Опирание многослойной кирпичной стены на фундамент

Обновлено: 03.05.2024

ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА

Устройство слоистой (многослойной) кирпичной кладки

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Типовая технологическая карта (ТТК) составлена на устройство слоистой (многослойной) кирпичной кладки.

ТТК предназначена для ознакомления рабочих и инженерно-технических работников с правилами производства работ, а также с целью использования при разработке проектов производства работ, проектов организации строительства, другой организационно-технологической документации.

2. ОБЩИЕ ПОЛОЖЕНИЯ

При создании энергоэффективного дома используются разные новые технологии. Одной из них является слоистая кладка (рис.1), которая предусматривает наличие утеплительной прослойки. Это максимально снижает тепловые потери, что позволяет сэкономить расходы на обогреве помещения.

Рис.1. Слоистая кладка

Описание технологии слоистой кладки

Слоистую кладку ещё называют трёхслойной, что обусловлено конструктивными особенностями. Её устройство включает:

- несущую стену из кирпича или другого материала;

- облицовку из кирпича.

Материалы и конструктивные решения

В качестве теплоизоляционного материала в конструкции слоистой кладки часто используют засыпку из гранулированной минеральной ваты, плиты из каменной ваты или пенопласта (рис.2).

Рис.2. Теплоизоляционный материал из пенопласта

Трёхслойная кладка

Одной из разновидностей утеплённой стены является трёхслойная кирпичная кладка (рис.3). Конструкция её выглядит следующим образом:

1. Внутренняя стена из кирпича, шлакоблоков, газобетона и т.д. Выполняет несущую функцию для межэтажных перекрытий и кровли здания.

2. Утепление кирпичной кладки. Утеплитель помещается во внутренние полости-колодцы между наружной и внутренней стенами. Защищает внутреннюю стену от промерзания в холодное время года.

3. Наружная стена с облицовкой из кирпича. Выполняет декоративные функции, придавая фасаду дополнительную эстетику.

Рис.3. Трехслойная стена в разрезе:

1 - внутренняя отделка; 2 - несущая стена здания; 3 - утеплитель между кирпичной кладкой; 4 - вентиляционный зазор между внутренним утеплителем и облицовочной стеной; 5 - наружная стена с облицовкой из кирпича; 6 - внутреннее армирование, соединяющее внутреннюю и внешнюю стену

При использовании стержней (металлических или стеклопластиковых) в качестве связей между верстами минераловатные плиты просто накалываются на них. Дополнительного крепления не требуется (рис.4).

Рис.4. Трехслойная кирпичная кладка с утеплителем. В качестве связей используются стержни:

1 - внутренняя часть кирпичной стены; 2 - минеральная вата; 3 - наружная часть кирпичной стены; 4 - связи

В такой конструкции появляется возможность устроить воздушный зазор между утеплителем и наружной верстой для лучшего вывода влаги из несущей стены и утеплителя.

При использовании теплоизоляционного слоя между внутренней и наружной верстами должны быть предусмотрены гибкие связи. Ранее они выполнялись из стальной арматуры, сейчас - из щелочестойкого стеклопластика. Этот вариант предпочтителен из-за меньшей теплопроводности стеклопластиковых стержней. Теплопроводность связей оказывает сильное влияние на тепловую однородность конструкции. Замена стальных гибких связей на стеклопластиковые позволяет снизить толщину теплоизоляционного слоя на 5-10%.

Типовые решения устройства слоистых кладок можно разделить на два вида: с устройством воздушного зазора и без него (рис.5). Устройство воздушного зазора позволяет более эффективно удалять влагу из конструкции, т.к. избыточная влага из несущей стены и утеплителя будет сразу уходить в атмосферу. В то время как в конструкции без воздушного зазора пар будет проходить и через облицовочный кирпич. При этом воздушный зазор увеличивает общую толщину стены, а, следовательно, и фундамента; увеличится длина гибких связей.

Рис.5. Схема слоистой кладки:

А - без воздушного зазора; Б - с воздушным зазором

Кирпичная кладка с утеплителем внутри, как и прочие строительные технологии, имеет свои плюсы и минусы. К её положительным качествам следует отнести:

Меньший объём кладки, что позволяет уменьшить сметную стоимость за счёт экономии на количестве строительного материала.

Меньший вес постройки, что даёт возможность использовать более лёгкие и недорогие фундаменты.

Высокие теплоизоляционные показатели, позволяющие сохранять тепло в зимнее время.

Улучшенная звукоизоляция. Теплоизоляционный слой позволяет значительно снизить уровень шума, что особенно актуально, если здание находится на центральной улице с интенсивным дорожным движением.

Внешние стены, облицованные декоративным кирпичом, не нуждаются в дополнительной декоративной отделке.

Среди минусов многослойных стен можно указать:

Большую трудоёмкость, связанную с утеплением, по сравнению с кирпичной кладкой в 3-3,5 кирпича.

Трёхслойные стены не дают возможность периодической замены утеплителя, в то время как срок его службы всегда короче срока службы кирпичных стен.

Выбор утеплителя

В качестве теплоизолирующего материала может применяться широкий ассортимент утеплителей, которые отвечают рекомендациям СНиП.

Во-первых, показатель теплопроводности материала должен быть таким, чтобы обеспечить защиту внутренних помещений при максимальных минусовых показателях, свойственных для данного региона.

Ознакомиться с теплоизолирующими показателями утеплителя можно в инструкции от производителя на его упаковке или в таблицах технических характеристик СНиП. Сравнив эти показатели с зимними минимумами температур, можно вычислить необходимую толщину слоя утеплителя.

Здравствуйте!
Решил вынести на обсуждение тему толщины и крепления наружного облицовочного слоя многослойных кирпичных стен!
Обязательный с 1 июля 2015 года пункт 9.32 СП 15.13330.2012 гласит: облицовочный кирпичный слой толщиной 120 мм в трехслойной кладке допускается применять при проектировании на зданиях до 4-х этажей (12 м). На зданиях высотой более 4-х этажей допускается применение двухслойной кладки с лицевым кирпичным слоем толщиной 120 мм при его опирании на перекрытие в соответствии с 9.34. В конструкциях со средним слоем из эффективного утеплителя и гибким соединением слоев предусматривать применение лицевого кирпичного слоя толщиной 250 мм.

В общем прошу разъяснить:
1. Что за конструкция двухслойной кладки имеется ввиду? Внутренний слой скажем из силикатного рядового кирпича, а наружный - из керамического облицовочного? Пункт 9.34 говорит вроде о трехслойной кладке навесных и самонесущих стен на гибких связях (т.к. указано что опирание слоя на перекрытие)? Если я пишу бред - поправьте).
2. В зданиях с несущими стенами высотой более 4-х этажей (12,0 м) облицовочный слой, закрепляемый на гибких связях к несущему должен быть толщиной 250 мм!? Кто такое вообще выдумал? Какие то научные статьи пояснения есть?
3. Допустимо ли выполнение облицовочного слоя в зданиях с несущими стенами высотой более 4-х этажей толщиной 120 мм устройством жестких связей с несущим слоем кладки тычковыми рядами? Это вообще выполнимо?

Если у кого то есть рабочие узлы трехслойной кладки, соответствующей СП 15.13330.2012, буду крайне благодарен за картинки, чертежи эскизы. Вообщем взываю к Великим ShaggyDoc и Ильнуру! и остальным не менее великим)). Спасибо за ответы!

1. Внутренний слой из силикатного кирпича или, например, из пеноблока. По п. 9.34 только к опирание, количество слоев по п. 9.32. На мой взгляд п. 9.34 говорит более обобщенно, как для зданий до 4х этажей, так и более.
2. По слоистым кладкам полно научных статей, ЦНИИСК им. В.А. Кучеренко этим вплотную занимался, в частности М.К. Ищук.
3. На мой взгляд это не самое лучшее решение, жесткие связи может срезать. Связи не должны препятствовать перемещению слоев относительно друг друга.
По поводу узлов трехслойной кладки у того же ЦНИИСК есть альбом технических решений многослойных наружных стен. А у европейцев вообще разработана целая фасадная система для крепления кирпичной облицовки. Что-то типа этого:

Здравствуйте!
Решил вынести на обсуждение тему толщины и крепления наружного облицовочного слоя многослойных кирпичных стен!
Обязательный с 1 июля 2015 года пункт 9.32 СП 15.13330.2012 гласит: облицовочный кирпичный слой толщиной 120 мм в трехслойной кладке допускается применять при проектировании на зданиях до 4-х этажей (12 м). На зданиях высотой более 4-х этажей допускается применение двухслойной кладки с лицевым кирпичным слоем толщиной 120 мм при его опирании на перекрытие в соответствии с 9.34. В конструкциях со средним слоем из эффективного утеплителя и гибким соединением слоев предусматривать применение лицевого кирпичного слоя толщиной 250 мм.

В общем прошу разъяснить:
1. Что за конструкция двухслойной кладки имеется ввиду? Внутренний слой скажем из силикатного рядового кирпича, а наружный - из керамического облицовочного? Пункт 9.34 говорит вроде о трехслойной кладке навесных и самонесущих стен на гибких связях (т.к. указано что опирание слоя на перекрытие)? Если я пишу бред - поправьте).
2. В зданиях с несущими стенами высотой более 4-х этажей (12,0 м) облицовочный слой, закрепляемый на гибких связях к несущему должен быть толщиной 250 мм!? Кто такое вообще выдумал? Какие то научные статьи пояснения есть?
3. Допустимо ли выполнение облицовочного слоя в зданиях с несущими стенами высотой более 4-х этажей толщиной 120 мм устройством жестких связей с несущим слоем кладки тычковыми рядами? Это вообще выполнимо?

Если у кого то есть рабочие узлы трехслойной кладки, соответствующей СП 15.13330.2012, буду крайне благодарен за картинки, чертежи эскизы. Вообщем взываю к Великим ShaggyDoc и Ильнуру! и остальным не менее великим)). Спасибо за ответы!

1. Внутренний слой из силикатного кирпича или, например, из пеноблока. По п. 9.34 только к опирание, количество слоев по п. 9.32. На мой взгляд п. 9.34 говорит более обобщенно, как для зданий до 4х этажей, так и более.
2. По слоистым кладкам полно научных статей, ЦНИИСК им. В.А. Кучеренко этим вплотную занимался, в частности М.К. Ищук.
3. На мой взгляд это не самое лучшее решение, жесткие связи может срезать. Связи не должны препятствовать перемещению слоев относительно друг друга.
По поводу узлов трехслойной кладки у того же ЦНИИСК есть альбом технических решений многослойных наружных стен. А у европейцев вообще разработана целая фасадная система для крепления кирпичной облицовки. Что-то типа этого:

Этот узел является альтернативным узлу 2.0 решением для опирания кирпичной облицовки стен. В нём облицовка ставится не на фундамент, а на теплоизолированный выступ монолитного пояса. Рассмотрим этот узел на примере дома с цокольным этажом:

1 (2).jpg


Рис. 1. Нормаль стены подвала и наружной стены с облицовкой из кирпича.


Более подробно этот узел рассмотрен на рис. 2. "Ступенька" из утеплителя сделана с целью уменьшить эксцентриситет нагрузки от облицовки, а также выступ облицовки относительно цоколя.

2.jpg


Рис. 2. Узел опирания кладки облицовки.


В плане монолитный пояс сделан таким образом:

3.1.jpg


Рис. 3. Монолитный пояс, вид сверху.


Видно, что пояс состоит из двух частей: основной шириной 350 мм, на которую монтируется стена и плиты перекрытия, а также консольный пояс шириной 100 мм, на который и монтируется облицовка. Пояс облицовки изолирован от основного вкладками из ЭППС толщиной 100 мм и связан с ним перешейками 100 мм шириной, выполняющими роль коротких консольных балок, на которых держится пояс облицовки.
И 3д-вид этого решения:

3.jpg


Рис. 4. 3д-вид узла.


Как и положено балкам, перешейки армируются в верхней и нижней зоне стержнями 10А500С. Для надёжного анкерования в теле пояса облицовки и в основном поясе арматура выполнена в виде скобы с отогнутыми концами, которая также выполняет роль хомута. Для снижения вероятности наклонных трещин добавлен стержень 8А500С с анкеровкой крюком за продольную арматуру пояса облицовки (замена хомутам). Его можно сделать и из арматуры 8А240, если А500С такого диаметра найти не удастся. Ещё вариант - заменить двумя стержнями аналогичного профиля из Вр 2 5мм, они ставятся тогда с двух сторон от 10А500С.

Ниже расчёт армирования в Robot для нагрузки на пояс 1,4 тн/м с перешейками 100х200 мм с шагом 600 мм. Прежде чем производить расчёт, разберёмся с геометрией узла. Рассмотрим узел детально:

3d_vid-uzla-2.1-detalno.jpg

Рис. 4а. Зд-вид перешейка увеличено. Отделка и утеплитель скрыты.


Расположение утеплителя в узле выбрано неслучайно, а так, чтобы уменьшить консольный вылет пояса. Рассмотрим на разрезе:

uzel-2.1-detalno.jpg


Рис. 4б. Разрез узла по перешейку.


На разрезе видно, что расстояние от стены, на которую опирается пояс, до центра облицовки составляет 100 мм. Равномерное распределение нагрузки от облицовки по всей ширине позволяет задать её сосредоточенной нагрузкой в центре (случай 1). Но для уверенности рассмотрим и худший случай, когда вся масса облицовки приходится на край консоли, да ещё и с учётом выступа кирпича (синяя линия и случай 2).

Расчётная модель в Robote будет выглядеть как жёстко защемлённая балка 100х200 мм длиной 560 мм из бетона В15 с консольным вылетом 160 мм. И два случая приложения силы:

sluchay1.jpg


Рис. 4в. Расчёт при центральном приложении силы.

sluchay2.jpg

Рис. 4г. Расчёт при приложении силы в крайнюю точку консоли.


При расчёте была взята нагрузка 8,5 кН на каждую балку. Армирование было задано двумя стержнями 10А500С сверху и снизу. Программа делает проверку изгибающих моментов нескольких сечениях (стержень/позиция) и определяет необходимую площадь армирования в см2 (красная стрелка на рис. 4в), а также необходимый % армирования сечения по расчёту. Зелёная стрелка показывает фактически принятый % армирования. Видно, что в самом худшем случае (рис. 4г) запас по армированию большой. Нули в красных выносках - деформация балки под нагрузкой (её нет).

Такое армирование позволяет опереть на пояс облицовку из керамического кирпича с высотой 5-6 метров.

Решение было подсмотрено в "большом" домостроении, например, в Пособие по проектированию монолитных домов предлагается такой узел для опирания внешней кирпичной облицовки:


Рис. 5. Решение из монолитного домостроения.

Рис. 6. Фрагменты решения.

Рис. 7. При меньших нагрузках от облицовки соотношение ширины термовкладыша к перешейку увеличивается.

Рис. 8. Вариант армирования в "большом" домостроении.


Также, рекомендую данную статью Орлович и Деркач к прочтению, и пример решения оттуда:

reshenie.jpg

Рис. 9. Узел прогона из статьи Орлович и Деркач.


Несмотря на наличие мостиков холода в виде перешейков, данное решение является довольно эффективным с точки зрения теплоизоляции:

8.jpg

Рис. 10. Тепловая карта работы узла.


Для моделирования работы мостиков холода в 2-хмерной программе Elcut перешейки были приведены к эквивалентной сплошной перемычке (показана на рис. 10 стрелкой).

Аналогично данный узел исполняется и для МЗЛФ. У нас есть также решения заводской готовности для данного вида узла.

Узел 1.0

Данный типовой узел - сочетание МЗЛФ со стеной из ГБ (или теплой керамики) и полами по грунту.

Узел 1.1 Т-МЗЛФ

Узел 1.1 Т-МЗЛФ

Узел, аналогичный 1.0, но таврового вида.

Узел 1.2 Т-МЗЛФ с использованием блоков ФБС

Узел 1.2 Т-МЗЛФ с использованием блоков ФБС

Узел 1.1 с использованием блоков ФБС.

Узел 2.0 Опирание облицовки на МЗЛФ + полы по грунту

Узел 2.0 Опирание облицовки на МЗЛФ + полы по грунту

Ещё один часто используемый узел - это комбинация стены с кирпичной облицовкой с МЗЛФ и полами по грунту

Узел 2.1 Опирание облицовки на монолитный пояс

Узел 2.1 Опирание облицовки на монолитный пояс

Этот узел является альтернативным узлу 2.0 решением для опирания кирпичной облицовки стен. В нём облицовка ставится не на фундамент, а на теплоизолированный выступ монолитного пояса.

Узел 2.2 Опирание облицовки на уголок

Узел 2.2 Опирание облицовки на уголок

Развитие узла 2.1, опирание облицовки происходит на полку уголка.

Узел 3.0 МЗЛФ и полы по лагам

Узел 3.0 МЗЛФ и полы по лагам

Узел используется при строительстве срубов или каркасных домов с полами по деревянным лагам с подпольем.

Узел 4.0

Узел 4.0

Узел для сочетания каркасного дома, сруба или брусового дома с Т-МЗЛФ и полами по грунту.

Утеплённый финский фундамент УФФ

Утеплённый финский фундамент УФФ

Данный вид Т-МЗЛФ хорошо подходит для каркасных домов, легких домов из теплой керамики и газобетона.

Узел ввода коммуникаций без приямка

Узел ввода коммуникаций без приямка

Узел ввода коммуникаций с использованием приямка

Узел ввода коммуникаций с использованием приямка

Типовые проекты коттеджей

К-372

Небольшой бюджетный дом.
Стены выполнены из газобетона D300, толщиной 300 мм, плита УШП. Проект в базовой версии содержит раздел ИР, в котором представлено устройство канализации, водопровода и системы отопления.

К-366

Комфортный одноэтажник, аналог Z10 и Z67 от польской студии Z500.

К-322

Небольшой дом-квартира. Есть в нескольких вариантах исполнения фундамента и кровли.

Читайте также: