Основания и фундаменты снб

Обновлено: 10.05.2024

Максимальная или средняя осадка, см

1 Производственные и гражданские одноэтажные и многоэтажные здания с полным каркасом:

то же, с устройством железобетонных поясов или монолитных перекрытий, а также здания монолитной конструкции

то же, с устройством железобетонных поясов или монолитных перекрытий

2 Здания и сооружения, в конструкциях которых не возникают усилия от неравномерных осадок

3 Многоэтажные бескаркасные здания с несущими стенами из:

крупных блоков или кирпичной кладки без армирования

то же, с армированием, в том числе с устройством железобетонных поясов или монолитных перекрытий, а также здания монолитной конструкции

4 Сооружения элеваторов из железобетонных конструкций:

рабочее здание и силосный корпус монолитной конструкции на одной фундаментной плите

то же, сборной конструкции

отдельно стоящий силосный корпус монолитной конструкции

то же, сборной конструкции

5 Дымовые трубы высотой Н, м:

6 Жесткие сооружения высотой до 100 м, кроме указанных в пунктах таблицы 4 и 5

7 Антенные сооружения связи:

стволы мачт заземленные

то же, электрически изолированные

башни коротковолновых радиостанций

башни (отдельные блоки)

8 Опоры воздушных линий электропередачи:

анкерные и анкерно-угловые,

промежуточные угловые, концевые, порталы открытых распределительных устройств специальные переходные

1 Значение предельной максимальной осадки основания фундаментов применяется к сооружениям, возводимым на отдельно стоящих фундаментах на естественном (искусственном) основании или на свайных фундаментах с отдельно стоящими ростверками (ленточные, столбчатые и т.п.).

2 Значение предельной средней осадки основания фундаментов применяются к сооружениям, возводимым на едином монолитном железобетонном фундаменте неразрезной конструкции (перекрестные ленточные и плитные фундаменты на естественном или искусственном основании, свайные фундаменты с плитным ростверком, плитно-свайные фундаменты и т.п.).

3 Предельные значения относительного прогиба зданий, указанных в пункте 3 таблицы, принимают равными 0,5, а относительного выгиба - 0,25.

5 Если основание сложено горизонтальными (с уклоном не более 0,1), выдержанными по толщине слоями грунтов, предельные значения максимальных и средних осадок допускается увеличивать на 20%.

7 На основе обобщения опыта проектирования, строительства и эксплуатации отдельных видов сооружений допускается принимать предельные значения деформаций основания фундаментов, отличающиеся от указанных в настоящем приложении.


Справочник проектировщика. Основания, фундаменты и подземные сооружения

Приведены сведения по расчёту и проектированию оснований и фундаментов зданий и сооружений различного назначения» а также подземных сооружений. Рассмотрены свойства грунтов, конструкции фундаментов, особенности их проектирования в различных грунтовых условиях. Большое внимание уделено проектированию сложных оснований и фундаментов. Даны рекомендации по выбору оборудования и производству работ.
Для инженерно-технических работников проектных и строительных.

Более качественная (пересканированная) версия источника.

Оглавление

Оглавление 4
Предисловие 8
Основные условные обозначения 10
Глава 1. Свойства грунтов (О. И. Игнатова) 10
1.1. Происхождение и состав грунтов 10
1.2. Физические свойства грунтов 11
1.2.1. Характеристики плотности грунтов и плотности их сложения 11
1.2.2. Влажность грунтов и характеристики пластичности пылевато-глинистых грунтов 11
1.3. Классификация грунтов 11
1.4. Деформируемость грунтов при сжатии 14
1.4.1. Определение модуля деформации в полевых условиях 15
1.4.2. Определение модуля деформации в лабораторных условиях 16
1.5. Прочность грунтов 16
1.5.1. Определение прочностных характеристик в лабораторных условиях 17
1.5.2. Определение прочностных характеристик в полевых условиях 18
1.6. Фильтрационные свойства грунтов 19
1.7. Нормативные и расчётные значения характеристик грунтов 20
Список литературы 23
Глава 2. Инженерно-геологические изыскания (Л. Г. Мариупольский) 24
2.1. Общие сведения 24
2.2. Требования к техническому заданию и программе изысканий 24
2.3. Этапы, состав и объем изысканий 26
2.4. Основные принципы назначения состава и объёма исследований грунтов 28
2.5. Представление результатов инженерно-геологических изысканий 31
Список литературы 31
Глава 3. Общие принципы выбора типа оснований и фундаментов (P. X. Валеев, Ю. Г. Трофименков, Р. Е. Ханин) 32
3.1. Основные положения 32
3.2. Типы оснований и фундаментов и область их применения 32
3.3. Технико-экономические показатели и их назначение 32
3.4. Факторы, влияющие на выбор технико-экономических показателей 33
3.5. Принципы сопоставимости конструктивных решений фундаментов различных типов зданий и сооружений 34
3.6. Рекомендации для выбора оснований и фундаментов 34
3.7. Методика технико-экономических сравнений фундаментов различных типов 35
3.8. Экспресс-методы технико-экономической оценки фундаментов различных типов 36
3.9. Удельные показатели стоимости и трудоёмкости основных видов работ при устройстве фундаментов 38
Список литературы 39
Глава 4. Конструкции фундаментов мелкого заложения (Е. А. Сорочан) 40
4.1. Основные положения 40
4.2. Материалы фундаментов 40
4.3. Конструкции фундаментов 45
4.3.1. Столбчатые фундаменты под стены 45
4.3.2. Ленточные и прерывистые фундаменты под стены 45
4.3.3. Отдельные фундаменты под колонны 50
4.3.4. Ленточные и плитные фундаменты под колонны 58
Список литературы 58
Глава 5. Расчёт оснований фундаментов мелкого заложения (пп. 5.1 - 5.5 (кроме 5.5.2 и 5.5.3А), п. 5.7 - А. В. Вронский; пп. 5.5.2 и 5.5.3А - Е. А. Сорочан; п. 5.6 – А. С. Снарский) 59
5.1. Основные положения 59
5.2. Распределение напряжений в основаниях 61
5.2.1. Однородное основание 61
5.2.2. Неоднородное основание 66
5.2.3. Напряжения от собственного веса грунта 68
5.3. Нагрузки и воздействия, учитываемые в расчётах оснований 68
5.4. Глубина заложения фундаментов 69
5.5. Расчёт оснований по деформациям 74
5.5.1. Общие положения 74
5.5.2. Расчётное сопротивление грунтов основания 76
5.5.3. Определение основных размеров фундаментов 80
5.5.4. Расчёт деформаций основания 84
5.5.5. Предельные деформации основания 93
5.6. Расчёт оснований по несущей способности 96
5.6.1. Общие положения 96
5.6.2. Несущая способность оснований, сложенных грунтами, находящимися в стабилизированном состоянии 97
5.6.3. Расчёт устойчивости фундамента по схеме плоского сдвига 105
5.6.4. Графоаналитический метод расчёта несущей способности основания (метод круглоцилиндрических поверхностей скольжения) 106
5.6.5. Несущая способность оснований, сложенных медленно уплотняющимися водонасыщенными пылевато-глинистыми и биогенными грунтами, а также илами 108
5.7. Мероприятия по уменьшению деформаций оснований и влияния их на сооружение 109
Список литературы 110
Глава 6. Проектирование конструкций фундаментов (п. 6.1 - Л. В. Шапиро, Е. А. Сорочан, п. 6.2 - 6.4 - Е. А. Сорочан; п. 6.5 - М. И. Горбунов-Посадов) 111
6.1. Расчёт железобетонных фундаментов на естественном основании под колонны зданий и сооружений 111
6.1.1. Общие положения 111
6.1.2. Расчёт фундаментов на продавливание 111
6.1.3. Определение площади сечений арматуры плитной части 114
6.1.4. Расчёт плитной части на «обратный» момент 114
6.1.5. Расчёт прочности поперечных сечений подколонника 115
6.2. Расчёт ленточных фундаментов и стен подвалов 118
6.2.1. Общие положения 118
6.2.2. Расчёт ленточных фундаментов 119
6.2.3. Расчёт стен подвалов 121
6.3. Расчёт буробетонных фундаментов 123
6.3.1. Общие положения 123
6.3.2. Метод расчёта 124
6.4. Расчёт фундаментов с анкерами в нескальных грунтах 127
6.4.1. Общие положения 127
6.4.2. Метод расчёта 128
6.5. Расчёт плитных и ленточных фундаментов под колонны 132
6.5.1. Общие положения 132
6.5.2. Предварительное назначение размеров сечений 132
6.5.3. Расчёт фундаментных балок и плит как конструкций на упругом основании 133
6.5.4. Связь между расчётными значениями модуля деформации и коэффициента постели 133
6.5.5. Определение расчётных значений модуля деформации 134
6.5.6. Методы расчёта конструкций 134
6.5.7. Расчёт конструкций на упругом основании по таблицам 135
Список литературы 147
Глава 7. Расчёт и проектирование подпорных стен (А. С. Снарский) 148
7.1. Типы подпорных стен 148
7.2. Определение активного и пассивного давления грунта на стены 148
7.2.1. Общие положения 149
7.2.2. Характеристики грунта, используемые при определении давления грунта 149
7.2.3. Активное давление грунта 149
7.2.4. Пассивное давление грунта 151
7.3. Расчёт массивных и уголковых подпорных стен 151
7.3.1. Общие положения 151
7.3.2. Расчёт устойчивости оснований стен против сдвига по подошве и глубокого сдвига по ломаным поверхностям скольжения 151
7.3.3. Расчёт оснований подпорных стен по деформациям 152
7.4. Расчёт гибких незаанкерных подпорных стен 154
7.4.1. Общие положения 154
7.4.2. Параметры грунта и стен, необходимые для расчёта 154
7.4.3. Давление грунта 155
Список литературы 156
Глава 8. Проектирование свайных фундаментов (Б. В. Бахолдин, Г. М. Лешин, Р. Е. Ханин) 157
8.1. Номенклатура и область применения свай различных видов 157
8.1.1. Государственные стандарты на сваи 157
8.1.2. Составные сваи квадратного сечения 158
8.1.3. Сваи-колонны 159
8.1.4. Бурозабивные сван 160
8.1.5. Набивные сваи в уплотнённом основании 164
8.1.6. Пирамидальные сваи 165
8.1.7. Прочие виды свай 165
8.2. Расчёт свай и свайных фундаментов 166
8.2.1. Методы определения несущей способности свай и область их применения 166
8.2.2. Расчёт свай на горизонтальные нагрузки и изгибающие моменты 169
8.2.3. Расчёт свай по прочности и раскрытию трещин 178
8.2.4. Расчёт осадок свайных фундаментов 179
8.2.5. Расчёт кренов свайных фундаментов 183
8.2.6. Расчёт железобетонных ростверков 184
8.3. Проектирование свай и свайных фундаментов 186
8.3.1. Исходные данные для проектирования 186
8.3.2. Выбор типа свайных фундаментов и нагрузок на них 187
3.3.3. Выбор несущего слоя грунтов и определение размеров свай 188
8.3.4. Проектирование свайного поля и ростверков 188
8.3.5. Состав проекта свайных фундаментов 199
8.3.6. Особенности проектирования свайных фундаментов в лёссовых просадочных грунтах 200
8.4. Конструктивные решения свайных фундаментов 200
8.4.1. Свайные фундаменты жилых домов 200
8.4.2. Фундаменты из забивных свай для каркасных зданий 201
8.4.3. Фундаменты из буронабивных свай для каркасных зданий 201
8.4.4. Свайные фундаменты каркасных зданий со сборными ростверками 202
8.4.5. Безростверковые свайные фундаменты каркасных зданий 202
8.4.6. Фундаменты из свайных полей 203
8.4.7. Свайные фундаменты вблизи заглубленных сооружений и фундаментов под оборудование 205
8.4.8. Бескотлованные свайные фундаменты 206
8.5. Выполнение свайных работ 206
8.5.1. Погружение свай заводского изготовления 207
8.5.2. Подбор молота для погружения свай 208
8.5.3. Изготовление буронабивных свай 211
8.5.4. Контроль и приёмка свайных фундаментов 215
Список литературы 217
Глава 9. Расчёт и проектирование фундаментов машин и оборудования с динамическим и нагрузками (В. Л. Ильичев, В. А. Михальчук) 217
9.1. Основные положения расчёта 217
9.1.1. Расчёт по первой группе предельных состояний 218
9.1.2. Расчёт по второй группе предельных состояний 219
9.2. Определение упругих и демпфирующих характеристик основания для расчёта фундаментов 220
9.2.1. Коэффициенты жесткости и демпфирования для фундаментов на естественном основании 220
9.2.2. Коэффициенты жесткости и демпфирования для свайных фундаментов. Определение приведённой массы 221
9.3. Принципы проектирования 222
9.3.1. Исходные данные для проектирования фундаментов машин и оборудования 222
9.3.2. Основные требования по проектированию фундаментов машин с динамическими нагрузками 223
9.3.3. Конструктивные решения фундаментов машин с динамическими нагрузками 224
9.4. Распространение колебаний от фундаментов-источников и мероприятия по их уменьшению 224
9.5. Примеры расчёта колебании фундаментов машин с динамическими нагрузками 226
Список литературы 230
Глава 10. Проектирование оснований сооружений, возводимых на структурно-неустойчивых грунтах (п. 10.1 - В. В. Крутов; п. 10.2 - Е. А. Сорочан) 231
10.1. Проектирование оснований на просадочных грунтах 231
10.1.1. Общие положения 231
10.1.2. Расчёт просадочных деформаций 232
10.1.3. Расчёт оснований 235
10.1.4. Проектирование уплотнённых оснований 237
10.1.5. Водозащитные мероприятия 243
10.1.6. Мероприятия по обеспечению нормальной эксплуатации деформировавшихся зданий 245
10.2. Проектирование оснований и фундаментов на набухающих грунтах 246
10.2.1. Общие положения 246
10.2.2. Исходные данные для проектирования 246
10.2.3. Проектирование оснований и фундаментов 247
Список литературу 251
Глава 11. Проектирование оснований на сильносжимаемых и насыпных грунтах (л. 11.1.1 - 11.1.6 - П. А. Коновалов; п. 11.1.7 - В. М. Казанцев, п. 11.2 - В. Я. Крутов) 252
11.1. Проектирование оснований на сильносжимаемых грунтах 252
11.1.1. Общие положения 252
11.1.2. Проектирование предпостроечного уплотнения оснований, сложенных водонасыщенными сильносжимаемыми грунтами 252
11.1.3. Методы расчёта осадок и сроков консолидации оснований 255
11.1.4. Особенности расчёта оснований 257
11.1.5. Методика определения коэффициента консолидации 257
11.1.6. Конструктивные мероприятия 258
11.1.7. Особенности расчёта и конструирования оснований и фундаментов стальных вертикальных резервуаров 259
11.2. Проектирование оснований на насыпных грунтах 261
11.2.1. Общие положения 261
11.2.2. Расчёт оснований на насыпных грунтах 262
11.2.3. Проектирование оснований на насыпных грунтах 264
Список литературы 267
Глава 12. Проектирование фундаментов в особых условиях (п. 12.1 - А. И. Юшин; п. 12.2 – В. А. Ильичев; п. 12.3 – Е. А. Сорочан) 268
12.1. Особенности проектирования оснований и фундаментов на подрабатываемых территориях 268
12.1.1. Деформации земной поверхности, вызываемые горными выработками, и их воздействие на конструкции зданий 268
12.1.2. Принципы проектирования оснований и фундаментов на подрабатываемых территориях 268
12.1.3. Расчёт фундаментов на естественном основании на воздействие горизонтальных деформаций 270
12.1.4. Проектирование и расчёт свайных фундаментов на подрабатываемых территориях 274
12.2. Сейсмостойкость оснований и фундаментов 278
12.2.1. Общие положения 278
12.2.2. Оценка интенсивности сейсмических колебаний в зависимости от грунтовых условий 278
12.2.3. Влияние упругой податливости основания на периоды свободных колебаний зданий и сооружений 279
12.2.4. Принципы расчёта и требования по конструированию сейсмостойких оснований и фундаментов 282
12.2.5. Сейсмостойкость фундаментов на естественных основаниях 283
12.2.6. Сейсмостойкость свайных фундаментов 286
12.3. Проектирование фундаментов на закарстованных территориях 294
Список литературы 298
Глава 13. Проектирование искусственных оснований (п. 13.1 - В. И. Крутов, Б. С. Смолин; п. 13.2 – А. Н. Токин; п. 13.3 - Б. С. Смолин) 299
13.1. Поверхностное и глубинное уплотнение грунтов 299
13.1.1. Общие положения 299
13.1.2. Исходные данные для проектирования 301
13.1.3. Уплотнение грунтов укаткой 302
13.1.4. Уплотнение трамбующими машинами 304
13.1.5. Уплотнение грунтов тяжёлыми трамбовками 304
13.1.6. Вытрамбовывание котлованов 306
13.1.7. Глубинное уплотнение пробивкой скважин 308
13.1.8. Уплотнение подводными и глубинными взрывами 310
13.2. Инъекционное закрепление грунтов способами силикатизации и смолизации 311
13.2.1. Общие положения 311
13.2.2. Расчёт основных параметров 315
13.2.3. Оборудование для производства работ 316
13.2.4. Технологическая схема закрепления 318
13.2.5. Проектирование оснований и фундаментов из химически закреплённых инъекций грунтов 320
13.2.6. Проектирование закреплённых силикатизацией массивов в просадочных лессовых грунтах 321
13.3. Глубинное вибрационное уплотнение рыхлых песчаных грунтов 325
13.3.1. Общие положения 325
13.3.2. Исходные данные для проектирования и расчёта 326
13.3.3. Методы расчёта 326
13.3.4. Оборудование для производства работ 327
13.3.5. Данные для проектирования производства работ 328
Список литературы 329
Глава 14. Устойчивость откосов (М. Л. Моргулис) 330
14.1. Конструктивные решения и мероприятия 330
14.2. Исходные данные для проектирования 331
14.3. Методы и примеры расчётов 333
14.3.1. Общие сведения 333
14.3.2. Построение предельных откосов 333
14.3.3. Определение угла плоских откосов при горизонтальной поверхности грунта 334
14.3.4. Определение ширины призмы обрушения откоса 336
14.3.5. Основные принципы определения требуемого контура откоса в сложных условиях 338
14.3.6. Расчёт устойчивости отсека грунтового массива против сдвига по выбранной поверхности 340
14.3.7. Определение давления грунта на удерживающие сооружения на откосе 348
Список литературы 351
Глава 15. Проектирование опускных колодцев и оболочек (В. К. Демидов) 352
15.1. Общие сведения 352
15.2. Конструктивные решения 353
15.3. Исходные данные для разработки проектной документации 357
15.4. Методы расчётов 359
15.5. Проект производства работ 367
15.6. Основные машины и механизмы, применяемые при сооружении и опускании колодцев 374
15.7. Примеры расчёта 374
Список литературы 377
Глава 16. Проектирование подземных сооружений, устраиваемых способом «стена в грунте» (И. К. Коньков, М. Я. Смородинов, Б. С. Федоров) 378
16.1. Общие положения 378
16.2. Исходные данные для разработки проектной документации 378
16.3. Конструктивные решения 379
16.4. Оборудование, применяемое при строительстве способом «стена в грунте» 383
16.4.1. Оборудование для приготовления и очистки глинистой суспензии 383
16.4.2. Оборудование для разработки траншей 384
16.5. Проект производства работ 386
16.5.1. Общие положения 386
16.5.2. Приготовление глинистой суспензии (раствора) 386
16.5.3. Разработка траншей 387
16.5.4. Заполнение траншей монолитным или сборным железобетоном 388
16.5.5. Контроль качества и приёмка работ 390
16.6. Расчёт конструкций 391
Список литературы 393
Глава 17. Анкеры в грунте (Ю. В. Лабзов, М. И. Смородинов) 394
17.1. Общие положения 394
17.2. Конструктивные решения 394
17.3. Методы расчёта 398
17.4. Технология работ 402
Список литературы 406
Глава 18. Укрепление оснований и усиление фундаментов существующих зданий и сооружений (Е. Ф. Лаш) 407
18.1. Общие положения 407
18.2. Исходные данные 407
18.3. Укрепление оснований существующих зданий 408
18.3.1. Цементация 408
18.3.2. Дренаж и противофильтрационные завесы 409
18.3.3. Повышение несущей способности (устойчивости) оснований 411
18.3.4. Защита оснований от влияния строящихся рядом зданий и сооружений 412
18.4. Усиление (укрепление) фундаментов 412
18.4.1. Защита фундаментов от выветривания 412
18.4.2. Повышение прочности и уширение фундамента 413
18.4.3. Подведение свай 414
Список литературы 416
Глава 19. Водопонижение (М. Л. Моргулис, Б. Н. Фомин) 417
19.1. Общие положения 417
19.2. Конструктивные решения 417
19.2.1. Водоотлив 417
19.2.2. Дренаж 418
19.2.3. Открытые водопонизительные скважины 423
19.2.4. Вакуумные скважины 425
19.2.5. Водоприёмная часть водопонизительных скважин 426
19.2.6. Песчано-гравийная обсыпка трубчатых дренажей и водопонизительных скважин 426
19.2.7. Иглофильтры 430
19.2.8. Наблюдательные скважины 431
19.2.9. Водопонизительные системы 431
19.2.10. Отвод воды от водопонизительных систем 434
19.3. Исходные данные для проектирования 434
19.4. Методы расчётов 435
19.4.1. Основные положения по расчётам водопонизительных систем 435
19.4.2. Определение притока подземных вод 436
19.4.3. Расчёт скважинных водопонизительных систем 445
19.4.4. Расчёт иглофильтровых водопонизительных систем 450
19.4.5. Расчёт дренажей 453
19.5. Оборудование и производство работ 455
19.5.1. Водоотлив 455
19.5.2. Дренаж 455
19.5.3. Водопонизительные скважины 456
19.5.4. Устройство иглофильтровых установок 458
Список литературы 458
Глава 20. Проектирование котлованов (Л. И. Иванов) 459
20.1. Общие сведения 459
20.2. Расчёт креплений котлованов 460
20.2.1. Расчёт тонких (гибких) свободно стоящих стенок 460
20.2.2. Расчёт тонких (гибких) заанкеренных стенок 464
20.2.3. Расчёт анкерных опор 468
20.2.4. Расчёт основных конструктивных элементов тонких стенок 470
Список литературы 471
Предметный указатель 472

Тип фундамента выбирается в зависимости от характера передачи нагрузки на фундамент: под стены зданий обычно устраиваются ленточные фундаменты из сборных элементов, под сборные железобетонные колонны — отдельные фундаменты стаканного типа.

Глубина заложения фундамента зависит от многих факторов. Определяющими из них являются:

- инженерно-геологические и гидрологические условия площадки и положение несущего слоя грунта;

- глубина промерзания грунта, если в основании залегают пучинистые грунты;

- конструктивные особенности подземной части здания.

Глубину заложения ленточного фундамента Ф1 назначаем по конструктивным соображениям на 0.4 м ниже пола подвала т.е. -3.4м;

Глубину заложения фундамента Ф3 назначаем по конструктивным соображениям, верх стакана должен быть на 0.1 м ниже пола подвала (высоту фундамента принимаем 1.2м с глубиной стакана 0.9 м) т.о.

Отметка подошвы фундамента Ф3: -3.00-0.1-1.2= -4.3м;

Расчет фундаментов

В соответствии п. 4.2 СНБ 5.01.01-99 основания фундаментов должны рассчи­тываться по двум группам предельных состоя­ний: первая группа — по несущей способности, вторая — по деформациям.

Расчет фундамента Ф1

Размеры подошвы фундамента зависят от ряда связанных между собой параметров и устанавливаются путем последовательного приближения. В порядке первого приближения площадь подошвы фундамента А определяется по формуле:



Где – Расчетная нагрузка в плоскости обреза фундамента для расчета основания по предельному состоянию второй группы;


– Расчетное сопротивление грунта, залегающего под подошвой фундамента;


- Осредненное значение удельного веса материала фундамента и грунта на его уступах, принимается равным 20 кН/м3;


– глубина заложения фундамента от уровня планировки, м.

– 150 кН; – 24 кН×м;

– 200 кПа; - 3.4 м.


Принимаем ширину подошвы фундамента 1.2м.

По расчетному сопротивлению глубина заложения - 4.0 м удовлетворяет. Фундамент будет располагаться во втором слое – песка мелкого плотного с

R= 400 кПа, который может быть несущим.

Определим суммарные нагрузки и воздействия на подошве фундамента:

Боковое давление грунта на отметке планировки:


На отметке подошвы фундамента:



Где = 16 кН/м2 удельный вес грунта засыпки;


- приведенная толщина эквивалентного веса временной нагрузки;



Где = 10 кН/м2 временная нагрузка на поверхности планировки;

d – глубина заложения фундамента, относительно поверхности земли, -2.4м.


- Осредненное значение угла сдвига грунта засыпки, принимаем 24˚;



Равнодействующая бокового давления грунта засыпки на стену подвала расчетной длиной 1.0 м:


Точка приложения равнодействующей:


- Нормальная вертикальная нагрузка:



Где - расчетная нагрузка от веса фундамента;


- расчетная нагрузка от веса грунта на консоли подушки;




- Момент в плоскости подошвы фундамента:



Где - момент в плоскости обреза фундамента, 24 кН*м (по заданию);


Проверка напряжений в основании фундамента:


(менее 10%)


(12)


где P – среднее давление под подошвой фундамента, кПа;



– соответственно максимальное и минимальное значение краевого давления по подошве внецентренно нагруженного фундамента, определяется по формуле:


(14)




условие 3 не выполняется, необходимо увеличение ширины фундамента, принимаем ширину подошвы фундамента 1.5м;











- расчетное сопротивление грунта основания кПа, находится по формуле:


, (16)

gс1 = 1,3 (зависит от типов грунтов)

gс2 = 1,15 (зависит от соотношения L/H и интерполировать по данным

таблицы В.1 СНБ 5.01.01-99)


МY = 1.81

Mq = 8.24 зависят от j по таблице В.2

dI = 2.4 (глубина заложения фундаментов без подвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов)


кПа


Р = 141.5 кПа £ 593.4 кПа

Pmax =255.6 кПа £ 1,2 * 593.4 кПа

Pmin = 27.4 кПа > 0


Рисунок 1. Расчетная схема фундамента Ф1.

Окончательно принимаем ширину подошвы фундамента Ф1 1.5м, толщину стены фундамента 0.6 м из блоков ФБС.

Расчет фундамента Ф3

Размеры подошвы фундамента:


–3400 кН

– 400 кПа; – 1.2 м.


Принимаем размеры подошвы фундамента кратными 300мм




Площадь подошвы = 9.9 м2.

Высоту фундамента принимаем 1200 с глубиной стакана 900 мм.

- Нормальная вертикальная нагрузка:


- Среднее давление под подошвой фундамента, кПа;


-Максимальное и минимальное напряжение в основании фундамента:


Проверка напряжений в основании фундамента:


Р = 367.4 кПа £ 400 кПа (< 10%)

Прочность и устойчивость любого сооружения обеспечивается, прежде всего, прочностью и устойчивостью фундамента, который должен быть заложен на надежном основании.

Основанием называется толща естественных напластований грунтов, непосредственно воспринимающая нагрузку и взаимодействующая с фундаментом возводимого сооружения.

Основания называют естественными, если грунты под подошвой фундамента остаются в естественном состоянии. В случае недостаточной прочности грунтов принимают меры по искусственному их упрочнению. Такие основания называют искусственными. Естественным основанием

могут служить самые разнообразные грунты, слагающие верхнюю часть земной коры. Естественные грунты, используемые в качестве естественных оснований, подразделяют на четыре вида: скальные, крупнообломочные, песчаные и глинистые.

Несущая способность глинистого грунта в большой степени зависит от влажности. Несущая способность сухих глин довольно высокая и такие грунты могут служить хорошим основанием, при увеличении влажности их несущая способность значительно падает.

Супеси и мелкозернистые пески при разжижении водой становятся я настолько подвижными, что текут, как жидкость, и называются плывунами.

Возведение зданий на таких грунтах связано со значительными трудностями.

К глинистым грунтам относятся также лёссы, которые при замачивании водой обладают просадочными свойствами или набухают. Использование так их грунтов в качестве оснований требует применения специальных мер.

Помимо перечисленных видов встречаются также грунты с органическими примесями (растительный грунт, торф, болотистый грунт и др.), многолетнемерзлые и насыпные грунты. Грунты с органическими примесями в качестве естественных оснований не применяют, так как они неоднородны по своему составу, рыхлы, обладают значительной и неравномерной сжимаемостью. Насыпные грунты также неоднородны по составу и сжимаемости и их использование в качестве оснований требует особых обоснований.

Упрочнение грунтов путем поверхностного ил и глубинного их уплот- нения осуществляется трамбованием пневматическими трамбовками с втрамбовыванием щебня ил и гравия. Уплотнение трамбовочными плитам и массой 1 т и более, которые сбрасывают с высоты 3–4 м, доходит до глубины 2–2,5 м. Для уплотнения больших площадей применяют укатку грунта тяжелыми катками.

Песчаные и пылеватые грунты хорошо уплотняют вибрированием специальным и поверхностными вибраторам и, такое уплотнение осуществляется значительно быстрее, чем при трамбовании.

Глубинное уплотнение грунта осуществляют применением песчаных или грунтовых свай. Предварительно вибропогружателем вводят в грунт инвентарные стальные трубы диаметром 400–500 мм с остроконечным раскрывающимся стальным башмаком на конце. Погруженные на необходимую глубину трубы заполняют песком и затем извлекают с вибрированием. При таком извлечении песок уплотняется и хорошо заполняет скважину.

Закрепление слабого грунта основания (его упрочнение) достигается также применением тампонажа (цементации, силикатизации и битумизации).

Фундаментом (рис. 1.1) называется подземная часть сооружения, возводимая на естественных ил и искусственных основаниях и служащая для передач и нагрузок от сооружений на основания. Конструктивная форма фундамента позволяет обеспечить бол ее равномерное распределение давления от сооружения на грунт.

Верхняя граница между фундаментом и наземной частью сооружения так же, как и границы между отдельным и уступами фундамента, называется обрезом фундамента. Нижняя плоскость фундамента, опирающаяся на грунт, называется подошвой фундамента. Расстояние от уровня земли около законченного здания (отметка планировки) до подошвы называется глубиной заложения фундамента.

Рис. 1.1. Схема фундамента на естественном основании:

1 — фу ндамент ; 2 — наземная часть

соору жения; 3 — отметка подошвы фу ндамент а; 4 — от метка повер хно сти гру нта; 5 — отметка пл анир овки;

6 — вер хний обр ез фу ндамента;

Н — глу бина заложения фу ндамента;

В — шир ина фу ндамент а

К фундаментам предъявляются следующие основные требования : прочность; устойчивость на опрокидывание; сопротивляемость влиянию грунтовых и агрессивных вод и влиянию атмосферных воздействий (морозостойкость); долговечность, отвечающая сроку службы зданий, технологичность изготовления конструкций фундамента и его экономичность (минимальная стоимость).




Основными материалами дл я фундаментов являются: бутовый камень, кирпич, бутобетон, бетон, железобетон.

По конструктивному решению различают следующие виды фунд аментов : ленточные, столбчатые(отдельные), сплошные (плитные) и свайные.

Рис. 1.2. Ленточные фундаменты:

а— под стены; б— под колонны; 1— стена здания; 2— фундамент; 3— колонны

Столбчатые фундаменты устраивают обычно в каркасных зданиях под каждой опорой ил и колонной. Наибольшее распространение в промышленном строительстве имеют сборные железобетонные фундаменты в виде башмака стаканного типа под сборную железобетонную колонну (рис. 2.16). При больших нагрузках размеры башмаков могут быть на- столько большим и, что их транспортирование и монтаж становятся затруднительными.

Размеры подошвы фундамента определяются расчетом. Эти размер ы зависят от величины давления на подошву фундамента и расчетного со- противления основания.

Рис. 1.3 Сборный фундамент под колонну промышленного здания:

2– ступенчатый сборный фундамент;

Расчетная формула получается из условия, чтобы действующее на подошву фундамента давление не превышало (было равно) расчетного сопротивления грунта. Для жесткого ленточного фундамента (см. рис. 1.3) ширину подошвы определяют по формуле

R − γH

где р — нагрузка на 1 м фундамента, к Н; R — расчетное сопротивление грунта, кН/м2; γ — объемный вес материал а фундамента и грунта на его обрезах (примерно 20 кН/м3).

Таким образом, основной размер фундамента — размер его подошвы, определяется, прежде всего, из условия несущей способности грунта. Полученный фундамент проверяется затем на жесткость, чтобы размер его подошвы не выходил за пределы, ограничиваемые углом α (см. рис. 2.14).

Сплошные (плитные) фундаменты устраивают при больших нагрузках и слабых грунтах под всей площадью здания или же под отдельной частью здания с повышенными нагрузками. Такие фундаменты представляю т собой сплошную монолитную ребристую железобетонную плиту ил и железобетонную безбалочную плиту (рис. 1.4). Свайные фун даменты обычно применяют при возведении зданий на слабых грунтах или при залегании плотных грунтов на значительной глубине от подошвы фундаментов. В последнее время свайные фундаменты на коротких сваях получили распространение при строительстве промышленных и гражданских зданий и на обычных грунтах.

Рис.1.4. Сплошные

фундаменты:

а– ребристая плита;

б– безбалочная плита

При современной технологии изготовления свай и устройства свайных фундаментов замена ленточных, столбчатых и сплошных фундаментов свайными позволяет уменьшить объем земляных работ, материала и сборных конструкций дл я устройства фундамента. Кроме того, свайные фундаменты обладаю т меньшим и осадками и имеют другие преимущества. В настоящее врем я замена обычных ленточных фундаментов из сборных блоков свайными целесообразна при глубине заложения подушки ленточного фундамента более 1,7 м от поверхности планировки.

По характеру работы различают сваи двух типов : сваи-стойки и висячие сваи. Сваи-стойки пронизывают толщу слабого грунта и передаю т нагрузку своими нижними концам и слою более прочного и плотного грунта (рис. 1.5, а). Такие сваи работают как колонны. Фундаменты из свай стоек применяют тогда, когда на глубине от подошвы фундамента, не превышающей длины свай, залегает слой грунта, достаточно мощный и прочный, чтобы передать на него всю нагрузку от веса здания.

Согласно нормам, таким слоем (пластом) может служить скальная

порода, плотный крупнообломочный гру нт или твердая глина. Сваи- стойки, опирающиеся нижним концом на такие грунты, практически не получают осадок.

Висячие сваи (рис. 1.5 , б), находясь полностью в уплотненном при забивке свай слабом грунте, передают нагрузку на грунт за счет сил трения по боковой поверхности свай и сопротивления внедрению свай в грунт (лобового сопротивления).

Рис. 1.5. Свайные ундаменты:

а– со сваями- стойками; б– с висячими сваями; 1– железобетонные сваи-стойки;

2– деревянные висячие сваи; 3– железобетонный ростверк*

*Ростверк– плита, воспринимающая нагрузку от веса здания и равномерно распределяющая ее на все сваи фундамента

Фундаменты из висячих свай применяют в тех случаях, когда слой прочного грунта, способного воспринять нагрузку от веса здания, залегает на глубине, при ко торой применение свай-стоек технически неосуществимо или экономически нецелесообразно.

Висячие сваи находятся в грунтовых условиях, при которых неизбежны осадки свайного фундамента. Величина осадки зависит от вида и плотности грунтов, залегающих ниже плоскости острия свай.

Сваи в плане располагают в шахматном порядке ил и рядами на рас- стояниях от 3 до 5 диаметров сваи. При забивке свай с такой густо той грунт между сваями уплотняется. Сваи изготовляются из дерева, бетона и железобетона. Деревянные сваи готовят из сосновых, еловых, реже дубовых бревен диаметром 20—30 см. Их можно применять в грунтах ниже самого низкого уровня грунтовых вод на участке строительства. В противном случае под влиянием периодического смачивания и высыхания сваи загнивают. В настоящее время деревянные сваи применяют все реже, их вытеснили более прочные и долговечные бетонные и железобетонные сваи.

ОСНОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ

Soil bases of buildings and structures

Дата введения 2017-07-01

Предисловие

Сведения о своде правил

1 ИСПОЛНИТЕЛИ - Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им.Н.М.Герсеванова (НИИОСП им.Н.М.Герсеванова) - институт АО "НИЦ "Строительство"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минстрой России) в сети Интернет

Изменения N 1, 2, 3, 4 внесены изготовителем базы данных по тексту М.: Стандартинформ, 2019; М.: Стандартинформ, 2020; М.: ФГБУ "РСТ", 2022

Введение

Настоящий документ содержит указания по проектированию оснований зданий и сооружений, в том числе подземных, возводимых в различных природных условиях, для различных видов строительства.

Разработаны НИИОСП им.Н.М.Герсеванова - институтом ОАО "НИЦ "Строительство" (д-р техн. наук , д-р техн. наук Е.А.Сорочан, канд. техн. наук И.В.Колыбин - руководители темы; д-р техн. наук Б.В.Бахолдин, д-р техн. наук А.А.Григорян, д-р техн. наук П.А.Коновалов, д-р техн. наук В.И.Крутов, д-р техн. наук Н.С.Никифорова, д-р техн. наук Л.Р.Ставницер, д-р техн. наук В.И.Шейнин; канд. техн. наук А.Г.Алексеев, канд. техн. наук Г.И.Бондаренко, канд. техн. наук В.Г.Буданов, канд. техн. наук A.M.Дзагов, канд. техн. наук Ф.Ф.Зехниев, канд. техн. наук М.Н.Ибрагимов, канд. техн. наук О.И.Игнатова, канд. техн. наук О.Н.Исаев, канд. техн. наук В.А.Ковалев, канд. техн. наук В.К.Когай, канд. техн. наук М.М.Кузнецов, канд. техн. наук И.Г.Ладыженский, канд. техн. наук , канд. техн. наук Д.Е.Разводовский, канд. техн. наук В.В.Семкин, канд. техн. наук А.Н.Труфанов, канд. техн. наук В.Г.Федоровский, канд. техн. наук М.Л.Холмянский, канд. техн. наук А.В.Шапошников, канд. техн. наук Р.Ф.Шарафутдинов, канд. техн. наук О.А.Шулятьев; инж. Д.А.Внуков, инж. А.Б.Мещанский, инж. О.А.Мозгачева, инж. А.Б.Патрикеев, инж. А.И.Харичкин).

Изменение N 1 к СП 22.13330.2016 разработано АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (руководитель темы - канд. техн. наук И.В.Колыбин; исполнители - канд. техн. наук Буданов, канд. техн. наук В.А.Ковалев, канд. техн. наук И.Г.Ладыженский, канд. техн. наук Д.Е.Разводовский, канд. техн. наук А.Н.Труфанов, канд. техн. наук О.А.Шулятьев, канд. техн. наук С.О.Шулятьев; инж. А.Б.Патрикеев).

Изменение N 2 разработано авторским коллективом АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский - руководители разработки; канд. техн. наук А.Г.Алексеев, канд. техн. наук В.А.Ковалев, канд. техн. наук В.В.Семкин, канд. техн. наук А.Н.Труфанов, канд. техн. наук А.В.Шапошников, инж. А.Б.Патрикеев).

Изменение N 3 разработано авторским коллективом АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский - руководители разработки; канд. техн. наук В.А.Ковалев, канд. техн. наук М.Л.Холмянский, канд. техн. наук Р.Ф.Шарафутдинов, А.Б.Патрикеев).

Изменение N 4 разработано авторским коллективом АО "НИЦ "Строительство" - НИИОСП им.Н.М.Герсеванова (канд. техн. наук И.В.Колыбин, канд. техн. наук Д.Е.Разводовский - руководители разработки; д-р техн. наук В.И.Шейнин; канд. техн. наук В.А.Ковалев, канд. техн. наук А.Г.Алексеев, канд. техн. наук О.Н.Исаев, канд. техн. наук И.К.Попсуенко, канд. техн. наук А.В.Скориков, канд. техн. наук А.Н.Труфанов, канд. техн. наук О.А.Шулятьев, канд. техн. наук С.О.Шулятьев, А.Б.Патрикеев, В.С.Поспехов).

1 Область применения

Настоящий свод правил распространяется на проектирование оснований вновь строящихся и реконструируемых зданий и сооружений в котлованах, траншеях и открытых выработках, а также на подземные сооружения, возводимые закрытым способом, в части оценки их влияния на окружающую застройку.

Примечание - Далее вместо термина "здания и сооружения" используется термин "сооружения", в число которых входят также подземные сооружения, в том числе устраиваемые закрытым способом.

Настоящий свод правил не распространяется на проектирование оснований гидротехнических сооружений, дорог, аэродромных покрытий, сооружений, возводимых на вечномерзлых грунтах, а также оснований глубоких опор и фундаментов машин с динамическими нагрузками.

2 Нормативные ссылки

В настоящем своде правил приведены ссылки на следующие документы:

ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 12248.1-2020 Грунты. Определение характеристик прочности методом одноплоскостного среза

ГОСТ 12248.2-2020 Грунты. Определение характеристик прочности методом одноосного сжатия

ГОСТ 12248.3-2020 Грунты. Определение характеристик прочности и деформируемости методом трехосного сжатия

ГОСТ 12248.4-2020 Грунты. Определение характеристик деформируемости методом компрессионного сжатия

ГОСТ 12536-2014 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава

ГОСТ 17177-94 Материалы и изделия строительные теплоизоляционные. Методы испытаний

ГОСТ 19912-2012 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276.1-2020 Грунты. Методы испытания штампом

ГОСТ 20276.2-2020 Грунты. Метод испытания радиальным прессиометром

ГОСТ 20276.4-2020 Грунты. Метод среза целиков грунта

ГОСТ 20276.5-2020 Грунты. Метод вращательного среза

ГОСТ 20276.6-2020 Грунты. Метод испытания лопастным прессиометром

ГОСТ 20276.7-2020 Грунты. Метод испытания прессиометром с секторным приложением нагрузки

ГОСТ 20522-2012 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 21153.2-84 Породы горные. Методы определения предела прочности при одноосном сжатии

ГОСТ 23740-2016 Грунты. Методы определения содержания органических веществ

ГОСТ 24846-2019 Грунты. Методы измерения деформаций оснований зданий и сооружений

ГОСТ 24847-2017 Грунты. Методы определения глубины сезонного промерзания

ГОСТ 25584-2016 Грунты. Методы лабораторного определения коэффициента фильтрации

ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения

ГОСТ 30416-2020 Грунты. Лабораторные испытания. Общие положения

ГОСТ 30672-2019 Грунты. Полевые испытания. Общие положения

ГОСТ EN 826-2011 Изделия теплоизоляционные, применяемые в строительстве. Методы определения характеристик сжатия

ГОСТ EN 12087-2011 Изделия теплоизоляционные, применяемые в строительстве. Методы определения водопоглощения при длительном погружении

СП 14.13330.2018 "СНиП II-7-81* Строительство в сейсмических районах"

СП 15.13330.2020 "СНиП II-22-81* Каменные и армокаменные конструкции"

СП 21.13330.2012 "СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах" (с изменением N 1)

СП 24.13330.2011 "СНиП 2.02.03-85 Свайные фундаменты" (с изменениями N 1, N 2, N 3)

СП 25.13330.2020 "СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах"

СП 26.13330.2012 "СНиП 2.02.05-87 Фундаменты машин с динамическими нагрузками" (с изменением N 1)

СП 28.13330.2017 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии" (с изменениями N 1, N 2)

СП 31.13330.2012 "СНиП 2.04.02-84* Водоснабжение. Наружные сети и сооружения" (с изменениями N 1, N 2, N 3, N 4, N 5)

СП 32.13330.2018 "СНиП 2.04.03-85 Канализация. Наружные сети и сооружения" (с изменением N 1)

СП 45.13330.2017 "СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты" (с изменениями N 1, N 2)

СП 47.13330.2016 "СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения" (с изменением N 1)

СП 48.13330.2019 "СНиП 12-01-2004 Организация строительства"

СП 63.13330.2018 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения" (с изменением N 1)

СП 70.13330.2012 "СНиП 3.03.01-87 Несущие и ограждающие конструкции" (с изменениями N 1, N 3, N 4)

СП 71.13330.2017 "СНиП 3.04.01-87 Изоляционные и отделочные покрытия" (с изменением N 1)

СП 100.13330.2016 "СНиП 2.06.03-85 Мелиоративные системы и сооружения" (с изменением N 1)

СП 103.13330.2012 "СНиП 2.06.14-85 Защита горных выработок от подземных и поверхностных вод"

СП 116.13330.2012 "СНиП 22-02-2003 Инженерная защита территорий, зданий и сооружений от опасных геологических процессов. Основные положения" (с изменением N 1)

Читайте также: