Паркет из равных шестиугольников

Обновлено: 19.05.2024

  • Треуго́льный парке́т (треугольный паркета́ж) или треугольная мозаика — это замощение плоскости равными правильными треугольниками, расположенными сторона к стороне.

Треугольная мозаика является двойственной шестиугольной мозаике — если соединить центры смежных треугольников, то проведённые отрезки дадут шестиугольную мозаику. Символ Шлефли треугольного паркета — , что означает, что в каждой вершине паркета сходятся 6 треугольников.

Внутренний угол правильного треугольника равен 60 градусов, так что шесть треугольника в одной вершине дают вместе 360 градусов. Это одна из трёх правильных мозаик плоскости. Другие две мозаики — шестиугольный паркет и квадратный паркет.

Связанные понятия

Шестиуго́льный парке́т (шестиугольный паркета́ж) или шестиугольная мозаика — замощение плоскости равными правильными шестиугольниками, расположенными сторона к стороне.

Однородная мозаика может существовать как на евклидовой плоскости, так и на гиперболической плоскости. Однородные мозаики связаны с конечными однородными многогранниками, которые можно считать однородными замощениями сферы.

Диэдр — вид многогранника, состоящего из двух многоугольных граней, имеющих общий набор рёбер. В трёхмерном евклидовом пространстве он является вырожденным, если его грани плоские, в то время как в трёхмерном сферическом пространстве диэдр с плоскими гранями может рассматриваться как линза, примером которой является фундаментальная область линзового пространства L(p,q) .

Символ Шлефли — комбинаторная характеристика правильного многогранника, применяется для описания правильных многогранников во всех размерностях. Назван в честь швейцарского математика Людвига Шлефли, который внёс значительный вклад в геометрию и другие области математики.

В геометрии треугольная призма — это призма с тремя боковыми гранями. Этот многогранник имеет в качестве граней треугольное основание, его копию, полученную в результате параллельного переноса и 3 грани, соединяющие соответствующие стороны. Прямая треугольная призма имеет прямоугольные боковые стороны, в противном случае призма называется косой.

В геометрии построение Витхоффа, или конструкция Витхоффа — это метод построения однородных многогранников или мозаик на плоскости. Метод назван по имени математика В. А. Витхоффа. Часто метод построения Витхоффа называют калейдоскопным построением.

В геометрии сферический многогранник или сферическая мозаика — это тa мозаика на сфере, в которой поверхность разделена большими дугами на ограниченные области, называемые сферическими многоугольниками. Большая часть теории симметричных многогранников использует сферические многогранники.

В геометрии 4-мерный многогранник — это многогранник в четырёхмерном пространстве. Многогранник является связанной замкнутой фигурой, состоящей из многогранных элементов меньшей размерности — вершин, рёбер, граней (многоугольников) и ячеек (3-мерных многогранников). Каждая грань принадлежит ровно двум ячейкам.

Пра́вильный двадцатичетырёхъяче́йник, или просто двадцатичетырёхъяче́йник, или икоситетрахор (от др.-греч. εἴκοσι — «двадцать», τέτταρες — «четыре» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве.

В геометрии усечение — это операция в пространстве любой размерности, которая отсекает вершины политопа и при которой образуются новые грани на месте вершин. Термин берёт начало от названий архимедовых тел, данных Кеплером.

В геометрии n-угольный осоэдр — это такая мозаика из двуугольников на сферической поверхности, что каждый такой двуугольник имеет две общие вершины (противоположные точки сферы) с другими двуугольниками.

Многогранник, двойственный (или дуальный) к заданному многограннику — многогранник, у которого каждой грани исходного многогранника соответствует вершина двойственного, каждой вершине исходного — грань двойственного и каждому ребру исходного — ребро двойственного. Многогранник, двойственный двойственному, гомотетичен исходному.

Многоугольник Петри для правильного многогранника в размерности n — это пространственный многоугольник, такой что любые (n-1) последовательных ребра (но не n) принадлежат одной (n-1)-мерной грани.

Линк вершины многогранника или вершинная фигура — многогранник на единицу меньшей размерности, который получается в сечении исходного многогранника плоскостью, срезающей одну вершину.

Тришестиугольная мозаика — это одна из 11 однородных мозаик на евклидовой плоскости из правильных многоугольников. Мозаика состоит из правильных треугольников и правильных шестиугольников, расположенных так, что каждый шестиугольник окружён треугольниками, и наоборот. Название мозаики вызвано тем фактом, что она комбинирует правильную шестиугольную мозаику и правильную треугольную мозаику. Два шестиугольника и два треугольника чередуются вокруг каждой вершины, а рёбра образуют бесконечную конфигурацию.

В геометрии пространственный многоугольник — это многоугольник, вершины которого не компланарны. Пространственные многоугольники должны иметь по меньшей мере 4 вершины. Внутренняя поверхность таких многоугольников однозначно не определяется.

Звёздчатый многоугольник — многоугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного многоугольника. Стороны звёздчатого многоугольника могут пересекаться между собой. Существует множество звёздчатых многоугольников или звёзд, среди них пентаграмма, гексаграмма, две гептаграммы, октограмма, декаграмма, додекаграмма. Звёздчатые многоугольники можно получить, продолжая одновременно все стороны правильного многоугольника после их пересечения в его вершинах до их.

Курно́сый куб, или плосконо́сый куб, — полуправильный многогранник (архимедово тело) с 38 гранями, составленный из 6 квадратов и 32 правильных треугольников. В каждой из его 24 одинаковых вершин сходятся одна квадратная грань и четыре треугольных. Треугольные грани делятся на две группы: 8 из них окружены только другими треугольными, остальные 24 — квадратной и двумя треугольными.

Соты обычно рассматриваются в обычном евклидовом («плоском») пространстве. Их можно также построить в неевклидовых пространствах, например, гиперболические соты. Любой конечный однородный многогранник можно спроецировать на его описанную сферу, что даст однородные соты в сферическом пространстве.

Соединение многогранников — это фигура, составленная из некоторых многогранников, имеющих общий центр. Соединения являются трёхмерными аналогами многоугольных соединений, таких как гексаграмма.

В геометрии образование звёздчатой формы — процесс расширения многоугольника (в пространстве размерности 2), или многогранника в пространствах размерности 3 и выше с образованием новой фигуры.

В геометрии фигуру называют хиральной (и говорят, что она обладает хиральностью), если она не совпадает со своим зеркальным отображением, точнее, не может быть совмещена с ним только вращениями и параллельными переносами. Хиральная фигура и её зеркальный образ называют энантиоморфами. Слово хиральность происходит от др.-греч. χειρ (хеир) — «рука». Это самый известный хиральный объект. Слово энантиоморф происходит от др.-греч. εναντιος (энантиос) — «противоположный», и μορφη (морфе) — «форма». Нехиральный.

Усечённый кубооктаэдр, усечённый кубоктаэдр — полуправильный многогранник (архимедово тело) с 12 квадратными гранями, 8 гранями в виде правильного шестиугольника, 6 гранями в виде правильного восьмиугольника, 48 вершинами и 72 рёбрами. Поскольку каждая из граней многогранника имеет центральную симметрию (что эквивалентно повороту на 180°), усечённый кубооктаэдр является зоноэдром.

В евклидовой геометрии спрямление или полное усечение — это процесс усечения многогранника путём пометки середины всех его рёбер и отсечения всех вершин вплоть до этих точек . Получающийся многогранник будет ограничен фасетами (гранями размерности n-1, в трёхмерном пространстве это многоугольники) вершинных фигур и усечёнными фасетами исходного многогранника. Операции спрямления даётся однобуквенный символ r. Так, например, r <4,3>— спрямлённый куб, т.е. кубооктаэдр.

Треугольник Шварца представляется тремя рациональными числами (p q r), каждое из которых задаёт угол в вершине. Значение n/d означает, что угол в вершине треугольника равен d/n развёрнутого угла. 2 означает прямоугольный треугольник. Если эти числа целые, треугольник называется треугольником Мёбиуса и он соответствует мозаике без перекрытий, а группа симметрии называется группой треугольника. На сфере имеется 3 треугольника Мёбиуса и ещё одно однопараметрическое семейство. На плоскости имеется три.

Пра́вильный шестнадцатияче́йник, или просто шестнадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гексадекахор (от др.-греч. ἕξ — «шесть», δέκα — «десять» и χώρος — «место, пространство»), четырёхмерный гиперокта́эдр (поскольку является аналогом трёхмерного октаэдра), четырёхмерный кокуб (поскольку двойственен четырёхмерному гиперкубу), четырёхмерный ортоплекс.

Правильные четырёхмерные многогранники являются четырёхмерными аналогами правильных многогранников в трёхмерном пространстве и правильных многоугольников на плоскости.

В геометрии усечённая квадратная мозаика — это полуправильные мозаики из правильных многоугольников на евклидовой плоскости с одним квадратом и двумя восьмиугольниками в каждой вершине. Это единственная мозаика из правильных выпуклых многоугольников, содержащая соприкасающиеся сторонами восьмиугольники. Символ Шлефли мозаики равен t.

Полиамонд (англ. polyiamond) или треуго́льный мо́нстр (англ. triangular animal) — геометрическая фигура в виде многоугольника, составленного из нескольких одинаковых равносторонних треугольников, примыкающих друг к другу по рёбрам. Полиамонды можно рассматривать как конечные подмножества треугольного паркета со связной внутренностью.

В геометрии политоп (многогранник, многоугольник или замощение, например) изогонален или вершинно транзитивен, если, грубо говоря, все его вершины эквивалентны. Отсюда следует, что все вершины окружены одним и тем же видом граней в том же самом (или обратном) порядке и с теми же самыми углами между соответствующими гранями.

Группа симметрии (также группа симметрий) некоторого объекта (многогранника или множества точек из метрического пространства) ― группа всех движений, для которых данный объект является инвариантом, с композицией в качестве групповой операции. Как правило, рассматриваются множества точек n-мерного евклидова пространства и движения этого пространства, но понятие группы симметрии сохраняет свой смысл и в более общих случаях.

Полуправильные многогранники — в общем случае это различные выпуклые многогранники, которые, не являясь правильными, имеют некоторые их признаки, например: все грани равны, или все грани являются правильными многоугольниками, или имеются определённые пространственные симметрии. Определение может варьироваться и включать различные типы многогранников, но в первую очередь сюда относятся архимедовы тела.

В геометрии вершина — это вид точки, в которой две кривые, две прямые либо два ребра сходятся. Из этого определения следует, что точка, в которой сходятся два луча, образуя угол, является вершиной, а также ею являются угловые точки многоугольников и многогранников.

Многогранник размерности 3 и выше называется изоэдральным или гране транзитивным, если все его грани одинаковы. Точнее сказать, все грани должны быть не просто конгруэнтны, а должны быть транзитивны, то есть должны прилежать в одной и той же орбите симметрии. Другими словами, для любых граней A и B должна существовать симметрия всего тела (состоящая из вращений и отражений), которая отображает A в B. По этой причине выпуклые изоэдральные многогранники имеют формы правильных игральных костей.

Правильный n-мерный многогранник — многогранники n-мерного евклидова пространства, которые являются наиболее симметричными в некотором смысле.

Гиперокта́эдр — геометрическая фигура в n-мерном евклидовом пространстве: правильный политоп, двойственный n-мерному гиперкубу. Другие названия: кокуб, ортоплекс, кросс-политоп.

Фаска или усечение рёбер в геометрии — это топологическая операция, которая преобразует многогранник в другой многогранник. Операция подобна растяжению, передвигающему грани, удаляя их от центра. Для трёхмерных многогранников операция фаски добавляет новую шестиугольную грань вместо каждого исходного ребра.

Пифагорова мозаика (замощение двумя квадратами) — замощение евклидовой плоскости квадратами двух различных размеров, в которой каждый квадрат касается четырёх квадратов другого размера своими четырьмя сторонами. Исходя из этой мозаики, можно доказать (наглядно) теорему Пифагора, за что мозаика и получила название пифагоровой. Мозаика часто используется в качестве узора для кафельного пола. В этом контексте мозаика известна также как узор классов.

В гиперболической геометрии однородная (правильная, квазиправильная или полуправильная) гиперболическая мозаика — это заполнение гиперболической плоскости правильными многоугольниками ребро-к-ребру со свойством вершинной транзитивности (это мозаика транзитивная относительно вершин, изогональная, т.е. существует движение, переводящее любую вершину в любую другую). Отсюда следует, что все вершины конгруэнтны и мозаика имеет высокую степень вращательной и трансляционной симметрии.

Десятиуго́льник (правильный десятиугольник — декагон) — многоугольник с десятью углами и десятью сторонами.

Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.

Плосконосая квадратная мозаика — это полуправильное замощение плоскости. В каждой вершине сходятся три треугольника и два квадрата. Символ Шлефли мозаики — s.

В математике группа треугольника — это группа, которая может быть представлена геометрически при помощи последовательных отражений относительно сторон треугольника. Треугольником может служить обычный евклидов треугольник, треугольник на сфере или гиперболический треугольник. Любая группа треугольника является группой симметрии паркета конгруэнтных треугольников в двумерном пространстве, на сфере или на плоскости Лобачевского (см. также статью об гиперболической плоскости ).

Конфигурация прямых (или разбиение плоскости прямыми) — это разбиение плоскости, образованное набором прямых.

Пра́вильный многоуго́льник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между смежными сторонами равны.

Парке́т или замощение — разбиение плоскости многоугольниками (или пространства многогранниками) без пробелов и перекрытий.

Если дано топологическое пространство и группа действий на нём, образы отдельной точки под действием группы действий образуют орбиты действий. Фундаментальная область — это подмножество пространства, которое содержит в точности по одной точке из каждой орбиты. Она даёт геометрическую реализацию абстрактного множества представителей орбит.

Многогранник или полиэдр — обычно замкнутая поверхность, составленная из многоугольников, но иногда так же называют тело, ограниченное этой поверхностью.

В геометрии ромбическая мозаика, кантующиеся блоки, обратимые кубы или кубическая решётка — это мозаика одинаковых ромбов с углом 60° на евклидовой плоскости. Каждый ромб имеет два угла 60° и два 120°. Такие ромбы иногда называют диамондами. Множества из трёх ромбов соприкасаются вершинами с углом 120°, а множества из шести — вершинами с углом 60°.

В геометрии плосконосый двуклиноид или сиамский додекаэдр — это трёхмерный выпуклый многогранник с двенадцатью правильными треугольниками в качестве граней. Многогранник не является правильным, поскольку в некоторых вершинах сходятся четыре грани, а в остальных — пять граней. Многогранник является двенадцатигранником, одним из восьми дельтаэдров (выпуклых многогранников с гранями в виде правильных треугольников) и одним из 92 многогранников Джонсона (неоднородные выпуклые многогранники с правильными.


Шестиугольный паркет (шестиугольный паркетаж) или шестиугольная мозаика — замощение плоскости равными правильными шестиугольниками, расположенными сторона к стороне.

Шестиугольная мозаика является двойственной треугольной мозаике — если соединить центры смежных шестиугольников, то проведённые отрезки дадут треугольную мозаику. Символ Шлефли шестиугольного паркета — (что означает, что в каждой вершине паркета сходятся три шестиугольника), или t, если мозаика рассматривается как усечённая треугольная.

Английский математик Конвей называл мозаику hextille (шестипаркет).

Внутренний угол шестиугольника равен 120 градусов, так что три шестиугольника в одной вершине дают вместе 360 градусов. Это одна из трёх правильных мозаик плоскости. Другие две мозаики — треугольный паркет и квадратный паркет.

Приложения

Замощение плоскости правильными шестиугольниками является основой для гекса, гексагональных шахмат и других игр на клетчатом поле, полигексов, вариантов модели «Жизнь» и других двумерных клеточных автоматов, кольцевых флексагонов и т.п.

Шестиугольная мозаика является наиболее плотным способом упаковки окружностей в двухмерном пространстве. Гипотеза о сотах утверждает, что шестиугольная мозаика является лучшим способом разбить поверхность на области равной площади с наименьшим суммарным периметром. Оптимальную трёхмерную структуру для сот (скорее, мыльных пузырей) исследовал лорд Кельвин, который верил, что структура Кельвина (или объёмно-центрированная кубическая решётка) оптимальна. Однако менее правильная структура Уаеаире – Фелана слегка лучше.

Эта структура существует в природе в виде графита, где каждый слой графена имеет сходство с проволочной сеткой, где роль проволоки играют сильные ковалентные связи. Были синтезированы трубчатые листы графена, они известны как углеродные нанотрубки. Они имеют много потенциальных приложений ввиду их высокой прочности на разрыв и электрических свойств. На графен похож силицен.

Наиболее плотная упаковка окружностей имеет структуру, подобную шестиугольной мозаике

Сетка в ограде для цыплят

Углеродные нанотрубки можно рассматривать как шестиугольную мозаику на цилиндрической поверхности

Шестиугольная мозаика появляется во многих кристаллах. В трёхмерном пространстве гранецентрированная кубическая структура и гексагональная плотноупакованная структура часто встречаются в кристаллах. Они являются наиболее плотными сферами в трёхмерном пространстве. Структурно они состоят из параллельных слоёв шестиугольной мозаики подобно структуре графита. Отличаются они тем, как уровни смещены относительно друг друга, при этом гранецентрированная кубическая структура является более правильной. Чистая медь, среди прочих материалов, образует гранецентрированную кубическую решётку.

Однородные раскраски

Существуют три различные однородные раскраски шестиугольной мозаики, все получаются из зеркальной симметрии построений Витхоффа. Запись (h,k) представляет периодическое повторение цветной плитки с шестиугольными расстояниями h и k.

3-цветная мозаика образуется перестановочным многогранником порядка 3.

Шестиугольная мозаика с фаской

Снятие фаски шестиугольной мозаики заменяет рёбра новыми шестиугольниками и преобразует в другую шестиугольную мозаику. В пределе исходные грани исчезают, а новые шестиугольники преобразуются в ромбы, превращая мозаику в ромбическую.

Связанные мозаики

Шестиугольники можно разбить на 6 треугольников. Это приводит к двум 2-однородным мозаикам, и треугольной мозаике:

Шестиугольную мозаику можно считать удлинённой ромбической мозаикой, в которой каждая вершина ромбической мозаики «растянута» с образованием нового ребра. Это похоже на связь замощений Ромбододекаэдром и ромбошестиугольным додекаэдром в трёхмерном пространстве.

Можно также разбить протоплитки некоторых шестиугольных мозаик на два, три, четыре, или девять одинаковых пятиугольников:

Варианты симметрии

Эта мозаика топологически связана с последовательностью правильных мозаик с шестиугольными гранями, которая начинается с шестиугольной мозаики. Мозаики бесконечной последовательности имеют символ Шлефли и диаграмму Коксетера .

Шестиугольная мозаика топологически связана (как часть последовательности) с правильными многогранниками с вершинной фигурой n3.

Подобным образом мозаика связана с однородными усечёнными многогранниками с вершинной фигурой n.6.6.

Мозаика является также частью усечённых ромбических многогранников и мозаик с симметрией группы Коксетера [n,3]. Куб можно рассматривать как ромбический шестигранник, в котором все ромбы есть квадраты. Усечённые формы имеют правильные n-угольники на месте усечённых вершин и неправильные шестиугольные грани.

Построение Витхоффа из шестиугольных и треугольных мозаик

Подобно однородным многогранникам существует восемь однородных мозаик, базирующихся на правильных шестиугольных мозаиках (или на двойственных треугольных мозаиках).

Если нарисовать плитки исходных граней красным, исходные вершины (получившиеся на их месте многоугольники) жёлтым, а исходные рёбра (получившиеся на их месте многоугольники) — синим, существует 8 форм, 7 из которых топологически различны. (Усечённая треугольная мозаика топологически идентична шестиугольной мозаике.)

Моноэдральные выпуклые шестиугольные мозаики

Существует 3 типа моноэдральных выпуклых шестиугольных мозаик. Все они изоэдральны. Каждая имеет параметрические варианты с фиксированной симметрией. Тип 2 содержит скользящие симметрии и сохраняет хиральные пары различными.

Топологически эквиваленные мозаики

Шестиугольные мозаики могут быть идентичны топологии правильной мозаики (3 шестиугольника в каждой вершине). Существует 13 вариантов шестиугольной мозаики с изоэдральными гранями. С точки зрения симметрии все грани имеют одинаковый цвет, раскраска же на рисунках представляет положение в сетке. Одноцветные (1-плиточные) сетки состоят из шестиугольных параллелогонов.

Другие топологически изоэдральные шестиугольные мозаики выглядят как четырёхугольные и пятиугольные, не соприкасающиеся сторона-к-стороне, но многоугольники которых можно рассматривать как имеющие коллинеарные смежные стороны:

2-однородные и 3-однородные замощения имеют вращательную степень свободы, которая искривляет 2/3 шестиугольников, включая случай коллинеарности сторон, что можно видеть как мозаики шестиугольников и больших треугольников с несовпадающими сторонами (не сторона-к-стороне).

Мозаика может быть искривлена до хиральных 4-цветных переплетённых в трёх направлениях узоров, с превращением некоторых шестиугольников в параллелограммы. Переплетённые узоры с 2 цветными гранями имеют вращательную симметрию 632 (p6).

Упаковка кругов

Шестиугольную мозаику можно использовать для упаковки кругов, разместив круги одинакового радиуса с центрами в вершинах мозаики. Каждый круг соприкасается с 3 другими кругами упаковки (контактное число). Круги можно закрасить двумя цветами. Пространство внутри каждого шестиугольника позволяет поместить один круг, создавая наиболее плотную упаковку треугольной мозаики, в которой каждый круг соприкасается с максимально возможным числом кругов (6).

Связанные правильные комплексные бесконечноугольники

Существует 2 правильных комплексных апейрогона, имеющиx те же вершины шестиугольной мозаики. Рёбра правильных комплексных апейрогонов могут содержать 2 и более вершин. Правильные апейрогоны pq>r имеют ограничение: 1/p + 2/q + 1/r = 1. Рёбра имеют p вершин и вершинные фигуры являются r-угольниками.

Первый апейрогон состоит из 2-рёбер, по три вокруг каждой вершины, второй имеет шестиугольные рёбра, по три вокруг каждой вершины. Третий комплексный апейрогон, имеющий те же самые вершины, квазиправилен и в нём чередуются 2-рёбра и 6-рёбра.


Несложно замостить плоскость паркетом из правильных треугольников, квадратов или шестиугольников (под замощением мы понимаем такую укладку, при которой вершины каждой фигуры прикладываются только к вершинам соседних фигур и не возникает ситуации, когда вершина приложилась к стороне). Примеры таких замощений приведены на рис. 1.

Рис. 1. Замощение плоскости: i — равносторонними треугольниками, ii — квадратами, iii — правильными шестиугольниками

Никакими другими правильными n-угольниками покрыть плоскость без пробелов и наложений не получится. Вот как можно это объяснить. Как известно, сумма внутренних углов любого n-угольника равна (n – 2) · 180°. Поскольку все углы правильного n-угольника одинаковые, то градусная мера каждого угла есть . Если плоскость можно замостить такими фигурами, то в каждой вершине сходится k многоугольников (для некоторого k). Сумма углов при этой вершине должна составлять 360°, поэтому . После нескольких простых преобразований это равенство превращается в такое: . Но, как легко проверить, последнее уравнение имеет только три пары решений, если считать, что n и k натуральные числа: k = 3, n = 6; k = 4, n = 4 или k = 6, n = 3. Этим парам чисел как раз и соответствуют приведенные на рис. 1 замощения.

А какими другими многоугольниками можно замостить плоскость без пробелов и наложений?

Задача

а) Докажите, что любым треугольником можно замостить плоскость.

б) Докажите, что любым четырёхугольником (как выпуклым, так и невыпуклым) можно замостить плоскость.

в) Приведите пример пятиугольника, которым можно замостить плоскость.

г) Приведите пример шестиугольника, которым нельзя замостить плоскость.

д) Приведите пример n-угольника для какого-либо n > 6, которым можно замостить плоскость.

Подсказка 1

В пунктах а), в), д) можно попытаться составить из одинаковых фигур «полоски», которыми потом легко замостить всю плоскость.

Пункт б): сложите из двух одинаковых четырехугольников шестиугольник, у которого противоположные стороны попарно параллельны. Такими шестиугольниками замостить плоскость уже достаточно просто.

Пункт г): используйте тот факт, что сумма углов при каждой вершине должна быть равна 360°.

Подсказка 2

В пункте д) можно попробовать действовать и по-другому: немного менять уже имеющиеся фигуры, чтобы получались новые замощения.

В начале прошлого столетия великий» французский архитектор Корбюзье как-то воскликнул: «Все вокруг геометрия! ». Сегодня уже в начале 21 столетия мы можем повторить это восклицание с еще большим изумлением. В самом деле, посмотрите вокруг – всюду геометрия! Современные здания и космические станции, авиалайнеры и подводные лодки, интерьеры квартир и бытовая техника, микросхемы и даже рекламные ролики. Все это создано руками человека, вооруженного геометрическими знаниями. На уроках геометрии мы изучали тему «Многоугольники», и я решила выяснить, где можно найти применение этой темы. Если посмотреть вокруг, то можно увидеть, что в настоящее время для оформления интерьера квартир широко используют паркет. Паркеты имеют разную форму и окраску. Мне стало интересно, как создаются паркеты и как это связано с геометрией. На уроках геометрии изучается тема: «Многоугольники». Приглядевшись внимательнее, я стала замечать эти многоугольники вокруг себя: паркет, линолеум, кафельная плитка, геометрические орнаменты в художественных изделиях, в оформлениях книг. А сколько же их может быть этих паркетов, встал передо мной вопрос? Как их так мудро и красиво соединяют? Этот материал мы еще не изучали, и передо мной встала

цель: подробно изучить паркеты.

Выдвинута проблема: определить количество правильных паркетов.

  1. Изучить литературу, интернет-ресурсы по заданной теме.
  1. Закрепить знания свойств правильных многоугольников в процессе исследования вопроса о покрытии плоскости правильными многоугольниками.
  2. Обосновать с помощью математических фактов, как можно уложить паркет.
  3. Оформить презентацию для защиты работы.

Выдвигаю гипотезу: количество правильных паркетов бесчисленное множество.

Объект исследования - паркеты.

Методы исследования: анализ научной, учебной литературы; сравнение и анализ результатов, полученных разными авторами; их систематизация; метод аналогии.

Во все времена и у всех народов в строительстве интерьера полам и их убранству уделялось большое внимание. Еще в древние времена в Египте, Индии, Китае, и во многих других странах создавали прочные и красивые полы. В средние века «паркету» стали уделять больше внимания, он стал неотъемлемой частью новых домов, дворцов и замков. Но своего художественного совершенства пол из «дубовых кирпичей» достигает к началу XVII века в разных странах Европы. Следует отметить, что художественная форма паркета тесно связана с общим стилистическим развитием искусства и архитектуры.

В общественных зданиях Древней Руси полы делали из дерева, досок или из «деревянных кирпичей». Начиная с XVI в. полы в России стали настилать из дубовых клепок, укладываемых рисунком, который носил название «елочка», а сам пол называли «косящатым». Клепки, как правило, укладывали на грубораспиленное основание из мягкой древесины, большей частью сосны. Исконное и широко распространенное народное искусство резьбы по дереву, а также навыки в художественной обработке и укладке пола в древнерусском зодчестве создали все предпосылки для быстрого развития художественного паркета в России.

Так, уже в XVII в. наиболее распространенным приемом укладки паркета был способ, называемый «дубовым кирпичом»: паркетины в форме кирпичей укладывали на известковой основе, швы между дубовыми кирпичами заливали известью, смешанной со смолой. Вдоль стен иногда делали дубовый бордюр. Такой паркет знали на Руси и раньше, он уже был известен по Дмитровскому собору во Владимире, по храму Василия Блаженного и Донскому монастырю в Москве. Но в отличие от тех полов к концу XVII в. он стал более искусным в художественном отношении. Паркет начала XVIII в. связан с русской резьбой. Высокохудожественная резьба по дереву и металлу процветала в XVII в. в московских мастерских Оружейной палаты. В 1711 г. Петр I закрыл эти мастерские, а всех резчиков перевел в Петербург на корабельные верфи. Эти кадры мастеров и были использованы адмиралтейством при изготовлении паркетов петербургских дворцов. Паркет — лицевой слой пола, настилаемый по определенному рисунку из отдельных строганых дощечек (клепок). Паркетом называют также и сам материал, из которого выкладывается паркетный пол. Полы из паркета настилаются в жилых и общественных зданиях, они отличаются красивым внешним видом, малой тепло- и звукопроводностью.

Паркет из правильных многоугольников

Итак, чтобы определить кол-во правильных паркетов, прежде всего вспомним определение правильных многоугольников из учебника А. Атанасяна «Геометрия 7-9»:

«Правильным многоугольником называется выпуклый многогранник, у которого все углы и все стороны равны».

Что же называется правильным паркетом?

Обозначим через n число сторон правильного многоугольника, тогда n-2∙180° – сумма всех внутренних углов многоугольника. αn=n-2n∙180°- каждый угол правильного многоугольника.

Чтобы можно было сгруппировать вокруг какой – то точки определенное число одинаковых правильных многоугольников, необходимо, чтобы сумма их углов, сходящихся в данной точке, равнялось 360 .

Определение паркета: Паркетом называется заполнение плоскости многоугольниками, при котором любые два многоугольника либо имеют общую сторону, либо имеют общую вершину, либо не имеют общих точек.

Паркет называется правильным, если он состоит из правильных многоугольников и вокруг каждой вершины правильные многоугольники расположены одним и тем же способом.

Изучив литературу, я узнала, что паркетов, необязательно правильных существует бесчисленное множество. Однако, подобно тому как при бесчисленном множестве многогранников вообще существует лишь конечное число правильных многогранников, так и при бесчисленном множестве паркетов, существует лишь конечное число правильных паркетов.

I. Замощение окрестности точки плоскости правильными многоугольниками одного типа .

  1. Паркеты, состоящие только из правильных треугольников.

Количество сторон: n=3 ;

Угол многоугольника: αn=n-2n∙180°=3-23∙180°=60°

Количество многоугольников: 360°:60°=6 – натуральное число.

  1. Паркеты, состоящие из правильных четырехугольников (квадрат).

Количество сторон: n=4 ;

Угол многоугольника: αn=n-2n∙180°=4-24∙180°=90°

Количество многоугольников: 360°:90°=4 – натуральное число.

  1. Паркеты, состоящие из правильных пятиугольников.

Количество сторон: n=5 ;

Угол многоугольника: αn=n-2n∙180°=5-25∙180°=108°

Количество многоугольников: 360°:108°=3,(3) – ненатуральное число.

  1. Паркет, состоящие из правильных шестиугольников.

Количество сторон: n=6 ;

Угол многоугольника: αn=n-2n∙180°=6-26∙180°=120°

Количество многоугольников: 360°:120°=3

Итак , величина угла правильного n-угольника определяется по формуле αn=n-2n∙180°

Используя эту формулу , для различных значений получаем следующие величины углов правильных n-угольников

  • Шестиуго́льный парке́т (шестиугольный паркета́ж) или шестиугольная мозаика — замощение плоскости равными правильными шестиугольниками, расположенными сторона к стороне.

Шестиугольная мозаика является двойственной треугольной мозаике — если соединить центры смежных шестиугольников, то проведённые отрезки дадут треугольную мозаику. Символ Шлефли шестиугольного паркета — (что означает, что в каждой вершине паркета сходятся три шестиугольника), или t, если мозаика рассматривается как усечённая треугольная.

Английский математик Конвей называл мозаику hextille (шестипаркет).

Связанные понятия

Треуго́льный парке́т (треугольный паркета́ж) или треугольная мозаика — это замощение плоскости равными правильными треугольниками, расположенными сторона к стороне.

Однородная мозаика может существовать как на евклидовой плоскости, так и на гиперболической плоскости. Однородные мозаики связаны с конечными однородными многогранниками, которые можно считать однородными замощениями сферы.

Тришестиугольная мозаика — это одна из 11 однородных мозаик на евклидовой плоскости из правильных многоугольников. Мозаика состоит из правильных треугольников и правильных шестиугольников, расположенных так, что каждый шестиугольник окружён треугольниками, и наоборот. Название мозаики вызвано тем фактом, что она комбинирует правильную шестиугольную мозаику и правильную треугольную мозаику. Два шестиугольника и два треугольника чередуются вокруг каждой вершины, а рёбра образуют бесконечную конфигурацию.

В геометрии построение Витхоффа, или конструкция Витхоффа — это метод построения однородных многогранников или мозаик на плоскости. Метод назван по имени математика В. А. Витхоффа. Часто метод построения Витхоффа называют калейдоскопным построением.

Диэдр — вид многогранника, состоящего из двух многоугольных граней, имеющих общий набор рёбер. В трёхмерном евклидовом пространстве он является вырожденным, если его грани плоские, в то время как в трёхмерном сферическом пространстве диэдр с плоскими гранями может рассматриваться как линза, примером которой является фундаментальная область линзового пространства L(p,q) .

В геометрии треугольная призма — это призма с тремя боковыми гранями. Этот многогранник имеет в качестве граней треугольное основание, его копию, полученную в результате параллельного переноса и 3 грани, соединяющие соответствующие стороны. Прямая треугольная призма имеет прямоугольные боковые стороны, в противном случае призма называется косой.

Соты обычно рассматриваются в обычном евклидовом («плоском») пространстве. Их можно также построить в неевклидовых пространствах, например, гиперболические соты. Любой конечный однородный многогранник можно спроецировать на его описанную сферу, что даст однородные соты в сферическом пространстве.

В геометрии 4-мерный многогранник — это многогранник в четырёхмерном пространстве. Многогранник является связанной замкнутой фигурой, состоящей из многогранных элементов меньшей размерности — вершин, рёбер, граней (многоугольников) и ячеек (3-мерных многогранников). Каждая грань принадлежит ровно двум ячейкам.

Пра́вильный двадцатичетырёхъяче́йник, или просто двадцатичетырёхъяче́йник, или икоситетрахор (от др.-греч. εἴκοσι — «двадцать», τέτταρες — «четыре» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве.

Многоугольник Петри для правильного многогранника в размерности n — это пространственный многоугольник, такой что любые (n-1) последовательных ребра (но не n) принадлежат одной (n-1)-мерной грани.

Соединение многогранников — это фигура, составленная из некоторых многогранников, имеющих общий центр. Соединения являются трёхмерными аналогами многоугольных соединений, таких как гексаграмма.

В геометрии ромбическая мозаика, кантующиеся блоки, обратимые кубы или кубическая решётка — это мозаика одинаковых ромбов с углом 60° на евклидовой плоскости. Каждый ромб имеет два угла 60° и два 120°. Такие ромбы иногда называют диамондами. Множества из трёх ромбов соприкасаются вершинами с углом 120°, а множества из шести — вершинами с углом 60°.

В геометрии сферический многогранник или сферическая мозаика — это тa мозаика на сфере, в которой поверхность разделена большими дугами на ограниченные области, называемые сферическими многоугольниками. Большая часть теории симметричных многогранников использует сферические многогранники.

Линк вершины многогранника или вершинная фигура — многогранник на единицу меньшей размерности, который получается в сечении исходного многогранника плоскостью, срезающей одну вершину.

Усечённый кубооктаэдр, усечённый кубоктаэдр — полуправильный многогранник (архимедово тело) с 12 квадратными гранями, 8 гранями в виде правильного шестиугольника, 6 гранями в виде правильного восьмиугольника, 48 вершинами и 72 рёбрами. Поскольку каждая из граней многогранника имеет центральную симметрию (что эквивалентно повороту на 180°), усечённый кубооктаэдр является зоноэдром.

Символ Шлефли — комбинаторная характеристика правильного многогранника, применяется для описания правильных многогранников во всех размерностях. Назван в честь швейцарского математика Людвига Шлефли, который внёс значительный вклад в геометрию и другие области математики.

В геометрии усечённая квадратная мозаика — это полуправильные мозаики из правильных многоугольников на евклидовой плоскости с одним квадратом и двумя восьмиугольниками в каждой вершине. Это единственная мозаика из правильных выпуклых многоугольников, содержащая соприкасающиеся сторонами восьмиугольники. Символ Шлефли мозаики равен t.

В геометрии n-угольный осоэдр — это такая мозаика из двуугольников на сферической поверхности, что каждый такой двуугольник имеет две общие вершины (противоположные точки сферы) с другими двуугольниками.

В геометрии фигуру называют хиральной (и говорят, что она обладает хиральностью), если она не совпадает со своим зеркальным отображением, точнее, не может быть совмещена с ним только вращениями и параллельными переносами. Хиральная фигура и её зеркальный образ называют энантиоморфами. Слово хиральность происходит от др.-греч. χειρ (хеир) — «рука». Это самый известный хиральный объект. Слово энантиоморф происходит от др.-греч. εναντιος (энантиос) — «противоположный», и μορφη (морфе) — «форма». Нехиральный.

В геометрии усечение — это операция в пространстве любой размерности, которая отсекает вершины политопа и при которой образуются новые грани на месте вершин. Термин берёт начало от названий архимедовых тел, данных Кеплером.

В геометрии образование звёздчатой формы — процесс расширения многоугольника (в пространстве размерности 2), или многогранника в пространствах размерности 3 и выше с образованием новой фигуры.

В геометрии пространственный многоугольник — это многоугольник, вершины которого не компланарны. Пространственные многоугольники должны иметь по меньшей мере 4 вершины. Внутренняя поверхность таких многоугольников однозначно не определяется.

Полиамонд (англ. polyiamond) или треуго́льный мо́нстр (англ. triangular animal) — геометрическая фигура в виде многоугольника, составленного из нескольких одинаковых равносторонних треугольников, примыкающих друг к другу по рёбрам. Полиамонды можно рассматривать как конечные подмножества треугольного паркета со связной внутренностью.

Группа симметрии (также группа симметрий) некоторого объекта (многогранника или множества точек из метрического пространства) ― группа всех движений, для которых данный объект является инвариантом, с композицией в качестве групповой операции. Как правило, рассматриваются множества точек n-мерного евклидова пространства и движения этого пространства, но понятие группы симметрии сохраняет свой смысл и в более общих случаях.

Пра́вильный шестнадцатияче́йник, или просто шестнадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гексадекахор (от др.-греч. ἕξ — «шесть», δέκα — «десять» и χώρος — «место, пространство»), четырёхмерный гиперокта́эдр (поскольку является аналогом трёхмерного октаэдра), четырёхмерный кокуб (поскольку двойственен четырёхмерному гиперкубу), четырёхмерный ортоплекс.

Десятиуго́льник (правильный десятиугольник — декагон) — многоугольник с десятью углами и десятью сторонами.

Многогранник, двойственный (или дуальный) к заданному многограннику — многогранник, у которого каждой грани исходного многогранника соответствует вершина двойственного, каждой вершине исходного — грань двойственного и каждому ребру исходного — ребро двойственного. Многогранник, двойственный двойственному, гомотетичен исходному.

Пифагорова мозаика (замощение двумя квадратами) — замощение евклидовой плоскости квадратами двух различных размеров, в которой каждый квадрат касается четырёх квадратов другого размера своими четырьмя сторонами. Исходя из этой мозаики, можно доказать (наглядно) теорему Пифагора, за что мозаика и получила название пифагоровой. Мозаика часто используется в качестве узора для кафельного пола. В этом контексте мозаика известна также как узор классов.

Треугольник Шварца представляется тремя рациональными числами (p q r), каждое из которых задаёт угол в вершине. Значение n/d означает, что угол в вершине треугольника равен d/n развёрнутого угла. 2 означает прямоугольный треугольник. Если эти числа целые, треугольник называется треугольником Мёбиуса и он соответствует мозаике без перекрытий, а группа симметрии называется группой треугольника. На сфере имеется 3 треугольника Мёбиуса и ещё одно однопараметрическое семейство. На плоскости имеется три.

Звёздчатый многоугольник — многоугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного многоугольника. Стороны звёздчатого многоугольника могут пересекаться между собой. Существует множество звёздчатых многоугольников или звёзд, среди них пентаграмма, гексаграмма, две гептаграммы, октограмма, декаграмма, додекаграмма. Звёздчатые многоугольники можно получить, продолжая одновременно все стороны правильного многоугольника после их пересечения в его вершинах до их.

Плосконосая квадратная мозаика — это полуправильное замощение плоскости. В каждой вершине сходятся три треугольника и два квадрата. Символ Шлефли мозаики — s.

Многогранник размерности 3 и выше называется изоэдральным или гране транзитивным, если все его грани одинаковы. Точнее сказать, все грани должны быть не просто конгруэнтны, а должны быть транзитивны, то есть должны прилежать в одной и той же орбите симметрии. Другими словами, для любых граней A и B должна существовать симметрия всего тела (состоящая из вращений и отражений), которая отображает A в B. По этой причине выпуклые изоэдральные многогранники имеют формы правильных игральных костей.

Правильные четырёхмерные многогранники являются четырёхмерными аналогами правильных многогранников в трёхмерном пространстве и правильных многоугольников на плоскости.

Фаска или усечение рёбер в геометрии — это топологическая операция, которая преобразует многогранник в другой многогранник. Операция подобна растяжению, передвигающему грани, удаляя их от центра. Для трёхмерных многогранников операция фаски добавляет новую шестиугольную грань вместо каждого исходного ребра.

В гиперболической геометрии однородная (правильная, квазиправильная или полуправильная) гиперболическая мозаика — это заполнение гиперболической плоскости правильными многоугольниками ребро-к-ребру со свойством вершинной транзитивности (это мозаика транзитивная относительно вершин, изогональная, т.е. существует движение, переводящее любую вершину в любую другую). Отсюда следует, что все вершины конгруэнтны и мозаика имеет высокую степень вращательной и трансляционной симметрии.

Парке́т или замощение — разбиение плоскости многоугольниками (или пространства многогранниками) без пробелов и перекрытий.

В геометрии вершина — это вид точки, в которой две кривые, две прямые либо два ребра сходятся. Из этого определения следует, что точка, в которой сходятся два луча, образуя угол, является вершиной, а также ею являются угловые точки многоугольников и многогранников.

Конфигурация прямых (или разбиение плоскости прямыми) — это разбиение плоскости, образованное набором прямых.

В геометрии политоп (многогранник, многоугольник или замощение, например) изогонален или вершинно транзитивен, если, грубо говоря, все его вершины эквивалентны. Отсюда следует, что все вершины окружены одним и тем же видом граней в том же самом (или обратном) порядке и с теми же самыми углами между соответствующими гранями.

В евклидовой геометрии спрямление или полное усечение — это процесс усечения многогранника путём пометки середины всех его рёбер и отсечения всех вершин вплоть до этих точек . Получающийся многогранник будет ограничен фасетами (гранями размерности n-1, в трёхмерном пространстве это многоугольники) вершинных фигур и усечёнными фасетами исходного многогранника. Операции спрямления даётся однобуквенный символ r. Так, например, r <4,3>— спрямлённый куб, т.е. кубооктаэдр.

Мозаика Пенроуза, плитки Пенроуза — общее название трёх типов непериодического разбиения плоскости. Названы в честь английского математика Роджера Пенроуза, который исследовал эти разбиения в 70-х годах XX века.

Полуправильные многогранники — в общем случае это различные выпуклые многогранники, которые, не являясь правильными, имеют некоторые их признаки, например: все грани равны, или все грани являются правильными многоугольниками, или имеются определённые пространственные симметрии. Определение может варьироваться и включать различные типы многогранников, но в первую очередь сюда относятся архимедовы тела.

Курно́сый куб, или плосконо́сый куб, — полуправильный многогранник (архимедово тело) с 38 гранями, составленный из 6 квадратов и 32 правильных треугольников. В каждой из его 24 одинаковых вершин сходятся одна квадратная грань и четыре треугольных. Треугольные грани делятся на две группы: 8 из них окружены только другими треугольными, остальные 24 — квадратной и двумя треугольными.

Гиперокта́эдр — геометрическая фигура в n-мерном евклидовом пространстве: правильный политоп, двойственный n-мерному гиперкубу. Другие названия: кокуб, ортоплекс, кросс-политоп.

Если дано топологическое пространство и группа действий на нём, образы отдельной точки под действием группы действий образуют орбиты действий. Фундаментальная область — это подмножество пространства, которое содержит в точности по одной точке из каждой орбиты. Она даёт геометрическую реализацию абстрактного множества представителей орбит.

Каирская пятиугольная мозаика является двойственной полуправильной мозаикой на плоскости. Мозаика получила такое название по египетскому городу Каир, улицы которого вымощены такими плитками. Мозаика является одной из 15 известных равногранных (то есть имеющих грани только одного вида) пятиугольных мозаик.

Правильный n-мерный многогранник — многогранники n-мерного евклидова пространства, которые являются наиболее симметричными в некотором смысле.

Полимино, или полиомино (англ. polyomino) — плоские геометрические фигуры, образованные путём соединения нескольких одноклеточных квадратов по их сторонам. Это полиформы, сегменты которых являются квадратами.

В математике группа треугольника — это группа, которая может быть представлена геометрически при помощи последовательных отражений относительно сторон треугольника. Треугольником может служить обычный евклидов треугольник, треугольник на сфере или гиперболический треугольник. Любая группа треугольника является группой симметрии паркета конгруэнтных треугольников в двумерном пространстве, на сфере или на плоскости Лобачевского (см. также статью об гиперболической плоскости ).

Квадратная антипризма — это второй многогранник в бесконечном ряду антипризм, образованных последовательностью треугольных граней, закрытых с обеих сторон многоугольниками. Квадратная антипризма известна также как антикуб.

Читайте также: