Постройки из бетона в древнем риме

Обновлено: 28.04.2024

Теперь реальным стало только то. Что можно было взвесить и измерить. Коснуться пястью, выразить числом..

Когда инженеры-строители начинают профессиональный разговор о бетоне, то их в первую очередь интересует его прочность, отношение к морозу и воде. Для того чтобы бетон и бетонные сооружения обладали всеми требуемыми характеристиками, необходимо точно знать рецепт бетона — состав, т. е. соотношение всех его компонентов. В конечном виде состав бетона записывают в виде весового или реже объемного соотношения, например, 1:2:4 (цемент:песок:шебень или гравий), т. е. на одну часть цемента приходится две части песка и четыре части щебня или гравия. Определив заранее расход цемента и воды, можно, пользуясь указанным соотношением, легко вычислить расход каждого из заполнителей. Однако перед тем, как подойти к рецептам для бетона, необходимо выяснить еще один важный вопрос — роль заполнителей — песка и крупных камней в бетоне. Как они влияют на свойства бетона, да и нужны ли они вообще в бетоне?

Сразу же необходимо сказать, что без заполнителей нельзя изготовить бетон. Присутствие их в бетоне, как было установлено, значительно улучшает строительно-технические свойства материала и, в первую очередь, такие, как водонепроницаемость, Деформативность и прочность. Кроме того, заполнители намного Дешевле вяжущих веществ, поэтому экономически более выгодно, чтобы в бетонной смеси их было как можно больше.

Несомненно, что, начав работать с бетоном, римляне не могли не обратить внимания на качество заполнителей. Так, для удобства их применения уже с середины I в. до н. э. вводится классификация заполнителей по виду породы, загрязненности, а также в зависимости от назначения будущего бетонного сооружения. Об этом свидетельствуют работы археологов и древних авторов, так, по виду и условиям залегания пески подразделялись, как и теперь, на речные, морские и горные (овражные), или как их называли прежде — котлованные. При этом существовало дополнительное разделение каждого вида песка по окраске и загрязненности.

Витрувий писал о том, что . Есть следующие сорта горного песка: черный, серый, красный и карбункул (песок вулканического происхождения). Из них наилучшим будет тот, который скрипит при растирании в руке . В большинстве случаев он советовал применять чистые «без примеси земли» пески. Так, для кладки стен и сводов Витрувий рекомендовал только мытый песок, а для штукатурных работ — очищенный речной. Морской песок, по его мнению, в большинстве случаев нежелателен, так как содержит примеси солей, которые ведут к выцветанию стен. При этом, как пишет Витрувий, наличие в песке соли, обладающей гигроскопическими свойствами, затрудняет высыхание раствора, задерживая тем самым сроки строительства. Такое утверждение не противоречит современным техническим условиям на мелкий заполнитель. Есть сведения, что заполнители для бетона (особенно пуццолановые) обязательно промывались.

Интересны указания римлян по заготовке бутовых камней и щебня для бетона. «Надо добывать камень не зимою, а летом, -пишет Витрувий,— и оставлять его вылеживаться на открытом воздухе два года до начала стройки. Тот камень, который за это двухлетие будет поврежден непогодой, пойдет на фундамент, остальной же, оказавшийся непорченным, пойдет для надземной части здания как испытанный природою и могущий сохранить свою прочность. »

Методы определения чистоты заполнит елей были весьма простыми, а требования к ним более жесткими. «. Если насыпать песок на белое полотенце и затем потрясти или подбросить его и он не оставит пятен и землистого осадка, то будет годен. » (Витрувий).

Особое значение для бетона имеет зерновой (гранулометрический) состав его заполнителей. Песок и щебень или гравий должны состоять из зерен различной величины, тогда объем пустот в них будет минимальным, а чем меньше объем пустот в заполнителе, тем меньше требуется вяжущего вещества для получения плотного бетона.

О том, что римляне придавали большое значение зерновому составу заполнителей, говорят результаты испытания их сооружений, выполненных в наше время. Так при исследовании римских развалин в Англии было выявлено, что из 58 бетонных образцов стен 55 имели заполнитель с одинаковой наибольшей крупностью, проходивший сквозь сито с отверстием 12 мм. Из 209 образцов бутовой кладки 200 имели заполнитель с наибольшей крупностью 19 мм и удовлетворительную по сегодняшним требованиям область зернового состава. Зерновой состав заполнителей из бетонов моста Траяна и водопровода близ Кельна также показал большую сходимость с современными требованиями. Есть и еще ряд подобных примеров. Следует также отметить частое использование дробленого щебня, причем «. не тяжелее фунта» (т. е. 327 г), как требует этого Витрувий.

Вероятно, к началу I в. н. э. римскими строителями было установлено, что заполнитель оказывает вполне определенное влияние на свойства бетона. Этот вывод подтверждается многочисленными примерами. Так, при строительстве Колизея в бетоне был применен заполнитель трех видов: для фундаментов — плотный и тяжелый щебень из высокопрочной лавы, для стен — более легкий известняк, а в сводах и перекрытиях — легкая пемза и туф.

Теперь вновь обратимся к составу бетона его рецептуре. Вероятно, нет необходимости убеждать читателя в том, что из одних и тех же продуктов разные повара могут приготовить разные по вкусу блюда. Зависеть это будет, в первую очередь, от соотношения продуктов, которые будут закладываться в кастрюлю. Подобное происходит и с приготовлением бетона. Можно представить, какими искусными «кулинарами» должны были быть античные мастера-строители, если, не имея под рукой механизированного оборудования и даже элементарных весов они получали достаточно качественные по составу бетоны и растворы.

О выборе состава раствора в зависимости от назначения и вида применяемого песка имеются определенные указания Витрувия и других античных авторов. Относительно же состава бетона таких указаний ни у кого из них нет, за исключением туманных рекомендаций Плиния Старшего. Однако, если вспомнить, как гоговился бетон в Древнем Риме, станет ясным, почему там не было специальных рекомендаций о его составе.

Бетон в то время приготавливали в основном раздельным способом, т. е. отдельно в специальных емкостях замешивали известковый раствор и укладывали его слоями в опалубку, чередуя со слоями крупного заполнителя. Поэтому, если состав раствора был необходим в первую очередь для получения требуемой консистенции смеси и всегда указывался в правилах производства работ, то количество щебня или гальки, по-видимому, играло второстепенную роль, и поэтому не учитывалось. Правда, в отдельных видах гидротехнических работ количество щебня в общем объеме бетона все-таки задавалось. Так, Плиний приводит состав гидротехнического бетона из извести, пуццоланы и битого туфа в пропорции 1:2:1. Другой вид бетона без указания состава. Употреблявшийся для постройки цистерн состоял, по Витрувию, из чистого песка, щебня или булыжника весом не более одного Фунта и самой хорошей извести.

Можно предположить, что в то время уже существовали элементарные методы расчета состава раствора, так как римлянам были хорошо известны способы определения объема различных геометрических фигур и они могли рассчитывать общее количество раствора и бетона на любой заданный объем. Вяжущее вещество и заполнители принимались в зависимости от назначения работ в соотношениях, указанных выше, а количество воды подбиралось «на глаз». При этом важно подчеркнуть, что римляне были хорошо осведомлены о том, что избыток воды в смеси всегда нежелателен, на что указывал, в частности Плиний. Воду поэтому, скорее всего, заливали в смесь не всю сразу, а постепенно, доводя раствор до требуемой консистенции.

С тех пор как в конце XVIII в. в Европе появились первые машины по испытанию материалов, стали испытывать и образцы римского раствора и бетона, отобранные из различных сооружений. Правда, было обнаружено, что данные имеют немалый разброс, который усугубляется различным сроком службы сооружений— в пределах 50—350 лет. Однако отдельные выводы по результатам испытаний сделать можно. Можно предположить, что активность древнеримских вяжущих в зависимости от их вида была в пределах 0,5—15 МПа: в частности, для воздушной извести 0,5—1 МПа; для гидравлической 1,5—2 МПа; для из-вестково-цемяночного и известково-пуццоланового цемента 3—10 МПа и вяжущего типа романцемента 5—15 МПа.

Очевидно, что производимые в то время бетоны также обладали различной прочностью в зависимости от вида вяжущего, водо-вяжушего отношения, тонкости помола пуццолановых добавок и других трудно учитываемых факторов.

В 80-х годах нашего века западногерманские ученые провели серию испытаний бетонных образцов, взятых в районе Кельна, Зальбурга и других городов Западной Германии — бывшей римской провинции. Бетонные образцы были отобраны из стен домов, сводов зданий, стен бассейнов и других сооружений- При этом было обнаружено, что прочность на сжатие бетонных образцов имела от 0,5 до 50 МПа в зависимости от вида сооружений, хотя преобладающей оказалась прочность порядка 7—12 МПа. Максимальное значение прочности — 50 МПа обнаружено у бетонных полов. Степы и своды зданий показали гораздо меньшую прочность, а бетон из стен бассейна - всего 5 МПа. Это свидетельствует о том, что римляне, изготавливая водонепроницаемые сооружения, не стремились получить при этом прочный бетон.

Основываясь на многочисленных описаниях римских сооружений и результатах испытаний, можно предположить, что римские бетоны в зависимости от вида применяемого вяжущего и заполнителя имели среднюю плотность от 700 до 2200 кг/м3, водо-поглощение 5—20% и пористость порядка 20—40%.

Несмотря на такие большие диапазоны значений физико-механических показателей испытанных образцов, большинство римских бетонных сооружений оказались долговечными. Это подтверждает вывод отдельных исследователей о том, что ни прочность, ни пористость бетона не могут служить основным критерием при определении его долговечности. Вероятно, значения этих показателей наиболее важны в течение первых лет работы конструкции, а в дальнейшем они нивелируются.

Сегодня трудно оценить и проанализировать составы римского бетона только по соотношению их компонентов при большом количестве неизвестных, тем более, что данные относительно действительного состава бетона и его структурных характеристик у многих исследователей вызывают сомнения. Можно лишь утверждать, что хорошее современное состояние отдельных бетонных сооружений Древнего Рима свидетельствует о превосходном качестве применяемого исходного материала, рационально подобранном составе бетона и надлежащем качестве строительных работ.

Древний Рим был чрезвычайно развитым и могущественным государством. Власть Республики, а потом Империи простиралась на три континента, представляя собой территорию порядка и культуры посреди варварского в своей основе мира. Римлянам принадлежит множество достижений в разных областях, в том числе и в строительной области. В частности, именно они начали широко применять бетонное строительство, позволившее им резко сократить сроки и повысить износостойкость возводимых зданий и сооружений, многие из которых сохранились и по сей день. Кстати, после падения Империи эта технология была утеряна, а затем изобретена заново в измененном виде спустя почти две тысячи лет. Рассмотрим ее более подробно?

Бетон в Риме называли Opus Caementitium (вот откуда идет название современного цемента!). Римляне брали смесь из песка, твердого наполнителя (щебень, кирпич и более легкие компоненты вулканического происхождения) и главного компонента - природной гашеной извести, смешанной с вулканическим пеплом. Образовавшийся состав перемешивали, заливали водой и помещали в опалубку. Спустя некоторое время образовывался очень твердый бетон. Затем опалубку снимали и, вуаля! Очередной Колизей готов!

Нельзя сказать, кто именно изобрел эту технологию. Она, возможно, пришла в примитивном виде из других государств, но потом потом постепенно именно в Древнем Риме достигла совершенства. Это случилось уже во времена Империи. Одним из важнейших открытий стало применение природной извести и вулканического пепла из окрестностей города Путеолы (сейчас Поццуоли). Именно этот состав и принес римскому бетону настоящую славу.

Что же строили из бетона? Да, все! Стены и своды зданий, фундаменты, укрепления, гидротехнические сооружения, основу дорог и многое другое. Технология применялась повсеместно. К примеру, римский Пантеон имеет бетонный купол диаметром более 40 м. Этот рекорд держался почти 2 тысячи лет, до XIX века.

Как и все в Империи, процесс производства бетона был стандартизирован. Его описывали Плиний Старший, Ветрувий и многие другие древнеримские ученые и энциклопедисты. Например, процесс производства извести и конструкция печи для ее отжига описан очень подробно - бери и строй хоть сейчас! Так же хорошо описан процесс производства наполнителей. Но все равно ученые до сих пор спорят о секрете невиданной прочности римского бетона. Самое распространенное объяснение - это уникальные свойства добавляемых в бетон вулканических пород, которые назывались по уже упоминаемому нами месту их добычи, пуццоланы. Кто-то кивает на использование римлянами морской воды. Но, кажется, секрет все-таки утерян. Получается, даже современная наука не способна постичь некоторые технологии двухтысячелетней давности. Вот такой вам и примитивный Древний Мир!

Это очень распространённая версия, которая одновременно верна и неверна.

На землях, некогда принадлежавших Древнему Риму, найдено множество отлично сохранившихся построек из монолитного бетона. Римляне столь искусно владели этой технологией, что выводили из бетона не только массивные блоки, но и колонны, стены, своды и даже купола.

Способ возведения подобных куполов, между прочим, до сих пор вызывает у учёных множество вопросов. Из бетона выстроен и Рынок Траяна (2 в. н. э.) – многоэтажный древнеримский торговый комплекс, неплохо сохранившийся до наших дней.

Или вот, скажем, Колизей (конец 1 в. н. э.) – один из величайших цирков Древнего Рима. Возведённый из бетона и облицованный поверх мрамором и кирпичом, после падения Рима он столетиями использовался как крепость – и простоял практически целеньким до середины 14 века, когда сильное землетрясение, наконец, его заметно повредило. Предприимчивые горожане растащили обломки и обколупали облицовку: из колизейского камня построено немало известных зданий более позднего Рима. Но основная конструкция сохранилась, потому что залитый в опалубку монолитный бетон попробуй-ка, разбери на куски!

Но на самом деле, как и многое другое, идею бетона (смеси цемента с наполнителем из мелких камней) и самого цемента древние римляне заимствовали у ещё более древних греков. Известен, например, неплохо сохранившийся водопроводный резервуар в древнегреческом городе Мегара, конструкции которого были обмазаны слоем материала, уже очень похожего на цемент.

Резервуар фонтана Феагена в Мегаре (ок. 600 г. до н. э): первое известное применение «протоцемента» и бетона на его основе

Резервуар фонтана Феагена в Мегаре (ок. 600 г. до н. э): первое известное применение «протоцемента» и бетона на его основе

И самое главное – покопавшись в этом цементе, мы уже можем обнаружить тот самый таинственный ингредиент, который впоследствии сделал древнеримские постройки настолько крепкими. В состав греческого цемента входил вулканический пепел, имеющий в наши дни своё особое название — «пуццолан». Добывали его тогда в холмах у города Путеолы (сейчас – Поццуоли) в районе вулкана Везувий.

В Древнем Риме бетон с вулканическим пеплом начали использовать примерно со 2 века до н. э., и весьма успешно. В состав смесей входили известь, пуццолан, вулканический туф, пемза, песок и камни. Древние римляне называли свой материал rudus (лат.) или emplekton (греч.), а связующий раствор - оpus caementum (французское слово «бетон» вошло в обиход только в 18 веке).

Несколько лет назад американские учёные прицельно исследовали древнеримский оpus caementum , сравнили с современным составом и выяснили, в чём секрет. Оказывается, пуццолан содержит много силиката алюминия (спойлер: а современный бетон – нет!) . Морская вода, на которой замешивали бетон, вызывала в растворе горячую химическую реакцию – здесь мы опустим долгие химические подробности – но в итоге внутри смеси образовывался особый минерал под названием алюминий-тоберморит, придававший бетону особую прочность.

Особенно интересно наблюдать этот химический процесс на морских постройках. Например, вот созданная при помощи римских строительных технологий гавань Ирода Великого в Кесарии (1 век до н.э.) – порт и комплекс защитных морских сооружений, материал которых стал предметом исследования. Бетонные молы и пирсы Кесарии почти две тысячи лет непрерывно омывались морскими волнами, частично уходя под воду. Реакция шла и шла, образование Al-тоберморита в бетонном монолите неторопливо продолжалось годами, десятками, сотнями лет… Может быть, идёт и сейчас. Бетон портовых сооружений становился всё прочнее, и теперь только наши далёкие потомки смогут сказать, сколько ещё тысячелетий простоят эти руины.

Учёные подсчитали, что при строительстве морских сооружений гавани Ирода Великого в Кесарии было использовано примерно 35 тыс. кубометров бетона!

Учёные подсчитали, что при строительстве морских сооружений гавани Ирода Великого в Кесарии было использовано примерно 35 тыс. кубометров бетона!

Римские строители знали множество способов применения бетона, однако ими же была введена и стандартизация состава бетонных смесей – римляне, со свойственной им педантичностью, нормировали множество технологий, что сделало многие достижения римской цивилизации весьма долговечными, но это отдельная интересная история.

Так вот, благодаря удачному химическому составу и соблюдению нормативов древнеримский бетон оказался более прочным и надёжным, чем современный. Прочность бетона в зданиях, построенных в наши дни, рассчитана примерно на 100-120 лет. А вот римские постройки уже продержались две тысячи лет – и переживут ещё нас с вами.

Если вам понравилась эта статья — поставьте лайк. Это сильно поможет развитию нашего канала, а также новые статьи из нашего канала будут чаще показываться в вашей ленте. Также будем рады, если вы подпишетесь на наш канал.

Строительство
финских домов
в Екатеринбурге

Тема этой статьи несколько неожиданна для сайта, посвященного финским каркасным домам.

Бетон изобретён примерно две тысячи лет назад в древнем Риме — это факт общеизвестный. Почему бетонные здания Древнего Рима стоят 2000 лет, а современные бетонные дома начинают крошиться уже через сорок?

Использование бетона в архитектуре древнего Рима

Многие люди считают, что здание из бетона гораздо долговечнее каркасной деревянной конструкции. И в доказательство приводят общеизвестный факт о том, что бетонные здания Древнего Рима стоят уже 2000 лет. Всё так, но тот ли это бетон, что используется в наше время?

Римская архитектура

Оригинальная архитектура Древнего Рима сформировалась в IV – I вв. до н.э. Римские строители и архитекторы стали основателями новой техники возведения зданий, особенно тех из них, которые имели общественное назначение. Театры, амфитеатры, цирки, библиотеки, базилики, термы, храмы и дворцы, многоэтажные жилые здания были центром скопления большого количества людей, следственно, строить их нужно было по особо надежным технологиям.

Храм Пантеон в древнем Риме сделан из кирпича и римского бетона

Древнеримские мастера владели тонкостями инженерного искусства. Они разработали и смогли воплотить постройку совершенно новых строительных конструкций: акведуки, мосты, гавани, крепости, каналы. При этом зодчие использовали новые строительные материалы, например, «римский бетон».

Древнеримская архитектура тяготела к возвеличиванию власти императора, поэтому и строились в большом количестве грандиозные сооружения. Масштабность строительства повлияла на совершенствование его техники. Римляне научились строить кирпично-бетонные конструкции, которые позволяли осуществлять перекрытия больших пролётов зданий.

Несмотря на огромный фронт работ, им удавалось сокращать сроки строительства за счёт рационального распределения обязанностей и определения строительных специальностей.

Купол Пантеона перекрывает пролет в 60 метров

Одно из самых значительных римских купольных строений – Пантеон – храм, построенный во имя всех богов и провозглашавший идею об объединении всех народов (разумеется под властью римского императора).

Многочисленные римские здания, которые простояли тысячи лет, является прямым доказательством более высокого качества римского бетона по сравнению с современным промышленным, здания из которого начинают разрушаться менее чем через 40-50 лет после строительства!

Секрет римского бетона

Создание «римского бетона» явилось большим прорывом в античном строительстве. Изобретённый метод кладки, позволял сокращать время постройки и совершенствовать её форму. Секрет долговечности этого древнего бетона был открыт совсем недавно. Раствор, сделанный на основе мелкого камня и обычного песка с добавлением вулканического пепла становился водонепроницаемым, химически стойким и настолько прочным, что постройка становилась монолитной и не способной к разрушению.

В 2013 году новостным центром Калифорнийского университета в Беркли, была опубликована статья, в которой был впервые описан механизм, благодаря которому надстабильное соединение кальций-алюминий-силикат-гидрат связывает материал. В процессе его производства в атмосферу выбрасывается меньше углекислого газа, чем при производстве любого современного бетона.

К его недостаткам следует отнести более длительное время сушки и несколько меньшую прочность, чем у современного бетона, несмотря на большую долговечность. Не случайно толщина стен римских зданий больше, чем у современных. Однако, римский бетон набирал свою прочность еще несколько десятков лет после окончания строительства, чего у современных бетонов практически не наблюдается.

Причина недолговечности зданий из современных бетонов

Разрушение бетонных конструкций из современного бетона через несколько десятков лет

На фотографии видно, что современный бетон достаточно быстро разрушается.

Мы заинтересовались вопросом о том, почему римский бетон был так долговечен, и почему бетонные здания XX-XXI веков стали менее долговечными?

Оказалось, этим вопросом интересовались не только мы: в технической литературе представлены многочисленные случаи преждевременного разрушения бетонов различных сооружений, как правило, построенных в течение последних 30-40 лет. В настоящее время скорость разрушения бетонных сооружений выше, чем в прошлом. Причём в числе этих бетонов как естественного твердения (залитые прямо на стройке), так и пропаренные (конструкции заводского изготовления). Многочисленность выше перечисленных фактов заставляет предполагать наличие общей причины снижения долговечности цементных бетонов за последние 40 лет.

Опытами, проведенными американскими учёными в 1910-1930 годы, установлено, что в течение 20 лет прочность бетонов увеличивается в 2,5-3 раза.

Первыми (30-е годы прошлого столетия) исследованиями было установлено, что прочность увеличивается вдвое за первые 5 лет, и прирост наблюдается в течении более 20 лет.

Последующие исследования (40-50-е годы) показали, что прочность увеличивается в 2 раза за первые 10 лет, и прирост прочности наблюдается в течение первых 15 лет.

Исследованиями, проведенными в 60-х годах, выявлено, что прочность в 2 раза не увеличивается вовсе, и прирост прочности наблюдается в течение примерно 10 лет.

Современные исследования, проведенные в различных странах, в том числе и в России, показали, что некоторые виды бетона (например — пропаренные) дают прирост прочности только в течение 1 года.

Что произошла? Почему до середины XX века бетоны набирали прочность со временем, а потом перестали?

Оказалось, что с целью удешевления строительства требовалось сократить расход бетона и время его затвердевания до набора необходимой прочности, следовательно было необходимо увеличить скорость твердения бетона. Это было достигнуто применением тонкомолотых быстросхватывающихся цементов, применением присадок, увеличивающих скорость твердения, применением тепловой обработки.

Казалось бы, задача решена?

Однако, за всё приходится платить! В отличие от старых грубомолотых цементов, раствор из которых набирал прочность в течение последующих двадцати лет и потом мог стоять веками, современный бетон набирает 50% прочности в первые три дня, 75% в течение 28 дней, и 100% за год, после чего дальнейшего упрочнения уже совсем не происходит! В результате мы получили быстрое, дешёвое и недолговечное строительство, что опять-таки выгодно строительным компаниям, поскольку они заинтересованы в непрерывном сносе старых зданий и строительстве новых!

Как всегда, довольны все, кроме потребителя — владельца дома, который рассчитывал, что его "каменный" дом простоит сто лет, а на самом деле первые признаки разрушения появляются уже через пятнадцать!

Сколько лет простоит каркасный дом по сравнению с домом из пенобетона?

Те, кто строят дом из пенобетона, надеются на его большую долговечность по сравнению с деревянной каркасной конструкцией и поэтому готовы платить за него большие деньги.

Это понятное желание, но увы — их ожидания вряд ли оправданы. Дело в том, что современный бетон гораздо менее долговечен чем римский, к тому же в производстве пенобетона используются в целях удешевления производства далеко не лучшие сорта цемента. Если добавить к этому высокую пористость и низкую плотность пенобетонных конструкций по сравнению с монолитными бетонными зданиями Древнего Рима, то становится понятно, что срок жизни пенобетонного дома не более нескольких десятков лет!

Этот каркасный деревянный дом построен в США в 1900 году и продаётся сейчас за 209000$

Кстати, качественно сделанные деревянные каркасники спокойно стоят 70-100 лет, и при этом продаются! Например, этот каркасный дом плоащдью помещений 196 квадратных метров построен в США в 1900 году, т.е. 118 лет назад (на момент написания статьи). В 2018 году он продавался за 209000 долларов, что составляет в переводе на рубли по курсу 13 977 000 рублей!

Не конструкция определяет стоимость дома, а качество изготовления, дизайн, размер и расположение участка!


Современный бетон, который широко используется при строительстве дорог, мостов и зданий, может разрушиться в течение как минимум 50 лет. Но этого нельзя сказать о бетонных сооружениях (например, причалов и волноломов), оставшихся после Римской империи. Им насчитывается не одна тысяча лет, а они до сих пор выдерживают удары морских волн.

А еще мы как то спорили бетонные ли Египетские пирамиды, которым уже не одна тысяча лет

Теперь же международная команда исследователей наконец-то решила загадку столь длительного сохранения:

. оказывается, во время химической реакции между бетоном и морской водой формируется редкий минерал, который и укрепляет материал. Именно это и заставляет бетон со временем становиться лишь крепче.

Специалисты начали своё исследование с изучения описания древнего рецепта для создания цементного строительного раствора, который был придуман древнеримским инженером Марком Витрувием ещё в 30 годы до нашей эры.

Римляне делали бетон, смешивая вулканический пепел с известью и морской водой, а затем добавляли в него куски вулканического камня. Они "размазывали" полученную смесь на деревянные формы, которые затем погружались в морскую воду. Примечательно, что этот тип бетона использовался для строительства многих известных сооружений, включая Пантеон и рынок Траяна в Риме, а также для огромных морских сооружений для защиты гаваней.

В истории осталось много упоминаний о прочности древнеримского бетона, включая загадочную запись от 79 года до нашей эры. В ней описывается, что бетон, погружённый в морскую воду становится "единым массивом камня, неприступным для волн и укреплявшимся день ото дня".

Современным специалистам не терпелось понять, что же это значит на деле. И чтобы это выяснить, учёные изучили керны, полученные со дна древнеримской гавани в заливе города-порта Поццуоли близ Неаполя (Италия). Большинство итальянцев знают его как родину кинозвезды Софи Лорен, однако во времена Римской империи он был одним из крупнейших торговых портов Средиземного моря и звался Путеолы.

При анализе выяснилось, что морская вода растворила компоненты вулканического пепла, что позволило вырастать новым связующим материалам.

В течение десятилетия очень редкий гидротермальный минерал под названием алюминий-тоберморит (aluminum tobermorite; Al-tobermorite) образовался в бетоне. Кстати, исследователям уже было давно известно, что Al-tobermorite придавал древнеримскому бетону большую прочность, но как именно он там появлялся оставалось загадкой.

К слову, этот минерал можно получить и в лабораторных условиях, но его очень трудно внедрить в сам бетон.

"Никто никогда не производил тоберморит при 20 градусов по Цельсию. Кроме римлян", — говорит ведущий автор исследования, геолог из Университета Юты Мари Джексон (Marie Jackson).



В более ранних работах авторы исследования сообщали о редком минерале, Al-тоберморите, который они находили в древнеримском бетоне.
Фото Marie Jackson.

Теперь специалисты обнаружили следующее: когда морская вода просачивается сквозь цементный раствор, она реагирует с вулканическим пеплом и кристаллами, образовывая Al-tobermorite и пористый минерал филлипсит.

По мнению Джексон, современные инженеры могли бы использовать эти знания для создания прочного бетона. Правда, говорят исследователи, обоим минералам необходимы столетия, чтобы по-настоящему укрепить бетон. Так что специалисты в настоящий момент работают над тем, что пытаются воссоздать современную версию древнеримского бетона.

"Рецепт точного изготовления этого бетона был потерян, и никому никогда не удавалось его восстановить. Римлянам повезло, что у них был подходящий минеральный пример того, как работает этот бетон. Они наблюдали за тем, как вулканический пепел попадал в море и превращался в пемзу. Нам придётся подобрать их аналоги, так как и морская вода, и пепел есть далеко не везде", — заключает Джексон.

Результаты исследования древнеримского бетона опубликованы в научном издании American Mineralogist.

А еще помните, была такая конспирологическая версия - Колизей, которого нет

Читайте также: