Пособие по проектированию свайных фундаментов из буронабивных свай

Обновлено: 30.04.2024


ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА (ТТК)

УСТРОЙСТВО ФУНДАМЕНТОВ ИЗ БУРОНАБИВНЫХ СВАЙ В УСЛОВИЯХ СУЩЕСТВУЮЩЕЙ ЗАСТРОЙКИ И РЕКОНСТРУКЦИИ

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Типовая технологическая карта разработана на устройство фундаментов из буронабивных свай в условиях существующей застройки и реконструкции.

Предназначена для использования строительно-монтажными организациями при разработке проектно-сметной документации и проектов производства работ.

При возведении зданий на свайных фундаментах в стесненных условиях городской застройки серьезную проблему представляют динамические нагрузки, воздействующие на расположенные поблизости здания. Решение этой проблемы возможно с использованием технологии устройства буронабивных свай.

Область применения буронабивных свай во всех грунтах, кроме скальных и крупнообломочных, в т.ч. обводненных, структурно-неустойчивых без применения инвентарных обсадных труб или тиксотропных растворов в стесненных городских условиях с приближением к существующим зданиям до 1 м. При этом при проведении инженерно-геологических изысканий должно быть обращено особое внимание на обследование мест возведения фундаментов с целью выявления в грунте различного рода препятствий (скальных прослоек, валунов размером более 25 см и т.п.).

Работы могут производиться по устройству буронабивных свай диаметром 400-1200 мм и глубиной заложения до 25 м в различных грунтовых условиях для сооружения свайных фундаментов вблизи существующих зданий с применением импортного оборудования фирмы "Касагранда С-40" (Италия).

Технология устройства набивных свай

Набивные сваи устраивают на месте их будущего положения путем заполнения скважины (полости) бетонной смесью или песком. В настоящее время применяют большое количество вариантов решения таких свай. Их основные преимущества:

возможность изготовления любой длины;

отсутствие значительных динамических воздействий при устройстве свай;

применимость в стесненных условиях;

применимость при усилении существующих фундаментов.

Набивные сваи изготовляют бетонными, железобетонными и грунтовыми, причем имеется возможность устройства свай с уширенной пятой. Способ устройства свай прост - в предварительно пробуренные скважины подается для заполнения бетонная смесь или грунты, в основном песчаные.

Применяют следующие разновидности набивных свай - сваи А.Э.Страуса, буронабивные, пневмонабивные, вибротрамбованные, частотрамбованные вибронабивные, песчаные и грунтобетонные. Длина свай достигает 20. 30 м при диаметре 50. 150 см. Сваи, изготовляемые с применением установок фирм Като, Беното, Либхер могут иметь диаметр до 3,5 м, глубину до 60 м, несущую способность до 500 т.

Особенности технологии свайных работ в условиях реконструкции

Специфика производства свайных работ. При реконструкции и техническом перевооружении предприятий нередко возникает необходимость усиления фундаментов или повышения их несущей способности. В этих условиях применяют различные способы подведения дополнительных свай, метод "стена в грунте", модифицированный метод опускного колодца.

Подведение дополнительных свай. При данном способе обычно применяют буронабивные и вдавливаемые многосекционные сваи, погружаемые по углам фундамента и воспринимающие нагрузку через устраиваемую по его периметру железобетонную обойму - ростверк. Однако более эффективным решением является устройство свай из укрепленного грунта или набивных свай непосредственно под подошвой существующего фундамента с использованием "струйной технологии". Эта технология устройства свай включает следующие основные процессы:

бурение до грунтового основания скважин диаметром 100. 150 мм через нижнюю ступень фундамента по его углам, а при необходимости и между углами;

опускание через пробуренное отверстие в фундаменте струйного монитора и последующая проходка скважины небольшого диаметра в грунте на проектную глубину посредством разрушения грунта высоконапорной струей от монитора;

расширение скважины до проектного сечения путем постепенного подъема монитора, через сопло которого поступает размывающая струя воды или укрепляющий грунт раствор, в результате чего образуется свая из укрепленного грунта.

Возможна установка в скважину арматурного каркаса, выходящего в существующий фундамент, последующее заполнение скважины бетонной смесью при недостаточной несущей способности грунтовых свай.

При подведении грунтовых свай под фундаменты по струйной технологии возможны три ее варианта: одно-, двух- и трехкомпонентная, отличающиеся числом составляющих, составом оборудования и несущей способностью получаемых грунтовых свай.

Однокомпонентная технология предусматривает размыв грунта одной или двумя противоположно направленными струями укрепляющего раствора. Раствор можно приготовить заранее (цементно-песчаный или цементно-глинистый), или получить необходимый состав путем раздельной подачи к соплам его составляющих. Смешение будет происходить непосредственно при выходе из сопла (жидкое стекло и отвердитель, цементно-песчаный раствор и химические добавки-ускорители твердения и др.). При однокомпонентной струйной технологии грунт размывается в радиусе 200. 350 мм от сопла, диаметр столба грунтовой сваи составляет 0,5. 0,7 м.

Двухкомпонентная струйная технология осуществляется одновременной подачей струи укрепляющего раствора и концентричной ей кольцевой струи воздуха. Размыв грунта растворно-воздушной струей происходит в радиусе 1,0. 1,5 м, а диаметр грунтовой сваи достигает 2. 3 м. В трехкомпонентной технологии дополнительно в грунт подаются добавки, ускоряющие процесс формирования сваи.

При струйной технологии можно получать сваи различного сечения: винтовые, корневидные, с поперечными дисками-диафрагмами и др. За счет развитой боковой поверхности несущая способность свай выше в 1,5. 1,8 раза, чем у свай круглого поперечного сечения.

Винтовые сваи устраивают путем подъема монитора, имеющего одно или несколько боковых сопл, расположенных одно над другим с одновременным разворотом вокруг его вертикальной оси. Число винтовых лопастей на таких сваях соответствует числу сопл на мониторе шаг винтовых лопастей определяется скоростью подъема монитора.

Вдавливание многосекционных свай. Многосекционные сваи обычно состоят из трех и более сборных коротких элементов-секций. Эти секции последовательно стыкуют по мере вдавливания их в грунт домкратами или другими механизмами до положения, при котором обеспечивается проектная несущая способность. Домкрат устанавливают под подошву существующего фундамента, под специальную балку или инвентарное упорное устройство, анкеруемое за неподвижные конструкции и соседние здания. Для устройства многосекционных свай используют стальные трубы диаметром 245. 400 мм с башмаком или заваренным нижним концом. Секции свай длиной около 1 м по мере вдавливания стыкуются сваркой. После вдавливания полость сваи заполняют бетонной смесью. Применяют железобетонные секции свай сечением 30х30 и длиной 60, 90 и 120 см со штыревым стыком секций.

Достоинства многосекционных свай в том, что вдавливание производится в режиме статического испытания свай, отсутствуют динамические воздействия при погружении свай, обеспечивается высокая надежность усиления конструкций и постоянный контроль несущей способности сваи в процессе погружения.

Модифицированный метод опускного колодца. Этот метод позволяет повысить несущую способность массива грунта под существующим фундаментом за счет заключения грунта в железобетонную оболочку, где грунт может воспринимать большие давления, так как находится в замкнутом объеме опускного колодца и подвергается трехосному напряженному состоянию. Модифицированный метод опускного колодца отличается от традиционного тем, что грунт разрабатывается снаружи, а не внутри опускного колодца. После выемки грунта до уровня нижней ступени фундамента устраивают оболочку колодца (сборную или монолитную), опускают ее с разработкой грунта по наружному контуру, и далее стенки оболочки наращивают. Работы выполняют последовательно до погружения оболочки на проектную отметку.

Буронабивные сваи. Характерной особенностью устройства буронабивных свай является предварительное бурение скважин до заданий глубины.

Самими первыми в нашей стране, на основе которых применяются существующие разновидности буронабивных свай, являются сваи А.Э.Страуса, которые были предложены в 1899 г. Изготовление свай включает следующие операции:

опускание в скважину обсадной трубы;

извлечение из скважины осыпавшегося грунта;

заполнение скважины бетоном отдельными порциями;

трамбование бетона этими порциями;

постепенное извлечение обсадной трубы.

В пробуренную до проектной отметки (5. 12 м) скважину осторожно опускают трубу диаметром 25. 40 см и далее загружают бетонной смесью. После заполнения скважины на глубину около 1 м бетонную смесь трамбуют и медленно поднимают вверх обсадную трубу до тех вор, пока высота смеси в трубе не уменьшится до 0,3. 0,4 м. Снова загружается бетонная смесь и процесс повторяется. Учитывая, что диаметр скважины больше диаметра обсадной трубы и поверхность пробуренного грунта оказывается неровной, шероховатой, при наполнении бетонной смесью обсадной трубы, ее подъеме и уплотнении смеси, бетон заполнит весь свободный объем, включая и зазор между стенками скважины и обсадной трубой. Часть бетона и цементного молока проникнет в грунт, повысив его прочность.

Недостатки способа - невозможность контролировать плотность и монолитность бетона по всей высоте сваи, возможность размыва несхватившейся бетонной смеси грунтовыми водами.

Армирование свай производят только в верхней части, где на глубину 1,5. 2,0 м в свежеуложенный бетон устанавливают металлические стержни для их последующей связи с ростверком.

В зависимости от грунтовых условий буронабивные сваи устраивают одним из следующих способов - сухим способом (без крепления стенок скважин), с применением глинистого раствора (для предотвращения обрушения стенок скважины) и с креплением скважины обсадной трубой.

Сухой способ применим в устойчивых грунтах (просадочные и глинистые твердой полутвердой и тугопластичной консистенции), которые могут держать стенки скважины (рис.1). Скважина необходимого диаметра разбуривается методом вращательного бурения в грунте на заданную глубину. После приемки скважины в установленном порядке при необходимости в ней монтируют арматурный каркас и бетонируют методом вертикально перемещающейся трубы.

Рис.1. Технологическая схема устройства буронабивных свай сухим способом:

а - бурение скважины; б - разбуривание уширенной полости; в - установка арматурного каркаса; г - установка бетонолитной трубы с вибробункером; д - бетонирование скважины методом вертикально перемещаемой трубы (ВПТ); е - подъем бетонолитной трубы; 1 - буровая установка; 2 - привод; 3 - шнековый рабочий орган, 4 - скважина; 5 - расширитель, 6 - уширенная полость; 7 - арматурный каркас; 8 - стреловой кран; 9 - кондуктор-патрубок; 10 - вибробункер; 11 - бетонолитная труба; 12 - бадья с бетонной смесью; 13 - уширенная пята сваи

Используемые в строительстве бетонолитные трубы, как правило, состоят из отдельных секций и имеют стыки, позволяющие быстро и надежно соединить трубы. Секции бетонолитных труб длиной 2,4. 6 м в стыках скрепляют болтами или замковыми соединениями, у первой секции крепится приемный бункер, через который бетонная смесь подается в трубу. В скважину опускается бетонолитная труба до самого низа, в приемную воронку подается бетонная смесь из автобетоносмесителя или с помощью специального загрузочного бункера, на этой же воронке закреплены вибраторы, которые уплотняют укладываемую бетонную смесь. По мере укладки смеси бетонолитная труба извлекается из скважины. По окончании бетонирования скважины голову сваи формуют в специальном инвентарном кондукторе, в зимнее время дополнительно надежно защищают. Сухим способом по рассмотренной технологии изготовляют буронабивные сваи диаметром от 400 до 1200 мм, длина свай достигает 30 м.

Применение глинистого раствора. Устройство буронабивных свай в слабых водонасыщенных грунтах требует повышенных трудозатрат, что обусловлено необходимостью крепления стенок скважины для предохранения их от обрушения (рис.2). В таких неустойчивых грунтах для предотвращения обрушения стенок скважин применяют насыщенный глинистый раствор бентонитовых глин плотностью 1,15. 1,3 г/см, который оказывает гидростатическое давление на стенки, хорошо временно скрепляет отдельные грунты, особенно обводненные и неустойчивые, при этом хорошо удерживает стенки скважин от обрушения. Этому же способствует образование на стенках скважины глинистой корки вследствие проникновения раствора в грунт.

Рис.2. Технологическая схема устройства буронабивных свай под глинистым раствором:

а - бурение скважины; б - устройство расширенной полости; в - установка арматурного каркаса; г - установка вибробункера с бетонолитной трубой; д - бетонирование скважины методом ВПТ; 1 - скважина, 2 - буровая установка; 3 - насос; 4 - глиносмеситель; 5 - приямок для глинистого раствора; 6 - расширитель; 7 - штанга; 8 - стреловой кран; 9 - арматурный каркас; 10 - бетонолитная труба; 11 - вибробункер

Скважины бурят вращательным способом. Глинистый раствор готовят на месте выполнения работ и по мере бурения подают в скважину по пустотелой буровой штанге под давлением. По мере бурения находящийся под гидростатическим давлением раствор от места забуривания, встречая сопротивление грунта, начинает подниматься вверх вдоль стенок скважины, вынося разрушенные бурами грунты, и выходя на поверхность, попадает в отстойник-зумпф, откуда снова насосом подается в скважину для дальнейшей циркуляции.

Глинистый раствор, находящийся в скважине под давлением, цементирует грунт стенок, тем самым, препятствуя проникновению воды, что позволяет исключить применение обсадных труб. После завершения проходки скважины в нее при необходимости устанавливается арматурный каркас, бетонная смесь из вибробункера по бетонолитной трубе попадает на дно скважины, поднимаясь вверх, бетонная смесь вытесняет глинистый раствор. По мере заполнения скважины бетонной смесью производят подъем бетоновода.

В настоящее время проходит успешное испытание специальный полимерный концентрат на основе полиакриламида, который в процессе гидратации образует коллоидный буровой раствор, создающий защитную пленку на стенках скважины, что в сочетании с избыточным гидростатическим давлением предотвращает их осыпание. Бурение в сложных геологических условиях без применения обсадных труб показало целостность буронабивной сваи по всей глубине после закачивания в нее бетона и отсутствие каких-либо наплывов или впадин бетона на боковой поверхности сваи. Использование коллоидного раствора позволяет существенно увеличить производительность буровых работ, снизить их себестоимость и трудоемкость, резко сократить потребность в обсадных трубах без снижения качества работ.

Крепление скважин обсадными трубами. Устройство свай этим методом возможно в любых гидрогеологических условиях; обсадные трубы могут быть оставлены в скважине или извлечены из нее в процессе изготовления сваи (рис.3). Обсадные трубы соединяют между собой при помощи замков специальной конструкции (если это инвентарные трубы) или на сварке. Пробуривают скважины вращательным или ударным способом. Погружение обсадных труб в грунт в процессе бурения скважины осуществляют гидродомкратами.

Рис.3. Технологическая схема устройства буронабивных свай с применением обсадных труб:

а - установка кондуктора и забуривание скважины; б - погружение обсадной трубы; в - проходка скважины; г - наращивание следующего звена обсадной трубы; д - зачистка забоя скважины; е - установка арматурного каркаса; ж - заполнение скважины бетонной смесью и извлечение обсадной трубы; 1 - рабочий орган для бурения скважины; 2 - скважина; 3 - кондуктор; 4 - буровая установка; 5 - обсадная труба; 6 - арматурный каркас; 7 - бетонолитная труба; 8 - вибробункер

После зачистки забоя и установки арматурного каркаса скважину бетонируют методом вертикально перемещаемой трубы. По мере заполнения скважины бетонной смесью могут производить извлечение и инвентарной обсадной трубы. Специальная система домкратов, смонтированных на установке, сообщает трубе возвратно-поступательное движение, за счет чего бетонная смесь дополнительно уплотняется. По завершении бетонирования скважины осуществляют формирование головы сваи. Находят применение установки по изготовлению набивных свай с использованием обсадных труб с извлечением грунта из трубы виброгрейфером (рис.4).

Рис.4. Технологическая схема изготовления набивных свай с выемкой грунта под защитой обсадных труб:

а - погружение обсадной трубы виброустановкой; б - извлечение грунта из обсадной трубы виброгрейфером; в - бетонирование сваи; г - извлечение обсадной трубы виброустановкой; 1 - обсадная труба; 2 - виброустановка; 3 - виброгрейфер; 4 - арматурный каркас; 5 - бадья с бетонной смесью

Буронабивные сваи с уширенной пятой. Диаметр таких свай 0,6. 2,0 м, длина 14. 50 м. Существуют три способа устройства уширений свай. Первый способ - распирание грунта усиленным трамбованием бетонной смеси в нижней части скважины, когда невозможно оценить качество работ, форму (какой стала пята уширения), насколько бетон перемешался с грунтом и какова его несущая способность.

При втором способе скважину пробуривают станком, имеющим на буровой колонке специальное устройство в виде раскрывающегося ножа. Для образования уширения скважины диаметром до 3 м (рис.5), нож раскрывается гидравлическим механизмом, управляемым с поверхности земли. При вращении штанги ножи срезают грунт, который попадает в бадью, расположенную над расширителем. За несколько операций срезания ножами грунта и извлечения его на поверхность в грунте образуется уширенная полость. В скважину подают глинистый раствор из бентонитовых глин, который непрерывно циркулирует и обеспечивает устойчивость стенок скважины. При устройстве уширений разбуривание полости осуществляют одновременно с подачей в скважину свежего глинистого раствора до полной замены раствора, загрязненного грунтом. После завершения бурения скважины на проектную глубину буровую колонку с уширителем извлекают, в скважину устанавливают арматурный каркас. Бетонирование ведут методом вертикально перемещающейся трубы, когда одновременно в трубу подают бетонную смесь и поднимают ее. Бетонная смесь, соприкасаясь с вязким глинистым раствором, не снижает своей прочности, цементное вяжущее из смеси не вымывается. Бетонная смесь выжимает глинистый раствор вверх по трубе и через зазор между трубой и скважиной. Нижний конец бетонолитной трубы должен быть постоянно заглублен в бетонную смесь на глубину порядка 2 м; бетонирование осуществляют непрерывно, чтобы не возникали прослойки глинистого раствора в бетоне.

Документ распространяется на проектирование, производство и приемку работ по устройству буронабивных свай повышенной несущей способности, сооружаемых с применением технологии объемного виброштампования ("ВИБРОСТОЛБ"). Положения методического документа предназначены для применения организациями, выполняющими работы по проектированию, строительству, ремонту и реконструкции автомобильных дорог и искусственных сооружений на них.

ОДМ 218.2.016-2011

ОТРАСЛЕВОЙ ДОРОЖНЫЙ МЕТОДИЧЕСКИЙ ДОКУМЕНТ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО
ПРОЕКТИРОВАНИЮ И УСТРОЙСТВУ
БУРОНАБИВНЫХ СВАЙ ПОВЫШЕННОЙ
НЕСУЩЕЙ СПОСОБНОСТИ ПО ГРУНТУ

ФЕДЕРАЛЬНОЕ ДОРОЖНОЕ АГЕНТСТВО
(РОСАВТОДОР)

Москва 2013

Предисловие

1 РАЗРАБОТАН Открытым акционерным обществом «Научно-исследовательский институт транспортного строительства» (ОАО ЦНИИС).

2 ВНЕСЕН Управлением строительства и проектирования автомобильных дорог Федерального дорожного агентства.

3 ИЗДАН на основании распоряжения Федерального дорожного агентства от 20.03.2012 № 79-р.

4 ИМЕЕТ РЕКОМЕНДАТЕЛЬНЫЙ ХАРАКТЕР.

5 ВВЕДЕН ВПЕРВЫЕ.

ОТРАСЛЕВОЙ ДОРОЖНЫЙ МЕТОДИЧЕСКИЙ ДОКУМЕНТ

Методические рекомендации по проектированию и
устройству буронабивных свай повышенной несущей
способности по грунту

1.1 Настоящий отраслевой дорожный методический документ (далее - методический документ) распространяется на проектирование, производство и приемку работ по устройству буронабивных свай повышенной несущей способности, сооружаемых с применением технологии объемного виброштампования («ВИБРОСТОЛБ»).

1.2 Положения настоящего методического документа предназначены для применения организациями, выполняющими работы по проектированию, строительству, ремонту и реконструкции автомобильных дорог и искусственных сооружений на них.

В настоящем методическом документе использованы ссылки на следующие документы:

ГОСТ 5686-94 Грунты. Методы полевых испытаний сваями

ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия

ГОСТ 19912-2001 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 26633-91 Бетоны тяжелые и мелкозернистые. Технические условия

СП 24.13330.2011 Свайные фундаменты (актуализированная редакция СНиП 2.02.03-85 )

СП 45.13330.2012 Земляные сооружения, основания и фундаменты (актуализированная редакция СНиП 3.02.01-87 )

СП 46.13330.2012 Мосты и трубы (актуализированная редакция СНиП 3.06.04-91 )

СП 48.13330.2011 Организация строительства (актуализированная редакция СНиП 12-01-2004 )

СНиП 3.03.01-87 Несущие и ограждающие конструкции ( СП 70.13330.2012 - в стадии актуализации)

СНиП 12-03-2001 Безопасность труда в строительстве. Часть 1. Общие требования (СП 49.13330.2012 - в стадии актуализации)

СНиП 12-04-2002 Безопасность труда в строительстве. Часть 2. Строительное производство

В настоящем методическом документе применены следующие термины с соответствующими определениями:

3.1 несущая способность сваи: Предельное сопротивление основания одиночной сваи по условию ограничения развития в нем чрезмерных деформаций сдвига.

3.2 основание сваи: Часть массива грунта, воспринимающая нагрузку, передаваемую сваей, и взаимодействующая со сваей.

3.3 расчетная нагрузка, передаваемая на сваю: Нагрузка, равная продольному усилию, возникающему в свае от проектных воздействий на фундамент при наиболее невыгодных их сочетаниях.

3.4 свая: Погруженная в грунт или изготовленная в грунте вертикальная или наклонная конструкция, предназначенная для передачи нагрузки на основание.

3.5 свая висячая: Свая, передающая нагрузку на основание через боковую поверхность и пяту.

3.6 свая одиночная: Свая, передающая нагрузку на грунт в условиях отсутствия влияния на нее других свай.

3.7 щебеночное «ядро» в основании буронабивной сваи: Сформированный объемным виброштампованием щебеночный массив, являющийся элементом искусственного основания и воспринимающий нагрузку, передаваемую через нижний конец сваи, совместно с окружающим грунтом.

4.1 Настоящий методический документ разработан в развитие требований СП 24.13330.2011 , СП 46.13330.2012 , СП 45.13330.2012 .

4.2 Повышение несущей способности буронабивных свай достигается за счет уплотнения и снижения деформативности околосвайного грунта в процессе их сооружения. При этом сохраняется основная последовательность традиционных технологических операций при сооружении буронабивных свай.

4.3 При изготовлении буронабивных свай применяется специальное гидравлическое оборудование, обеспечивающее требуемые технологические режимы уплотняющего воздействия на укладываемую бетонную смесь, щебень и околосвайный грунт. В основу технологии положен способ глубинного объемного вибрационного воздействия на уплотняемые материалы.

4.4 Производство и контроль качества работ осуществляется в соответствии с Технологическим регламентом, разработанным для конкретного объекта с учетом положений настоящего методического документа. Технологический регламент согласовывается с проектной организацией - разработчиком конструкций и утверждается заказчиком. Без Технологического регламента могут выполняться только опытные работы.

5.1 Технология объемного виброштампования может быть применена при устройстве буронабивных свай диаметром от 0,6 до 2 м и длиной до 50 м в составе свайных ростверков, отдельно стоящих, буросекущихся и бурокасательных свай, баретт, щебеночных (песчаных) свай.

5.2 Повышение несущей способности буронабивных свай по грунту может быть достигнуто двумя способами:

- виброштампованием бетонной смеси при бетонировании скважин;

- усилением грунтового основания ниже забоя скважины вибровтрамбовыванием щебня.

Максимальная несущая способность буронабивной сваи данного типа достигается совместным применением обоих способов.

5.3 Технологию объемного виброштампования рекомендуется применять в следующих случаях:

- строительство фундаментов зданий и сооружений в сложных инженерно-геологических условиях;

- недостаточная несущая способность буронабивных свай по грунту;

- строительство объектов в стесненных условиях;

- повышение устойчивости оползневых склонов;

- для повышения сплошности, прочности бетона свай и герметичности «холодных» швов между буросекущимися и бурокасательными сваями при устройстве «стены в грунте»;

- для обеспечения проектной несущей способности при необходимости сокращения длины, диаметра буронабивных свай или их количества.

5.4 Наибольший эффект от технологии объемного виброштампования достигается в грунтах, обладающих коэффициентом пористости ε ≥ 0,6, в том числе в водонасыщенных песчаных грунтах мелких и средней крупности, а также в пылевато-глинистых грунтах при показателе текучести I L ≥ 0,4.

6.1 Исходные данные

6.1.1 Выбор конструкции фундаментов, сооружаемых с применением технологии объемного виброштампования, следует производить исходя из конкретных условий строительной площадки, характеризуемых результатами инженерно-геологических, инженерно-гидрологических изысканий, расчетных нагрузок, действующих на фундамент, а также на основе технико-экономического сравнения вариантов возможных проектных решений с учетом экологических и ресурсосберегающих требований.

6.1.2 В материалах изысканий приводятся результаты полевых и лабораторных исследований грунтов, геологические разрезы с данными о напластованиях грунтов, расчетные значения их физико-механических характеристик, устанавливаемых проектной организацией в необходимых случаях, результаты статического или динамического зондирования.

6.1.3 При выполнении инженерно-геологических изысканий и проектирования фундаментных конструкций с применением технологии объемного виброштампования следует руководствоваться СП 24.13330.2011 , МГСН 2.07-01 [1] и Рекомендациями [2].

6.1.4 В состав исходных данных для проектирования входят чертежи основных элементов сооружения с указанием несущих конструкций, размеров, глубины заложения, расчетных нагрузок и мест их приложения, сведения об их возможном изменении в процессе эксплуатации.

6.1.5 При необходимости проведения опытных работ на стадии проектирования работы выполняются в следующей последовательности (рекомендуемый состав):

- бурение скважины до проектной отметки;

- статические испытания грунта основания штампом;

- упрочнение грунта забоя скважины вибровтрамбовыванием щебня (подразд. 7.3);

- статические испытания усиленного основания штампом (подразд. 8.15);

- установка арматурного каркаса и бетонирование скважины (подразд. 7.4);

- статические испытания готовой сваи вдавливающей и выдергивающей нагрузками после набора прочности бетона свай не менее 80 %.

Состав и технология опытных работ уточняются проектной организацией в Техническом задании.

6.2 Конструирование буронабивных свай и материалы

6.2.1 Глубина заложения подошвы железобетонных виброштампованных буронабивных свай назначается исходя из гидрогеологических условий, конструктивных решений подземной части сооружений и наличия коммуникаций. При выборе несущего слоя грунта следует учитывать, что при вибровтрамбовывании щебня в забой скважин в грунте ниже отметки забоя образуется щебеночное «ядро», по форме близкое к конусу высотой не менее диаметра скважины с зоной уплотненного грунта вокруг «ядра». Для вибровтрамбовывания следует использовать щебень твердых пород (гранитный, гравийный и т.п.) размером зерен 20 - 40 мм (или 40 - 70 мм) по ГОСТ 8267-93 .

6.2.2 Сваи надлежит армировать заранее изготовленными каркасами проектной длины. Допускается наращивание каркаса до проектной длины путем стыкования, в соответствии с требованиями рабочей документации, непосредственно при опускании е го в пробуренную скважину.

6.2.3 Конструкция каркаса и технология его монтажа назначаются исходя из обеспечения проектного положения (центрирования) каркаса в скважине и величину защитного слоя бетона не менее 70 мм в свету. С этой целью на арматурный каркас устанавливается необходимое количество дистанционных прокладок соответствующего качества и геометрических параметров.

6.2.4 Проектные показатели прочности, морозостойкости и водонепроницаемости бетона обеспечиваются за счет назначения оптимального состава бетонной смеси, который надлежит подбирать методом лабораторных подборов исходя из конкретных свойств используемых материалов (цемента, заполнителей, добавок) в соответствии с указаниями приложения 4 СП 46.13330.2012 и рекомендациями настоящего методического документа. При этом состав бетонной смеси для бетонирования скважин с объемным виброштампованием следует подбирать исходя из возможности «оживления» уложенной бетонной смеси виброоборудованием в течение 3 ч в случае вынужденных пауз в подаче свежей порции смеси (приложение А).

6.2.5 Бетонная смесь, уложенная в скважину при помощи объемного виброштампования, может обеспечивать приобретение бетоном в возрасте 28 дней установленных проектом показателей качества по прочности, соответствующих классу не ниже В25, по водонепроницаемости не ниже W 6 и морозостойкости не ниже F200.

6.2.7 В качестве добавок, улучшающих технологические свойства бетонной смеси и повышающих качество бетона, следует применять добавки, указанные в приложениях 3 и 6 СП 46.13330.2012 .

6.2.8 В качестве крупного заполнителя бетонной смеси следует использовать гранитный щебень размером зерен 5 - 20 мм, получаемый дроблением невыветренных скальных пород в соответствии с требованиями ГОСТ 26633-91 . Для приготовления щебня применяется порода, обладающая в водонасыщенном состоянии прочностью не ниже 80 МПа, с водопоглощением не более 0,5 %.

6.2.9 Для бетонной смеси необходимо использовать естественный кварцевый или дробленый из высокопрочных магматических пород песок с модулем крупности не менее 2,5 в соответствии с требованиями ГОСТ 26633-91 .

6.2.10 Цемент и заполнители следует дозировать по массе, а водные растворы пластифицирующих и воздухововлекающих добавок - по объему.

6.2.11 Показатели бетонной смеси на месте укладки назначаются Технологическим регламентом в зависимости от способа заполнения скважины.

6.3 Расчет буронабивных свай

6.3.1 Расчеты свайных фундаментов и их элементов выполняются в соответствии с общими положениями СП 24.13330.2011 , МГСН 2.07-01 [1], МГСН 5.02-99 [3].

6.3.2 При расчете буронабивных свай из виброштампованного бетона по прочности материала расчетное сопротивление бетона следует принимать с учетом коэффициента условий работы γcb = 1 и коэффициента условий работы, учитывающего влияние способа производства работ при наличии в скважине воды и извлекаемых обсадных труб, γ' cb = 0,9.

6.3.3 Сваю в составе фундамента и одиночную по несущей способности грунта основания следует рассчитывать исходя из условия

где N - расчетная вертикальная нагрузка, передаваемая на сваю, кН;

F d - несущая способность (предельное сопротивление) грунта основания одиночной сваи, кН, называемая в дальнейшем несущей способностью сваи;

γ 0 , γ n , γk - коэффициенты, принимаемые согласно п. 7.1.11 СП 24.13330.2011 .

6.3.4 Несущую способность F d буронабивной сваи, работающей на сжимающую нагрузку, следует определять по формулам:

а) при объемном виброштамповании укладываемой бетонной смеси

где γ с - коэффициент условий работы сваи, γ c = 1;

γcR - коэффициент условий работы грунта под нижним концом сваи (для песков и супесей γ cR = 1,1; для глин и суглинков γcR = 1; в остальных случаях, согласно п. 7.2.6 СП 24.13330.2011 );

R - расчетное сопротивление грунта под нижним концом сваи, кПа, принимаемое, согласно п. 7.2.7 СП 24.13330.2011 ;

А - площадь опирания сваи, м 2 , принимаемая равной:

- для буронабивных свай без уширения - площади поперечного сечения ствола сваи в уровне подошвы;

- для буронабивных свай с уширением - площади поперечного сечения уширения в месте наибольшего его диаметра;

U - периметр поперечного сечения ствола сваи, м;

γcf - коэффициент условий работы грунта на боковой поверхности сваи (для любого типа грунта γcf = 0,9);

fi - расчетное сопротивление i -го слоя грунта на боковой поверхности сваи, кПа, принимаемое по таблице Б.1 приложения Б;

hi - толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;

б) при вибровтрамбовывании щебня в грунт ниже забоя скважины или сваи-оболочки, погружаемой с выемкой грунта

где γс - коэффициент условий работы сваи, γс = 1;

γ cR 1 - коэффициент условий работы, учитывающий особенности совместной работы щебеночного «ядра» в основании сваи и окружающего уплотненного грунта, принимаемый по таблице 1;

R - расчетное сопротивление уплотненного грунта под подошвой буронабивных свай, сооружаемых с вибровтрамбовыванием жесткого материала в забой, кПа, принимаемое по таблице Б.2 приложения Б;

А - площадь опирания сваи, м 2 , принимаемая равной:

- для буронабивных свай без уширения - площади поперечного сечения ствола сваи в уровне подошвы;

- для свай-оболочек, заполняемых бетоном, - площади поперечного сечения оболочки брутто;

U - периметр поперечного сечения ствола сваи, м;

γ cf - коэффициент условий работы грунта на боковой поверхности сваи, принимаемый:

- при объемном виброштамповании укладываемой бетонной смеси (для любого типа грунта γс f = 0,9);

- в остальных случаях, согласно п. 7.2.6 СП 24.13330.2011 в зависимости от способа образования скважины и условий бетонирования;

fi - расчетное сопротивление i - го слоя грунта на боковой поверхности сваи, кПа, принимаемое по таблице Б.1 приложения Б;

hi - толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м.

Таблица 1 - Значения коэффициента γcR 1

Значение коэффициента для пылевато-глинистых грунтов с показателем текучести IL

ОТРАСЛЕВОЙ ДОРОЖНЫЙ МЕТОДИЧЕСКИЙ ДОКУМЕНТ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ И УСТРОЙСТВУ БУРОНАБИВНЫХ СВАЙ ПОВЫШЕННОЙ НЕСУЩЕЙ СПОСОБНОСТИ ПО ГРУНТУ

1 РАЗРАБОТАН Открытым акционерным обществом "Научно-исследовательский институт транспортного строительства" (ОАО ЦНИИС).

2 ВНЕСЕН Управлением строительства и проектирования автомобильных дорог Федерального дорожного агентства.

3 ИЗДАН на основании распоряжения Федерального дорожного агентства от 20.03.2012 N 79-р.

4 ИМЕЕТ РЕКОМЕНДАТЕЛЬНЫЙ ХАРАКТЕР.

5 ВВЕДЕН ВПЕРВЫЕ.

1 Область применения

1.1 Настоящий отраслевой дорожный методический документ (далее - методический документ) распространяется на проектирование, производство и приемку работ по устройству буронабивных свай повышенной несущей способности, сооружаемых с применением технологии объемного виброштампования ("ВИБРОСТОЛБ").

1.2 Положения настоящего методического документа предназначены для применения организациями, выполняющими работы по проектированию, строительству, ремонту и реконструкции автомобильных дорог и искусственных сооружений на них.

2 Нормативные ссылки

В настоящем методическом документе использованы ссылки на следующие документы:

ГОСТ 5686-94 Грунты. Методы полевых испытаний сваями

ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия

ГОСТ 19912-2001 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 26633-91 Бетоны тяжелые и мелкозернистые. Технические условия

СП 24.13330.2011 Свайные фундаменты (актуализированная редакция СНиП 2.02.03-85)

СП 45.13330.2012 Земляные сооружения, основания и фундаменты (актуализированная редакция СНиП 3.02.01-87)

СП 46.1333.30.2012* Мосты и трубы (актуализированная редакция СНиП 3.06.04-91)

________________
* Вероятно, ошибка оригинала. Следует читать: СП 46.13330.2012. - Примечание изготовителя базы данных.

СП 48.13330.2011 Организация строительства (актуализированная редакция СНиП 12-01-2004)

СНиП 3.03.01-87 Несущие и ограждающие конструкции (СП 70.13330.2012 - в стадии актуализации)

СНиП 12-03-2001 Безопасность труда в строительстве. Часть 1. Общие требования (СП 49.13330.2012 - в стадии актуализации)

СНиП 12-04-2002 Безопасность труда в строительстве. Часть 2. Строительное производство

3 Термины и определения

В настоящем методическом документе применены следующие термины с соответствующими определениями:

3.1 несущая способность сваи: Предельное сопротивление основания одиночной сваи по условию ограничения развития в нем чрезмерных деформаций сдвига.

3.2 основание сваи: Часть массива грунта, воспринимающая нагрузку, передаваемую сваей, и взаимодействующая со сваей.

3.3 расчетная нагрузка, передаваемая на сваю: Нагрузка, равная продольному усилию, возникающему в свае от проектных воздействий на фундамент при наиболее невыгодных их сочетаниях.

3.4 свая: Погруженная в грунт или изготовленная в грунте вертикальная или наклонная конструкция, предназначенная для передачи нагрузки на основание.

3.5 свая висячая: Свая, передающая нагрузку на основание через боковую поверхность и пяту.

3.6 свая одиночная: Свая, передающая нагрузку на грунт в условиях отсутствия влияния на нее других свай.

3.7 щебеночное "ядро" в основании буронабивной сваи: Сформированный объемным виброштампованием щебеночный массив, являющийся элементом искусственного основания и воспринимающий нагрузку, передаваемую через нижний конец сваи, совместно с окружающим грунтом.

4 Общие положения

4.1 Настоящий методический документ разработан в развитие требований СП 24.13330.2011, СП 46.13330.2012, СП 45.13330.2012.

4.2 Повышение несущей способности буронабивных свай достигается за счет уплотнения и снижения деформативности околосвайного грунта в процессе их сооружения. При этом сохраняется основная последовательность традиционных технологических операций при сооружении буронабивных свай.

4.3 При изготовлении буронабивных свай применяется специальное гидравлическое оборудование, обеспечивающее требуемые технологические режимы уплотняющего воздействия на укладываемую бетонную смесь, щебень и околосвайный грунт. В основу технологии положен способ глубинного объемного вибрационного воздействия на уплотняемые материалы.

4.4 Производство и контроль качества работ осуществляется в соответствии с Технологическим регламентом, разработанным для конкретного объекта с учетом положений настоящего методического документа. Технологический регламент согласовывается с проектной организацией - разработчиком конструкций и утверждается заказчиком. Без Технологического регламента могут выполняться только опытные работы.

5 Виды буронабивных свай повышенной несущей способности, область применения

5.1 Технология объемного виброштампования может быть применена при устройстве буронабивных свай диаметром от 0,6 до 2 м и длиной до 50 м в составе свайных ростверков, отдельно стоящих, буросекущихся и бурокасательных свай, баретт, щебеночных (песчаных) свай.

5.2 Повышение несущей способности буронабивных свай по грунту может быть достигнуто двумя способами:

- виброштампованием бетонной смеси при бетонировании скважин;

- усилением грунтового основания ниже забоя скважины вибровтрамбовыванием щебня.

Максимальная несущая способность буронабивной сваи данного типа достигается совместным применением обоих способов.

5.3 Технологию объемного виброштампования рекомендуется применять в следующих случаях:

- строительство фундаментов зданий и сооружений в сложных инженерно-геологических условиях;

- недостаточная несущая способность буронабивных свай по грунту;

- строительство объектов в стесненных условиях;

- повышение устойчивости оползневых склонов;

- для повышения сплошности, прочности бетона свай и герметичности "холодных" швов между буросекущимися и бурокасательными сваями при устройстве "стены в грунте";

- для обеспечения проектной несущей способности при необходимости сокращения длины, диаметра буронабивных свай или их количества.

5.4 Наибольший эффект от технологии объемного виброштампования достигается в грунтах, обладающих коэффициентом пористости 0,6, в том числе в водонасыщенных песчаных грунтах мелких и средней крупности, а также в пылевато-глинистых грунтах при показателе текучести 0,4.

6 Проектирование буронабивных свай

6.1 Исходные данные

6.1.1 Выбор конструкции фундаментов, сооружаемых с применением технологии объемного виброштампования, следует производить исходя из конкретных условий строительной площадки, характеризуемых результатами инженерно-геологических, инженерно-гидрологических изысканий, расчетных нагрузок, действующих на фундамент, а также на основе технико-экономического сравнения вариантов возможных проектных решений с учетом экологических и ресурсосберегающих требований.

6.1.2 В материалах изысканий приводятся результаты полевых и лабораторных исследований грунтов, геологические разрезы с данными о напластованиях грунтов, расчетные значения их физико-механических характеристик, устанавливаемых проектной организацией в необходимых случаях, результаты статического или динамического зондирования.

6.1.3 При выполнении инженерно-геологических изысканий и проектирования фундаментных конструкций с применением технологии объемного виброштампования следует руководствоваться СП 24.13330.2011, МГСН 2.07-01 [1] и Рекомендациями [2].

6.1.4 В состав исходных данных для проектирования входят чертежи основных элементов сооружения с указанием несущих конструкций, размеров, глубины заложения, расчетных нагрузок и мест их приложения, сведения об их возможном изменении в процессе эксплуатации.

6.1.5 При необходимости проведения опытных работ на стадии проектирования работы выполняются в следующей последовательности (рекомендуемый состав):

- бурение скважины до проектной отметки;

- статические испытания грунта основания штампом;

- упрочнение грунта забоя скважины вибровтрамбовыванием щебня (подразд. 7.3);

- статические испытания усиленного основания штампом (подразд. 8.15);

- установка арматурного каркаса и бетонирование скважины (подразд. 7.4);

- статические испытания готовой сваи вдавливающей и выдергивающей нагрузками после набора прочности бетона свай не менее 80%.

Состав и технология опытных работ уточняются проектной организацией в Техническом задании.

6.2 Конструирование буронабивных свай и материалы

6.2.1 Глубина заложения подошвы железобетонных виброштампованных буронабивных свай назначается исходя из гидрогеологических условий, конструктивных решений подземной части сооружений и наличия коммуникаций. При выборе несущего слоя грунта следует учитывать, что при вибровтрамбовывании щебня в забой скважин в грунте ниже отметки забоя образуется щебеночное "ядро", по форме близкое к конусу высотой не менее диаметра скважины с зоной уплотненного грунта вокруг "ядра". Для вибровтрамбовывания следует использовать щебень твердых пород (гранитный, гравийный и т.п.) размером зерен 20-40 мм (или 40-70 мм) по ГОСТ 8267-93.

6.2.2 Сваи надлежит армировать заранее изготовленными каркасами проектной длины. Допускается наращивание каркаса до проектной длины путем стыкования, в соответствии с требованиями рабочей документации, непосредственно при опускании его в пробуренную скважину.

6.2.3 Конструкция каркаса и технология его монтажа назначаются исходя из обеспечения проектного положения (центрирования) каркаса в скважине и величину защитного слоя бетона не менее 70 мм в свету. С этой целью на арматурный каркас устанавливается необходимое количество дистанционных прокладок соответствующего качества и геометрических параметров.

6.2.4 Проектные показатели прочности, морозостойкости и водонепроницаемости бетона обеспечиваются за счет назначения оптимального состава бетонной смеси, который надлежит подбирать методом лабораторных подборов исходя из конкретных свойств используемых материалов (цемента, заполнителей, добавок) в соответствии с указаниями приложения 4 СП 46.13330.2012 и рекомендациями настоящего методического документа. При этом состав бетонной смеси для бетонирования скважин с объемным виброштампованием следует подбирать исходя из возможности "оживления" уложенной бетонной смеси виброоборудованием в течение 3 ч в случае вынужденных пауз в подаче свежей порции смеси (приложение А).

6.2.5 Бетонная смесь, уложенная в скважину при помощи объемного виброштампования, может обеспечивать приобретение бетоном в возрасте 28 дней установленных проектом показателей качества по прочности, соответствующих классу не ниже В25, по водонепроницаемости не ниже W6 и морозостойкости не ниже F200.

6.2.7 В качестве добавок, улучшающих технологические свойства бетонной смеси и повышающих качество бетона, следует применять добавки, указанные в приложениях 3 и 6 СП 46.13330.2012.

6.2.8 В качестве крупного заполнителя бетонной смеси следует использовать гранитный щебень размером зерен 5-20 мм, получаемый дроблением невыветренных скальных пород в соответствии с требованиями ГОСТ 26633-91. Для приготовления щебня применяется порода, обладающая в водонасыщенном состоянии прочностью не ниже 80 МПа, с водопоглощением не более 0,5%.

6.2.9 Для бетонной смеси необходимо использовать естественный кварцевый или дробленый из высокопрочных магматических пород песок с модулем крупности не менее 2,5 в соответствии с требованиями ГОСТ 26633-91.

6.2.10 Цемент и заполнители следует дозировать по массе, а водные растворы пластифицирующих и воздухововлекающих добавок - по объему.

6.2.11 Показатели бетонной смеси на месте укладки назначаются Технологическим регламентом в зависимости от способа заполнения скважины.

УСТРОЙСТВО ФУНДАМЕНТОВ ИЗ БУРОНАБИВНЫХ СВАЙ В УСЛОВИЯХ СУЩЕСТВУЮЩЕЙ ЗАСТРОЙКИ. ТЕХНИЧЕСКИЕ РЕКОМЕНДАЦИИ (извлечение из ТР 100-99)

Аннотация:


Дата введения 2001-01-01

РАЗРАБОТАНЫ ГУП "НИИМосстрой"

УТВЕРЖДЕНЫ Первым заместителем руководителя Комплекса архитектуры, строительства, развития и реконструкции города Е.П.Заикиным 11 мая 2000 года

Рекомендации предназначены для испытания пробных забивных свай, применяемых для уточнения заданной глубины погружения.

Рекомендации составлены на основе обобщения опыта статических и динамических испытаний забивных свай, являются дополнением к СНиП 2.02.03-85 "Свайные фундаменты", ГОСТ 5686-94* "Грунты. Методы полевых испытаний сваями"

В технических рекомендациях представлены: порядок проведения полевых испытаний грунтов сваями, контрольных испытаний свай для определения их несущей способности, динамических и статических испытаний пробных свай; методы обеспечения требуемой несущей способности грунтов и уточнения необходимой длины свай, определения частного значения предельного сопротивления свай; методы измерения остаточного отказа с помощью отказометра конструкции НИИМосстроя, либо нивелира; ведение необходимой технической документации и оформление результатов испытаний, состав, объем и сроки проведения испытаний.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие рекомендации распространяются на работы по устройству буронабивных свай диаметром 400-1200 мм и глубиной заложения до 25 м в различных грунтовых условиях для сооружения свайных фундаментов вблизи существующих зданий с применением импортного оборудования фирмы "Касагранда С-40" (Италия).

1.2. В Рекомендациях учтены особенности технологии, включающей бурение скважины буровым станком с непрерывным шнеком, позволяющим производить бурение скважин на требуемую глубину (до 25 м) без выемки грунта и последующее бетонирование скважины с подачей бетона через пустотелую колонну шнека при одновременном его подъеме и удалении грунта. При составлении Рекомендаций использован многолетний отечественный и зарубежный опыт применения технологии для устройства буронабивных свай для фундаментов жилых гражданских зданий в условиях существующей застройки.

1.3. Устройство буронабивных свай по предлагаемой технологии определяется как диаметром сваи и глубиной ее заложения, так и длиной и жесткостью арматурного каркаса, который погружается в заполненную бетоном скважину под действием собственного веса или с применением вибропогружателя. При сооружении свайных фундаментов допускается применение таких конструкций, в которых М может быть воспринят сваей с арматурным каркасом длиной не более 10 м.

1.4. Область применения буронабивных свай во всех грунтах, кроме скальных и крупнообломочных, в т.ч. обводненных, структурно-неустойчивых без применения инвентарных обсадных труб или тиксотропных растворов в стесненных городских условиях с приближением к существующим зданиям до 1 м. При этом при проведении инженерно-геологических изысканий должно быть обращено особое внимание на обследование мест возведения фундаментов с целью выявления в грунте различного рода препятствий (скальных прослоек, валунов размером более 25 см и т.п.).

2. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ БУРОНАБИВНЫХ СВАЙ И СВАЙНЫХ ФУНДАМЕНТОВ

2.1. Проектирование и устройство буронабивных свай выполняется в соответствии с требованиями СНиП 2.02.03-85 "Свайные фундаменты", СНиП 3.02.01-87 "Земляные сооружения, основания и фундаменты", СНиП 2.03.01-84 "Бетонные и железобетонные конструкции".

2.2. Нагрузки и воздействия, их сочетания, коэффициенты надежности и условий работы определяются в соответствии с требованиями СНиП 2.01.07-85 "Нагрузки и воздействия" и отраслевыми нормами проектирования.

2.3. Буронабивные сваи с применением импортного оборудования армируют сварными пространственными каркасами. Продольная рабочая арматура должна быть равномерно распределена по длине окружности. Количество стержней должно быть не менее 6, а диаметр - не менее 18 мм. Расстояние между продольными стержнями должно быть не менее 40 см. Продольные стержни арматуры следует преимущественно применять из стали класса AIII.

Арматурные каркасы должны иметь фиксирующие элементы из пластмассовых трубок диаметром 90 мм и длиной 70 мм, обеспечивающие требуемую толщину защитного слоя бетона, устанавливаемые на поперечные кольца жесткости по длине сваи.

2.4. Арматурный каркас помимо основных требований, предъявляемых СНиПами, должен иметь жесткость, достаточную для его погружения в заполненную бетоном скважину. С этой целью он должен изготавливаться сварным с цельными продольными стержнями, загнутыми на конус в нижней части. При необходимости рекомендуется приваривать поперечные кольца жесткости с шагом по высоте 2-3 м. Предпочтительно иметь минимальное количество стержней большего диаметра.

2.5. Защитный слой бетона должен быть не менее 70 мм и обеспечиваться установкой фиксаторов на поперечные кольца жесткости, привариваемые на арматурный каркас.

2.6. Рекомендуется применять бетон класса по прочности на сжатие В22,5 с содержанием цемента не менее 340 кг/м, осадкой конуса 21 см. Заполнитель должен содержать не менее 25% частиц с размером до 0,1 мм; крупностью фракций заполнителя 5-20 мм и маркой его по прочности 50-60 МПа.

Подбор состава бетона и приготовление смеси должны обеспечивать проектный класс бетона по прочности, морозостойкости, водонепроницаемости и средней плотности согласно ГОСТ 19804.2-79; ГОСТ 10060.0-95; ГОСТ 10060.4-95; ГОСТ 12730.0-78; ГОСТ 12730.4-78; ГОСТ 12730.5-84.

2.7. Изменения в проекте фундаментов из буронабивных свай, вызванные несоответствием фактических геологических, гидрогеологических и других условий, принятых в проекте, должна вносить проектная организация с предварительным согласованием с заказчиком.

2.8. Работам по устройству буронабивных свай должна предшествовать планировка строительной площадки на заданной отметке с разбивкой осей сооружения и надежным закреплением на местности положения рядов буронабивных свай.

2.9. Разбивку осей сооружений следует оформлять актом, к которому прилагаются схемы расположения знаков разбивки, данные о привязке к базисной линии и к высотной опорной сети. Правильность разбивки следует систематически контролировать в процессе производства работ, а также в каждом случае смещения точек, закрепляющих оси.

2.10. Отклонения разбивочных осей рядов буронабивных свай от проектных не должны превышать 1 см на 100 м ряда; в положении одиночных буронабивных свай - ±0,05 диаметра сваи; при рядовом или кустовом расположении свай - ±0,15 диаметра сваи.

Отклонения оголовков свай от проектного положения по вертикали допускаются в сторону завышения отметки оголовка до 10 см, а в сторону занижения - до 20 см. Во всех случаях заделка оголовка сваи в бетон ростверка (без учета подготовки) должна быть не менее 10 см.

Тангенс угла отклонения вертикальной оси сваи от проектного положения не должен превышать 1/100 (отклонения стенки скважины от положения отвеса не должны превышать 10 см на каждые 10 м глубины скважины).

2.11. В зимнее время работы по устройству буронабивных свай в обводненных грунтах могут производиться при температуре наружного воздуха до минус 10 °С.

Читайте также: