляции должна обладать стена, чтобы обеспечить комфортную температуру проживания на протяжении зимы;
  3. требуется сравнить оба значения и сделать вывод о необходимости утепления.

Попытаемся решить эту задачку.


Характеристики газобетона D500

Значения коэффициентов теплопроводности и методология теплотехнического расчета изложены в Своде правил СП 50.13330.2012.

Суть удельного коэффициента теплопроводности такова: эта величина характеризует – сколько ватт энергии тратится на тепло, уходящее сквозь стену площадью 1 кв. метр, в течение 1-й секунды.

Расчетная теплопроводность стены зависит от многих факторов, но основные – это тип материала, из которого выполнены швы.

Если кладка уложена на клей, коэффициент теплопроводности стены из газобетонных блоков равен 0,14 Вт/(м² * °С).

Виталий Кудряшов

Важно: Цементный раствор повышает удельную теплопроводность газоблоков на треть.

  • Коэффициент сопротивления теплопередаче – это величина, обратная проводимости и учитывающая толщину стены.
  • Для нашей стены сечением 400 мм коэффициент сопротивления теплопередаче составит 2,86 м² (м² *°C²) / Вт.
  • Чтобы точнее рассчитать индекс теплосопротивления стены следует учесть параметры внутренней и наружной штукатурки – 0,097 и 0,027 соответственно.
  • Результат 1-го действия:
  • Суммарное значение коэффициента равно 2,98 (м² *°C²) / Вт.
  • Результат 2-го действия:
  • Нормативное значение минимального индекса теплосопротивления для Московской области равно 3,15 (м² *°C²) / Вт.
  • Результат 3-го действия:
  • Расчетное сопротивление нашей стены меньше, чем требуется по нормативу.

Виталий Кудряшов

Вывод: газобетонную стену сечением 400 мм, выложенную из блоков марки D500 надо утеплять.

Материалы для утепления: достоинства и недостатки каждого вида

Преимущества и недостатки утепляющих материалов будем оценивать по следующим критериям:

  • паропроницаемость;
  • теплоизолирующая способность;
  • степень влагопоглощения и его влияние на потерю утепляющих свойств;
  • горючесть;
  • легкость монтажа.

Пару слов надо сказать о паропроницаемости: для газобетона это определяющий фактор. Ячеистая структура блоков отлично проводит пар. Если каналы закупорить, то влага будет застаиваться в порах, а это вредно:

  • во-первых, вода будет закисать, появится плесень;
  • во-вторых, повысится теплопроводность, стены перестанут удерживать тепло.

Минвата

Минвата – расплав силикатных масс, доменных шлаков. Форма продажи – пласты или рулоны. Пластичный материал, удобен в перевозке, использовании.

  • Паропроницаемость в 3 раза выше, чем у газоблоков.
  • Тепло удерживает – в 3 раза лучше.
  • Малогорюч: при очень высоких температурах могут воспламеняться клеящие вещества, волокна не поддаются огню.
  • Легко монтируется: вату можно просто приклеить к стене.

Все перечисленное – плюсы.

Минус – высокое водопоглощение. Причем, если доля воды возрастает до 20% от веса, вата теряет 50% изолирующих свойств.

Базальтовая вата

Расплав горных минералов. Продается в виде мягких панелей определенных размеров – напоминает спортивные маты или обычные матрацы.

  • Паропроницаем, отличный теплоизолятор – по этим параметрам базальтовая вата втрое превосходит газобетон.
  • Негорюч.
  • Гидрофобен – не намокает, отталкивает воду.
  • монтируется на обрешетку,
  • требует укрытия панельными отделочными или штукатурными материалами.

Монтаж требует вложений – хоть и относительно небольших, но все же…

Теплая штукатурка

Сыпучий материал. Это та же штукатурная смесь, дополненная поризоваными гранулами – крошкой пенопласта и т. п.

  • Ограниченно паропроницаем.
  • Теплоизолирующая способность – на уровне газоблоков.
  • Смесь негорюча.
  • Не намокает.
  • Монтируется традиционным способом – наносится кельмой или мастерком, разравнивается гладилкой.

Минус: нецелесообразно накладывать слой более 20 мм толщиной.

Материал предназначен скорее не для утепления, а затем, чтобы защитить наружную поверхность газобетона от воздействия вредных факторов – влаги, пыли.

Пенополистирол

Полимерные пористые или ячеистые плиты – достаточно жесткие, твердые.

  • Степень паропроницаемости – 0. Это огромный минус, который в случае с газобетоном сводит на «нет» все плюсы. Может монтироваться на каркас – по технологии вентилируемого фасада.
  • Горюч, при плавлении выделяет ОВ.
  • Влагопоглощение – минимальное, не сопровождается потерей полезных свойств.
  • Монтируется элементарно просто: плиты усаживаются на клей и закрепляются дюбелями зонтичной формы. Сверху шпаклюются по сетке и окрашиваются.

Пенополиуретан

Поставляется в виде пены. Чтобы нанести материал на стену, нужно специализированное оборудование. По остальным свойствам повторяет пенополистирол.

Проект Windows Villa FH-90WV

Проект Master Dom FH-144 c мастер-спальней

Проект FH-150 Full HDom

Как правильно выбрать материал для утепления газоблока

При выборе утепляющих материалов следует руководствоваться экономической целесообразностью применительно к конкретным, имеющимся на данный момент условиям.

  • Если средства позволяют есть резон установить базальтовый утеплитель: это наиболее функциональный материал – долговечный и удобный в эксплуатации.
  • Такими же, примерно, свойствами обладает минвата. Если ее поставить в вентилируемый фасад, она будет служить ничуть не хуже базальтовой.
  • В качестве локального утеплителя подойдет пенополистирол. Его же можно использовать для изоляции помещений изнутри. В некоторых архитектурных конструкциях, особенно мансардного типа, утепление изнутри – наилучший, а то и единственно возможный вариант.
  • Подобными характеристиками обладает и пенополиуретан. Мансардный этаж требует утепления по обрешетке на стропилах: в этом случае сложно найти замену этому материалу.

Цены материалов

Цена различных материалов, на первый взгляд, существенно различаются. Например, кубометр базальтовой ваты может стоить в три раза дороже, чем кубометр полистирола.

Однако, чтобы утеплить стены, кроме основных материалов требуются еще и вспомогательные. Цены на них могут варьироваться в противоположных пропорциях.

Например, вы отказались от строительства каркаса для вентилируемого фасада и сэкономили втрое при покупке жестких пенополистирольных панелей. Но следом придется покупать фиксирующие дюбели для газобетона. Стоимость комплекта зонтиков в пересчете на 1 кв. метр превышает цену пенопласта в 2 раза. В итоге, экономия обернулась в 0.

Вывод: стоимость материалов утепления лучше рассчитывать еще на этапе проектирования: так можно с максимальной эффективностью оптимизировать собственные затраты.

Читайте также: