Определить потерю теплоты через кирпичную стенку

Обновлено: 02.05.2024

Методика расчета теплопотерь частного дома, потери тепла в жилых и нежилых помещениях, примеры расчета теплопотерь.

На сегодняшний день теплосбережение является важным параметром, который учитывается при сооружении жилого или офисного помещения. В соответствии со СНиП 23-02-2003 «Тепловая защита зданий», сопротивление теплоотдаче рассчитывается по одному из двух альтернативных подходов:

Для расчета систем отопления дома, вы можете воспользоваться калькулятором расчета отопления, теплопотерь дома.

Предписывающий подход - это нормы, предъявляемые к отдельным элементам теплозащиты здания: наружным стенам, полам над не отапливаемым пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.д.

Потребительский подход (сопротивление теплопередаче может быть снижено по отношению к предписывающему уровню при условии, что проектный удельный расход тепловой энергии на отопление помещения ниже нормативного).

  • Перепад между температурами воздуха внутри помещения и снаружи не должен превышать определенных допустимых значений. Максимальные допустимые значения перепада температур для наружной стены 4°С. для покрытия и чердачного перекрытия 3°С и для перекрытия над подвалами и подпольями 2°С.
  • Температура на внутренней поверхности ограждения должна быть выше температуры точки росы.

К примеру: для Москвы и московской области необходимое теплотехническое сопротивление стены по потребительскому подходу составляет 1.97 °С· м 2 /Вт, а по предписывающему подходу:

  • для дома постоянного проживания 3.13 °С· м 2 / Вт.
  • для административных и прочих общественных зданий, в том числе сооружений сезонного проживания 2.55 °С· м 2 / Вт.

По этой причине, выбирая котел либо другие нагревательные приборы исключительно по указанным в их технической документации параметрам. Вы должны спросить у себя, построен ли ваш дом со строгим учетом требований СНиП 23-02-2003.

Следовательно, для правильного выбора мощности котла отопления либо нагревательных приборов, необходимо рассчитать реальные теплопотери вашего дома. Как правило, жилой дом теряет тепло через стены, крышу, окна, землю, так же существенные потери тепла могут приходиться на вентиляцию.

Теплопотери в основном зависят от:

  • разницы температур в доме и на улице (чем выше разница, тем выше потери).
  • теплозащитных характеристик стен, окон, перекрытий, покрытий.

Стены, окна, перекрытия, имеют определенное сопротивление утечкам тепла, теплозащитные свойства материалов оценивают величиной, которая называется сопротивлением теплопередачи.

Сопротивление теплопередачи покажет, какое количество тепла просочится через квадратный метр конструкции при заданном перепаде температур. Можно сформулировать этот вопрос по другому: какой перепад температур будет возникать при прохождении определенного количества тепла через квадратный метр ограждений.

R = ΔT/q.

  • q – это количество тепла, которое уходит через квадратный метр поверхности стены или окна. Это количество тепла измеряют в ваттах на квадратный метр (Вт/ м 2 );
  • ΔT – это разница между температурой на улице и в комнате (°С);
  • R – это сопротивление теплопередачи (°С/ Вт/ м 2 или °С· м 2 / Вт).

В случаях, когда речь идет о многослойной конструкции, то сопротивление слоев просто суммируется. К примеру, сопротивление стены из дерева, которая обложена кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

R(сумм.)= R(дерев.) + R(воз.) + R(кирп.)

Распределение температуры и пограничные слои воздуха при передаче тепла через стену.

Расчет теплопотерь выполняется для самого холодного периода года периода, коим является самая морозная и ветреная неделя в году. В строительной литературе, зачастую, указывают тепловое сопротивление материалов исходя из данного условия и климатического района (либо наружной температуры), где находится ваш дом.

Таблица сопротивления теплопередачи различных материалов

Материал и толщина стены

Сопротивление теплопередаче Rm.

Кирпичная стена
толщ. в 3 кирп. (79 сантиметров)
толщ. в 2.5 кирп. (67 сантиметров)
толщ. в 2 кирп. (54 сантиметров)
толщ. в 1 кирп. (25 сантиметров)

Сруб из бревна Ø 25
Ø 20

Толщ. 20 сантиметров
Толщ. 10 сантиметров

Каркасная стена (доска +
минвата + доска) 20 сантиметров

Стена из пенобетона 20 сантиметров
30 см

Штукатурка по кирпичу, бетону.
пенобетону (2-3 см)

Потолочное (чердачное) перекрытие

Двойные деревянные двери

Таблица тепловых потерь окон различных конструкций при ΔT = 50 °С (Тнар. = –30 °С. Твнутр. = 20 °С.)

Тип окна

RT

q. Вт/м2

Q. Вт

Обычное окно с двойными рамами

Стеклопакет (толщина стекла 4 мм)

Примечание
• Четные цифры в условном обозначении стеклопакета указывают на воздушный
зазор в миллиметрах;
• Буквы Ar означают, что зазор заполнен не воздухом, а аргоном;
• Буква К означает, что наружное стекло имеет специальное прозрачное
теплозащитное покрытие.

Как видно из вышеуказанной таблицы, современные стеклопакеты дают возможность сократить теплопотери окна почти в 2 раза. К примеру, для 10 окон размером 1.0 м х 1.6 м экономия может достигать в месяц до 720 киловатт-часов.

Для правильного выбора материалов и толщины стен применим эти сведения к конкретному примеру.

В расчете тепловых потерь на один м 2 участвуют две величины:

  • перепад температур ΔT.
  • сопротивления теплопередаче R.

Допустим температура в помещении будет составлять 20 °С. а наружная температура будет равной –30 °С. В таком случае перепад температур ΔT будет равен 50 °С. Стены изготовлены из бруса толщиной 20 сантиметров, тогда R= 0.806 °С· м 2 / Вт.

Тепловые потери будут составлять 50 / 0.806 = 62 (Вт/ м 2 ).

Для упрощения расчетов теплопотерь в строительных справочниках указывают теплопотери различного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. Как правило, приводятся различные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых, а также учитывается разница в температур для помещений первого и верхнего этажа.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру стен) в зависимости от средней температуры самой холодной недели в году.

Характеристика
ограждения

Наружная
температура.
°С

Теплопотери. Вт

1 этаж

2 этаж

Угловая
комната

Неугл.
комната

Угловая
комната

Неугл.
комната

Стена в 2.5 кирпича (67 см)
с внутр. штукатуркой

Стена в 2 кирпича (54 см)
с внутр. штукатуркой

Рубленая стена (25 см)
с внутр. обшивкой

Рубленая стена (20 см)
с внутр. обшивкой

Стена из бруса (18 см)
с внутр. обшивкой

Стена из бруса (10 см)
с внутр. обшивкой

Каркасная стена (20 см)
с керамзитовымзаполнением

Стена из пенобетона (20 см)
с внутр. штукатуркой

Примечание. В случае когда за стеной находится наружное неотапливаемое помещение (сени, остекленная веранда и т.п.), то потери тепла через нее будут составлять 70% от расчетных, а если за этим неотапливаемым помещением находится еще одно наружное помещение то потери тепла будут составлять 40% от расчетного значения.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру) в зависимости от средней температуры самой холодной недели в году.

Характеристика ограждения

Наружная
температура. °С

Теплопотери.
кВт

Окно с двойным остеклением

Сплошные деревянные двери (двойные)

Деревянные полы над подвалом

Далее давайте разберем пример расчета тепловых потерь 2 различных комнат одной площади при помощи таблиц.

Пример 1.

Угловая комната (1 этаж)

  • 1 этаж.
  • площадь комнаты – 16 м 2 (5х3.2).
  • высота потолка – 2.75 м.
  • наружных стен – две.
  • материал и толщина наружных стен – брус толщиной 18 сантиметров обшит гипсокартонном и оклеен обоями.
  • окна – два (высота 1.6 м. ширина 1.0 м) с двойным остеклением.
  • полы – деревянные утепленные. снизу подвал.
  • выше чердачное перекрытие.
  • расчетная наружная температура –30 °С.
  • требуемая температура в комнате +20 °С.

Далее выполняем расчет площади теплоотдающих поверхностей.

  • Площадь наружных стен за вычетом окон: Sстен(5+3.2)х2.7-2х1.0х1.6 = 18.94 м 2 .
  • Площадь окон: Sокон = 2х1.0х1.6 = 3.2 м 2
  • Площадь пола: Sпола = 5х3.2 = 16 м 2
  • Площадь потолка: Sпотолка = 5х3.2 = 16 м 2

Площадь внутренних перегородок в расчете не участвует, так как по обе стороны перегородки температура одинакова, следовательно через перегородки тепло не уходит.

Теперь Выполним расчет теплопотери каждой из поверхностей:

  • Qстен = 18.94х89 = 1686 Вт.
  • Qокон = 3.2х135 = 432 Вт.
  • Qпола = 16х26 = 416 Вт.
  • Qпотолка = 16х35 = 560 Вт.

Суммарные теплопотери комнаты будут составлять: Qсуммарные = 3094 Вт.

Следует учитывать, что через стены улетучивается тепла куда больше чем через окна, полы и потолок.

Пример 2

Комната под крышей (мансарда)

  • этаж верхний.
  • площадь 16 м 2 (3.8х4.2).
  • высота потолка 2.4 м.
  • наружные стены; два ската крыши (шифер, сплошная обрешетка. 10 саниметров минваты, вагонка). фронтоны (брус толщиной 10 саниметров обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 саниметров).
  • окна – 4 (по два на каждом фронтоне), высотой 1.6 м и шириной 1.0 м с двойным остеклением.
  • расчетная наружная температура –30°С.
  • требуемая температура в комнате +20°С.

Далее рассчитываем площади теплоотдающих поверхностей.

Далее рассчитаем тепловые потери этих поверхностей, при этом необходимо учесть, что через пол в данном случае тепло не будет уходить, так как внизу расположено теплое помещение. Теплопотери для стен рассчитываем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.

  • Qторц.стен = 12х89 = 1068 Вт.
  • Qскатов.стен = 8.4х142 = 1193 Вт.
  • Qбок.перегор = 12.6х126х0.7 = 1111 Вт.
  • Qокон = 6.4х135 = 864 Вт.
  • Qпотолка = 10.92х35х0.7 = 268 Вт.

Суммарные теплопотери комнаты составят: Qсуммарные = 4504 Вт.

Как мы видим, теплая комната 1 этажа теряет (либо потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.

Чтобы данное помещение сделать пригодным для зимнего проживания, необходимо в первую очередь утеплять стены, боковые перегородки и окна.

Любая ограждающая поверхность может быть представлена в виде многослойной стены, каждый слой которой имеет собственное тепловое сопротивление и собственное сопротивление прохождению воздуха. Суммировав тепловое сопротивление всех слоев, мы получим тепловое сопротивление всей стены. Также ели просуммировать сопротивление прохождению воздуха всех слоев, можно понять, как дышит стена. Самая лучшая стена из бруса должна быть эквивалентна стене из бруса толщиной 15 – 20 антиметров. Приведенная далее таблица поможет в этом.

Таблица сопротивления теплопередаче и прохождению воздуха различных материалов ΔT=40 °С (Тнар.=–20 °С. Твнутр.=20 °С.)


Слой стены

Толщина
слоя
стены

Сопротивление
теплопередаче слоя стены

Сопротивл.
Воздухопро­
ницаемости
эквивалентно
брусовой стене
толщиной
(см)

Ro.

Эквивалент
кирпичной
кладке
толщиной
(см)

Кирпичная кладка из обычного
глиняного кирпича толщиной:

12 сантиметров
25 сантиметров
50 сантиметров
75 сантиметров

Кладка из керамзитобетонных блоков
толщиной 39 см с плотностью:

1000 кг / м 3
1400 кг / м 3
1800 кг / м 3

Пено- газобетон толщиной 30 см
плотностью:

300 кг / м 3
500 кг / м 3
800 кг / м 3

Брусовал стена толщиной (сосна)

10 сантиметров
15 сантиметров
20 сантиметров

Для полной картины теплопотерь всего помещения нужно учитывать

  1. Потери тепла через контакт фундамента с мерзлым грунтом, как правило принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).
  2. Потери тепла, которые связаны с вентиляцией. Данные потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же объём свежего воздуха. Таким образом, потери которые связаны с вентиляцией будут составлять немного меньше чем сумма теплопотерь приходящиеся на ограждающие конструкции. Выходит, что теплопотери через стены и остекление составляет только 40%, а теплопотери на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение теплопотерь составляют 30% и 60%.
  3. Если стена «дышит», как стена из бруса или бревна толщиной 15 – 20 сантиметров то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%. поэтому полученную при расчете величину теплового сопротивления стены необходимо умножить на 1.3 (или соответственно уменьшить теплопотери).

Суммировав все теплопотери дома, Вы сможете понять какой мощности котел и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, подобные расчеты покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.

Выполнить расчет расхода тепла можно и по укрупненным показателям. Так, в 1-2 этажных не очень утепленных домах при наружной температуре –25 °С необходимо 213 Вт на 1 м 2 общей площади, а при –30 °С – 230 Вт. Для хорошо утепленных домов – этот показатель будет составлять: при –25 °С – 173 Вт на м 2 общей площади, а при –30 °С – 177 Вт.

Потери тепла теплопроводностью через кладку печи ( ) зависят от температуры внутри печи, площади, толщины и коэффициентов теплопроводности материалов стен, пода и свода. Потери теплоты через кладку могут быть значительно уменьшены при хорошей изоляции, поэтому при расчете не только определяются потери через кладку, спроектированную на основе принципов, изложенных в разделе 6.1, но и, при необходимости, корректируют конструкцию футеровки, опираясь на результаты данного расчета.

В целом расчет характеристик футеровки термической печи и ее конструирование производят следующим образом.

1. Исходя из конструктивных соображений и учитывая температуру внутреннего пространства печи, определяют:

– число слоев футеровки;

– расположение и размеры основных отверстий (это является результатом работы проектанта в разделе «Составление эскиза печи»).

В дальнейшем будем рассматривать наиболее сложный из перечисленных выше случаев – трехслойную футеровку.

2. Поскольку все элементы футеровки (под, свод, стены) могут отличаться друг от друга, всю ее необходимо разделить на отдельные части с постоянными числом слоев, материалами и толщинами. Раздел производится по линиям пересечения поверхностей, ограничивающих внутреннее пространство печи, под углом . В результате (рис. 9) футеровка будет разделена на отдельные элементы в виде усеченных многослойных пирамид, у каждой из которых известен размер малого основания ( на рис. 9), количество, материал и толщина каждого слоя (в случае непрямоугольного рабочего пространства печи эти элементы имеют другую форму, но принцип остается тем же).

В дальнейшем каждый из полученных при разделении футеровки элементов рассчитывается отдельно.

Зная размеры меньшего основания пирамиды, можем определить площади границ слоев:

Рис. 9. Расчетный элемент футеровки.

где: – площадь внутренней поверхности стенки, ;

– площадь границы между 1-м и 2-м слоями, ;

– площадь границы между 2-м и 3-м слоями, ;

– площадь наружной поверхности стенки, .

Предварительные толщины слоев футеровки (для получения минимально возможных толщин слоев), выполненных из кирпича, принимают кратными минимальному размеру кирпича нормального формата по ГОСТ 8691 – 0,065 м, а слоев, выполненных из мягких теплоизоляционных материалов – 0,05 м).

3. Затем определяют средние площади слоев, причем, если , то как среднее арифметическое:

а если , то как среднее геометрическое:

4. Исходя из опыта проектанта, назначают граничные температуры (см. рис. 9). Причем более-менее точно можно назначить только , так как температура на внутренней поверхности стенки обычно на 4-6 ниже, чем температура внутреннего пространства. Остальные ( ) можно назначить произвольно, имея в виду, что .

5. Зная материалы слоев, определяют средние коэффициенты теплопроводности для материала каждого слоя:

где: , , , , , – справочные величины;

6. Определяют потери тепла через футеровку стенки теплопроводностью:

где: – температура внутреннего пространства печи, ;

– температура окружающего пространства (20 );

и – коэффициенты теплоотдачи от внутренней среды печи к стенке и от стенки к окружающему воздуху, соответственно, (коэффициент теплоотдачи от стенки к окружающему воздуху из-за узкого допустимого интервала температуры поверхности стенки от 40 до 60 0 С может быть взят постоянным и равным 12 ).

7. Поскольку в п.4 при выборе граничных температур очень велика вероятность ошибки, необходима проверка правильности назначенных температур. Она проводится следующим образом:




– проверка слева (от внутреннего пространства печи):

– проверка справа ( от внешней поверхности печи):

При расчетах принято считать результаты достаточно точными, если все три значения температуры ( и ) укладываются в интервал 5 0 С (такой же разброс допускается и для температуры ), для температур и допускается разброс трех значений до 10 0 С.

Если эти условия не выполняются, то необходимо задаваться новыми значениями граничных температур и повторять расчет до тех пор, пока указанные выше неравенства не будут выполняться.

8. Необходимо проверить, не превышает ли температура каждого из слоев огнеупорность материала, из которого он изготовлен. Если это не так, то необходимо или сменить материал данного слоя, или увеличить толщину предыдущего. В то же время для создания наиболее компактной и экономичной футеровки не следует назначать материалы со слишком высокой (для данного случая) огнеупорностью. Лучше всего, если огнеупорность используемого материала превышает максимальную температуру на 100 – 200 0 С.

Если по результатам расчета приходится изменить материал или толщину хотя бы одного слоя, то расчеты проводятся вновь, начиная, соответственно, с п.5 или п.2.

9. Футеровка печи должна быть спроектирована таким образом, чтобы температура на наружной поверхности не превышала из соображений техники безопасности. В то же время, если , то считается, что футеровка получилась слишком громоздкой и экономически невыгодной.

Таким образом, футеровку можно считать спроектированной правильно, если температура на поверхностях внутренней и наружной стенки вычислена с точностью до , на границах слоев с точностью до и наружная стенка имеет температуру .

Результатами расчета являются:

– толщина слоев футеровки;

– потери тепла теплопроводностью через стенку.

Подобным образом проводится расчет отдельно для свода, боковых и торцевых стенок печи.

Так же рассчитываются потери через кладку пода, если под находится на металлической конструкции. Если же под находится на грунте, то потери через него рассчитываются следующим образом:

где: – коэффициент теплопроводности грунта,

– разность температур кладки пода ( ) и грунта

и – ширина и длина печи, м;

– толщина пода печи, м.

Для цилиндрической стенки формула потерь теплоты через кладку принимает вид:

Определить тепловой поток через 1м 2 кирпичной стены помещения толщиной в два кирпича (δ= 510 мм) с коэффициентом теплопроводности λ=0,8 Вт/(м ºС). Температура воздуха внутри помещения tж1 = 18°C; коэффициент теплоотдачи к внутренней поверхности стенки α1=7,5Вт/(м 2º С); температура наружного воздуха tж2 = -30°C; коэффициент теплоотдачи от наружной поверхности стены, обдуваемой ветром, α2=20Вт/(м 2º С). Вычислить также температуры на поверхностях стены tс1 и tс2.

Дано: δ= 510мм; λ =0,8 Вт/(м∙ º С); α1 =7,5 Вт/(м 2 ∙ º С); α2 =20 Вт/(м 2 ∙ º С); tж1 = 18 °C; tж2 = -30 °C; Найти: рассчитать плотность теплового потока, ; определить температуру tc1 и tc2

Решение

1. Согласно уравнению теплопередачи через плоскую стенку, плотность теплового потока вычисляется:

где -температура воздуха внутри помещения и снаружи соответственно, ˚С; k - коэффициент теплопередачи, который характеризует интенсивность теплопередачи, и численно равен плотности теплового потока, передающейся от первой жидкости (воздуха внутри помещения) к другой (воздуху снаружи помещения) через разделяющую их стенку при разности температур между жидкостями в 1 ˚С, Вт/(м 2 ∙ º С).

Коэффициент теплопередачи определяется следующим образом:

где -коэффициент теплоотдачи к внутренней поверхности и от наружной поверхности обдуваемой ветром соответственно, этот коэффициент характеризует интенсивность теплоотдачи и численно равен плотности теплового потока, передаваемого при разности температур равной 1 ˚С, Вт/(м 2 ∙ º С).

Значит плотность теплового потока:

2. Согласно закону Ньютона – Рихмана:

Из этого соотношения и определим температуры стенок tc1 и tc2.

Стенка неэкранированной топочной камеры парового котла выполнена из слоя пеношамота толщиной δ1=125мм и слоя красного кирпича толщиной δ2=500мм. Слои плотно прилегают друг к другу. Температура на внутренней поверхности топочной камеры tс1=1100ºС, а на наружной tс3=50ºС. Коэффициент теплопроводности пеношамота λ1=0,28+0,00023t, красного кирпича λ2=0,7Вт/(м ºС). Вычислить тепловые потери через 1м 2 стенки топочной камеры и температуру в плоскости соприкосновения слоев.

Дано: δ1 = 125 мм; δ2 = 500 мм; λ1 =0,28+0,00023∙t Вт/(м∙ ºС); λ2 =0,7 Вт/(м∙ ºС); tс1 = 1100 °C; tс3 = 50 °C; Найти: рассчитать плотность теплового потока, ; определить температуру tc2.

Решение

1. Согласно закону Фурье для плоской стенки, плотность теплового потока вычисляется:

где - температура внутренней и внешней поверхности топочной камеры, ˚С; -толщина слоя пеношамота и красного кирпича соответственно, м; - коэффициент теплопроводности пеношамота и красного кирпича, которые численно равны плотности теплового потока при температурном градиенте равном 1, Вт/(м∙ ºС).

Коэффициент теплопроводности принимается при средней температуре слоя стенки из пеношамота и равняется:

Методом последовательных приближенийй определим плотность теплового потока и температуру между слоями. В первом приближении зададимся температурой между слоев равной: .

Уточняем значение температуры между слоев согласно з. Фурье для плоской стенки:

Ошибка составляет: . Поэтому повторим расчет, задавшись во втором приближении температурой между слоев равной: .

Уточняем значение температуры между слоев согласно з. Фурье:

Ошибка составляет: . Поэтому в конечном итоге принимаем: температуру между слоев , плотность теплового потока

Чтобы понять, как считать теплопроводность - необходимо представить материал в виде вымышленной стены. На практике такие стены будут реальными. Данная статья поможет нам рассчитать теплопотери стены. Сложив все теплопотери стен - получим теплопотери всего дома. Но это только один фактор из трех составляющих теплопотерь дома. Не забывайте про вентиляцию и излучение тепла. О них поговорим в других статьях.

Смотри изображение:


t1, t2 - точки температур. L - толщина стены. S - площадь стены.

Теплопроводность представляет собой количество теплоты, которое проходит в единицу времени через единицу толщины слоя материала.

Если быть точнее! То это отношение поверхностной плотности теплового потока к температурному градиенту.

Температурный градиент - это произведение толщины стенки материала на разность температур между противоположными плоскостями одной стенки.

Температурный градиент = L х ( t1 - t2 ).

Плотность теплового потока - это количество теплоты в единицу времени. Количество теплоты измеряется в Калориях. О калориях поговорим ниже.

Сначала я Вам покажу формулу нахождения теплопроводности и связи между ними.


λ - Коэффициент теплопроводности.

t1,t2 - температуры стенки по разные стороны. Измеряется либо в Цельсиях [°C] либо в Кельвинах [K].

Из-за того, что температура измеряется в разных единицах, то коэффициент теплопроводности, тоже имеет различные единицы измерения:

[ Вт / (м•°С) ] либо [ Вт / (м•K) ]

В редких случаях за место (Вт) может использоваться (Калория).

L - Толщина стенки, измеряется в метрах(м).

Q - Количество теплоты, измеряется в калориях(K) или в ваттах(Вт).

Эталоном значения одной калории является: Количество теплоты необходимое для того, чтобы нагреть один грамм воды на 1 градус Цельсия или Кельвина, при атмосферном давлении (101325 Па).

1 Дж = 0,2388 калорий
1000 Калорий = 1 кКалория = 1,163 Ватт • час
1 Калория = 4,1868 Дж

Для глубокого понимания коэффициента теплопроводности, нужно понимать, как находят количество теплоты. То есть нам нужно найти количество теплоты, которое расходуется между наружными плоскостями одной стены. Мы фактически находим потерянное тепло через стену.

Можно представить тепло как некую жидкость, проходящую в сквозь стенку. И количество этой некой тепловой жидкости проходящей в единицу времени и будет являться той самой теплотой. Чем больше ее проходит, тем больше мы теряем тепло и тем больше теплопроводность. Теплоизоляторы понижают теплопроводность, и мы теряем меньше тепла.

Данная формула помогает нам найти проходящее количество теплоты в сквозь стену.


Также еще выражаются в такой форме:


R - Температурное сопротивление, измеряется: (м 2 • °С) / Вт, или: (м 2 • K) / Вт

Q - Количество теплоты. Измеряется в Ваттах (Вт) или Калориях (К)

t1,t2 - температура стенки по разные стороны. Измеряется либо в Цельсиях [°C] либо в Кельвинах [K].

S - площадь стенки, измеряется в квадратных метрах (м 2 ). Площадь находится умножением высоты на длину стенки. S = a • b.

При расчетах не забывайте, переводить единицы измерения в одно измерение! Например, если температура в Цельсиях, то все переменные должны быть указаны или переведены в градусы Цельсия. Расстояния и длины должны быть указаны и переведены к количеству метров (а не сантиметров или милиметров) и тому подобное.

Чем больше значение λ, тем большей теплопроводностью обладает вещество. В общем случае теплопроводность для данного вещества не является величиной постоянной: для твердых тел λ зависит от температуры, а для жидких и газообразных — еще и от давления.

Для металлов (кроме алюминия) теплопроводность с увеличением температуры несколько убывает, что означает, что холодный металл проводит теплоту лучше, чем нагретый. Теплопроводность металлов λ составляет 2,3-420 Вт/(м•К).

Для изоляционных и огнеупорных материалов λ при повышении температуры возрастает. Последнее объясняется тем, что большинство изоляционных материалов не представляют монолитной массы, а являются пористыми телами — конгломератом отдельных частиц с воздушными прослойками между ними. Эти воздушные прослойки уменьшают теплопроводность, но лучистый теплообмен, происходящий в этих прослойках, в итоге увеличивает суммарный теплоперенос при повышении температуры пористого тела. Для таких материалов λ зависит не только от свойств собственно материала, но и от степени его уплотнения, т.е. от плотности. Кроме того, на теплопроводность указанных материалов большое влияние оказывает влажность. С увеличением влажности теплопроводность возрастает. Для влажного материала λ выше, чем для сухого материала и воды, взятых в отдельности. Так, например, для сухого кирпича λ = 0,35 Вт/(м•К), для воды λ = 0,58 Вт/(м•К), а для влажного кирпича λ = 1,05 Вт/(м•К). Это объясняется тем, что адсорбированная в капиллярно-пористых телах вода отличается по физическим свойствам от свободной воды. Поэтому по отношению к такого рода веществам правильнее говорить о так называемой видимой теплопроводности. Теплопроводность теплоизоляционных материалов составляет 0,02—3,0 Вт/(м•К).

Для газов с увеличением температуры теплопроводность также возрастает, но от давления λ практически не зависит, кроме очень низких (менее 2,5 кПа) и очень высоких (более 200 МПа) давлений. Теплопроводность газов колеблется от 0,006 до 0,6 Вт/(м•К).

Для большинства капельных жидкостей теплопроводность находится в пределах 0,09—0,7 Вт/(м•К) и с повышением температуры уменьшается. Вода является исключением: с ростом температуры от 0 до 150 °С теплопроводность возрастает, а при дальнейшем увеличении температуры уменьшается.

У меня дома в квартире, в комнате имеется наружная не утепленная стена площадью ( 2,5 х 5метров ), зимой очень холодно. Температура стены 20 °C. Стена без окна. Определить сколько уходит тепла через стену на улицу зимой, когда на улице температура -30 градусов. Стена кирпичная. Толщина 80 см.

Поскольку процесс конвекции хорошо проветривает стену с обоих сторон, то следует пренебречь разницу температур у сомой стенки, и принять температуру воздуха. А с наружи еще естественные ветра проветривают так, что приближают температуру стены к температуре воздуха. Но на будущее имейте в виду, что температура поверхности стены отличается от температуры воздуха, но не значительно. Для реальных событий даже не превысит 5%. Мы это возможно обсудим в других статьях.

S=2,5 х 5 = 12,5 м 2

t1 = 20 °C, K1 = t1 + 273,15 = 293,15

t2 = -30 °C, K2 = t1 + 273,15 = 243,15

L = 80см = 0,8 метров.

Для кирпича из других источников:

λ = 0,44 Вт/(м•К) в переводе на Цельсия: = 0,44 Вт/(м•°С)

Величины получаются одинаковыми, так как величины Цельсия и Кельвина пропорциональны друг другу, просто сдвинуты на 273,15 единиц. Поэтому разница температур одинакова.

Решение простое: Просто вставляем в формулу имеющиеся значения и занимаемся арифметикой.


Q = 0,44 х (20-(-30))/0,8 х 12,5 = 0,44 х 50/0,8 х 12,5 = 343,75 Вт

Ответ: Теряется тепло стены на 344 Вт.

Если посчитать за месяц, то это будет: 344 Вт х 24 часа х 30 дней = 247,7 кВт•ч.

И это одна только стена столько потребляет! А сколько таких стен может быть?

Конечно, точность расчетов зависит от значения коэффициента теплопроводности для материала, из которого сделана стена. Влажность, тоже имеет значение. Так что этих коэффициентов в инете полным-полно, можете подобрать из различных таблиц.

В целом такой расчет очень даже полезный и почти совпадает с реальными цифрами.

Но не вздумайте пока рассчитывать свой дом по такому методу. Так как существуют еще кое-какие дополнительные расчеты, о которых будет рассказано в следующих статьях.

Таблицы я позже приготовлю! В других статьях будут. А так продолжение следует.

На счет задачи - это шутка конечно! Была бы у меня такая стена - я бы ее давно уже утеплил, так как знаю технологии, как это делать.

Читайте также: