Наибольшее сопротивление кирпичная кладка оказывает при

Обновлено: 03.05.2024

Наиболее важные свойства каменных конструкций — прочность, плотность и теплопроводность.

Прочность кладки. Прочность кладки зависит от свойств составляющих ее материалов — кирпича или камня, из которого сложена кладка, и раствора. Однако предел прочности при сжатии, например, кирпичной кладки, выполненной даже на весьма прочном растворе, при обычных методах возведения составляет не более 40—50%, от предела прочности кирпича. 'Объясняется это тем, что на прочность кладки влияют следующие факторы.

Поверхности кирпича и шва кладки не идеально плоские и гладкие. Поэтому каждый кирпич опирается на раствор лишь отдельными площадками, между которыми имеются участки с воздушными прослойками. Кроме того, и плотность, и толщина слоя раствора в горизонтальных швах не везде одинаковы. Вследствие этих причин давление в кладке неравномерно распределяется по поверхности кирпича, а сосредоточивается на от* дельных участках и вызывает в нем, кроме напряжений сжатия, напряжения изгиба и среза. Каменные материалы обладают слабым сопротивлением изгибу. Например, кирпич имеет в 4—б раз меньший предел прочности при изгибе, чем при сжатии." Этим и обусловливается значительное снижение прочности кладки по сравнению с прочностью составляющих ее материалов.

Влияние свойств раствора на прочность кладки. Чем слабее раствор в кладке, тем он легче сжимается и, следовательно, тем больше возникают общие деформации кладки, а в каждом кирпиче — напряжения изгиба и среза. Поэтому, чтобы получить более прочную кладку, применяют соответственно более высокую марку раствора.

Большое значение имеет пластичность раствора. Пластичные растворы лучше расстилаются по постели кирпича, обеспечивают более равномерную толщину и плотность шва, что повышает прочность кладки, так как способствует уменьшению напряжения изгиба и среза в отдельных кирпичах. Вместе с тем взаимодействие кирпича и раствора в кладке не ограничивается передачей сжимающих напряжений. Известно, что при сжатии возникают деформации укорочения в направлении действия силы и деформации удлинения (поперечного расширения) в перпендикулярном направлении. Чем слабее и пластичнее раствор, тем больше он деформируется при сжатии в поперечном направлении и тем большие растягивающие усилия возникают в кирпиче. Поэтому степень пластичности раствора для каждого вида кладки имеет определенный предел (назначается по строительным нагрмам и правилам—СНиП), так как излишняя пластичность отражается на прочности кладки.

При наиболее низких марках растворов из-за способности их деформироваться все растягивающие усилия передаются на кирпич и в нем могут возникать напряжения, составляющие до 50 %( от предела прочности его на растяжение. Это вызывает разрушение кладки при значительно меньших сжимающих нагрузках, чем кладки, выполненной на прочных растворах. В то же время кирпич препятствует поперечному расширению горизонтальных швов, в результате увеличивается предел прочности слабых растворов в швах и вследствие этого кладка выдерживает напряжения значительно большие, чем предел прочности раствора. Правильное сочетание различных марок кирпича и раствора дает возможность получить кладку необходимой прочности и рационально использовать свойства материалов.

Влияние размеров и формы каменных материалов на прочность кладки. С увеличением высоты камня уменьшается количество горизонтальных швов в кладке и увеличивается пропорционально квадрату высоты камня сопротивление его изгибу. В связи с этим при одинаковой прочности камней на сжатие, изгиб и срез более прочной оказывается та кладка, которая выполнена из камней большей высоты.

Чем правильнее форма "камней, тем лучше и равномернее заполняются раствором швы в кладке, лучше передается нагрузка от камня к камню, лучше перевязывается кладка и выше ее прочность. Например, при одинаковой высоте камней (около 20 см) и одинаковой марке, равной 400 кгс/см2, и марке раствора 25 кгс/см2 кладка, выполненная из природных камней правильной формы, имеет предел прочности 100 кгс/см2, из постели-стого бута — 24 кгс/см2 и из рваного бута — только 16 кгс/см2. На снижение прочности бутовой кладки влияет главным образом то, что неправильная форма камней обеспечивает их соприкосновение лишь через отдельные участки, не создает хорошей перевязки кладки, значительную часть которой приходится заполнять раствором.

Влияние качества швов кладки на ее прочность. Одним из наиболее эффективных способов повышения прочности кладки является тщательное ее выполнение. Качественное заполнение горизонтальных и вертикальных швов раствором, равномерное уплотнение и одинаковая толщина швов, правильная перевязка обеспечивают высокую прочность кладки. Плохое качество кладки, применение растворов, не соответствующих строительным нормам и правилам на производство и приемку работ, могут явиться причиной аварии. Чем толще шов, тем труднее достигнуть равномерной его плотности и тем в большей степени кирпич работает в кладке на изгиб и срез. При толстых швах увеличиваются деформации и снижается прочность кладки. Поэтому для каждого вида кладки установлена определенная толщина швов, увеличение которой снижает прочность конструкций.

Насколько качество кладки характеризуется равномерностью заполнения и уплотнения горизонтальных швов, показывает пример одного из испытаний. Одновременно из одного и того же кирпича и раствора выполнялась кладка высококвалифицированными каменщиками и для сравнения каменщиками низкой квалификации. Предел прочности кладки, выполненной высококвалифицированными каменщиками, оказался равным 50 кгс/см2, а каменщиками низкой квалификации —28 кгс/см2, т. е. в 1,8 раза меньше.

Напряженное состояние кладки. Напряжения растяжения, изгиба и среза, возникающие в кирпичной кладке, приводят к разрушению ее раньше, чем напряжения сжатия достигнут предела прочности кирпича при сжатии. Если постепенно увеличивать нагрузку, например на кирпичный столб, то при некоторой ее величине в отдельных кирпичах появятся; вертикальные трещины (15, а) преимущественно под вертикальными швами там, где концентрируются напряжения растяжения и изгиба. При росте нагрузки трещины увеличатся, разделяя кладку на столбики (15, б). Окончательное разрушение кладки происходит из-за выпучивания этих столбиков в результате потери ими устойчивости (15, в). Напряженное состояние при осевом сжатии кладок из других каменных материалов аналогично напряженному состоянию кирпичной кладки, но имеет те или иные особенности, зависящие от размеров и формы применяемого камня, прочности и удобоукладываемости (подвижности) раствора, его сцепления с камнем, системы перевязки и качества кладки.

Из сказанного очевидно, что сопротивление кирпича изгибу имеет не меньшее влияние на прочность кладки, чем его прочность при сжатии, что низкое сопротивление кирпича сжатию может компенсироваться его высоким сопротивлением изгибу и что большое сопротивление кирпича сжатию бесполезно, если оно не сопровождается соответствующим повышением прочности кирпича при изгибе. Именно поэтому марка кирпича характеризуется не только определенным пределом прочности его при сжатии, но и при изгибе.

Плотность и теплопроводность кладки. Одним из положительных качеств каменных конструкций является их высокая огнестойкость, большая по сравнению с другими материалами химическая стойкость и сопротивляемость атмосферным воздействиям и ' как следствие этого большая долговечность. Эти качества обусловлены тем, что каменные материалы имеют плотную структуру. В то же время большая плотность каменных конструкций увеличивает теплопроводность кладки. Поэтому кирпичные стены общественных зданий и жилых домов приходится делать намного толще, чем это требуется по условиям их прочности и устойчивости.

Как видно из таблицы, при уменьшении плотности каменных материалов с 1800 до 800 кг/см3 толщина стен и потребность в материалах уменьшаются на 55%,, а масса стен — на 80%. Это значит, что для кладки выгодно применять материалы с более низкой плотностью (пустотелые, пористые), обладающие хорошими теплотехническими свойствами.

На теплотехнические свойства каменных конструкций влияет качество кладки: стены с плохо заполненными раствором швами легко продуваются.

Отмеченные свойства учитываются в расчетах при проектировании конструкций зданий и сооружений. При этом размеры несущих стен, столбов и других частей рассчитывают, исходя не только из условий прочности кладки по действующим на нее нагрузкам, но и из условий устойчивости как отдельных элементов, так и всего здания в целом.

3.8. Предел прочности всех видов кладок при кратковременном загружении определяется по формуле профессора Л.И. Онищика:


, (1)


где - предел прочности кладки при сжатии;


- предел прочности камня при сжатии;


- предел прочности раствора (кубиковая прочность).


Коэффициент А характеризует максимально возможную, так называемую "конструктивную", прочность кладки. Действительно, из формулы (1) следует, что при .


, (2)

где выражен в .

Примечание. При определении прочности кладки из сплошных легкобетонных крупных блоков принимается коэффициент А = 0,8, а из крупных блоков тяжелого бетона А = 0,9.

Если прочность кирпича при изгибе меньше предусмотренной ГОСТ 530-80, то конструктивный коэффициент А для кладки определяется по формуле


, (3)


где - прочность кирпича при изгибе.


Коэффициент применяют при определении прочности кладки на растворах низких марок (25 и ниже). Эти коэффициенты принимают равными при:


;


210 × 60 пикс.   Открыть в новом окне
. (4)

Для кладки из кирпича и камней правильной формы ; ; для бутовой кладки ; .


Формула (1) установлена для случаев, когда качество кладки соответствует уровню массового строительства, а применяемые растворы достаточно подвижны и удобоукладываемы. Если эти условия не соблюдаются, то влияние ряда факторов учитывается применением дополнительных коэффициентов к значениям , вычисленным по формуле (1). В случае, например, применения жестких, неудобных для кладки цементных растворов (без добавки глины или извести), растворов на шлаковом или другом легком песке, а также сильно сжимаемых (в возрасте до 3 мес) известковых растворов пределы прочности кладки понижаются на 15% по сравнению с вычисленными по формуле (1). В среднем на 15% понижается предел прочности кладки из пустотелых крупных бетонных блоков по сравнению с пределом прочности кладки из сплошных крупных блоков той же марки. Предел прочности кладки из постелистого бута на 50% выше кладки из рваного бута.

3.9. Предел прочности вибрированной кирпичной кладки, в которой обеспечено плотное и равномерное заполнение швов раствором, значительно (в 1,5-2 раза) выше обычной кладки.

3.10. Предел прочности кладки и бетона зависит также от длительности загружения. Пределом длительного сопротивления кладки или бетона является максимальное напряжение, которое может выдержать кладка или бетон неограниченное время без разрушения. Величина для тяжелых бетонов равна , а для ячеистых бетонов неавтоклавного твердения . Для кирпичной кладки на прочных растворах марок 50 и выше ориентировочно , марок и для кладок на известковом растворе .

Следует однако учитывать, что после длительного периода твердения раствора под нагрузкой (более года) вследствие его пластических деформаций происходит выравнивание поверхности раствора в швах кладки, что уменьшает местные концентрации напряжений и позволяет повысить расчетное сопротивление кладки на 15%, см. п. [3.11г].

3.11. Принятое в стандарте СЭВ 384-76 понятие нормативного сопротивления материалов, связанное с контрольной или браковочной их характеристикой, устанавливаемой государственными стандартами на материалы, не применяется к кладке, так как она является композитным материалом и ее прочность не установлена стандартами.

При установлении расчетных сопротивлений для каменных конструкций принята следующая система коэффициентов. Коэффициент изменчивости прочности кирпичной кладки на основании статистических данных принят равным С = 0,15, а условное нормативное сопротивление , при этом обеспеченность величины С равна 0,98. Вероятное понижение прочности кладки по сравнению с уровнем, принятым в нормах, учитывается делением на коэффициент 1,2, а другие второстепенные факторы, не учитываемые расчетом, и дефекты (ослабление кладки пустошовкой, гнездами, небольшие отклонения столбов и стен от вертикали и т. п.) - на коэффициент 1,15. Таким образом, дополнительный коэффициент надежности для кирпичной кладки принят равным 1,2 х 1,15 = 1,4 и расчетное сопротивление .

Расчетные сопротивления кладки сжатию из всех видов каменных и бетонных изделий приведены в табл. 8, пп. [3.1-3.14]. Средние ожидаемые пределы прочности кладки могут быть определены, в случае необходимости, умножением расчетных сопротивлений на коэффициенты безопасности, приведенные в п. [3.20].


3.12. Расчетные сопротивления кладки при сжатии из керамических камней с горизонтальным расположением пустот (см. ГОСТ 530-80, черт. 15-18) следует назначать по п. [3.1] табл. [2] с применением следующих понижающих коэффициентов: D - учитывающего особенности работы кладки (хрупкость разрушения и др.) и - переходный коэффициент от расчетного сопротивления к пределу прочности кладки:


D = 0,6; = 3,3;


D = 0,6; = 3,3;


D = 0,8; = 2,5.


3.13. Расчетное сопротивление кладки из кирпича и пустотелых керамических камней при расчете каменных конструкций на выносливость, а также по образованию трещин при многократно повторяющихся нагрузках определяется путем умножения соответствующих расчетных сопротивлений кладки, принятых по табл. [2, 10 и 11], на коэффициент D. В табл. 3 приведены коэффициенты D для определения расчетных сопротивлений кладки из кирпича и пустотелых керамических камней при расчете на выносливость и по образованию трещин при многократно повторяющихся нагрузках в зависимости от коэффициента асимметрии :


, (5)

где и - соответственно наименьшее и наибольшее значения напряжений в кладке, возникающих от нормативных статических и повторяющихся нагрузок.

6.14.1 Для возведения стен из каменной кладки применяют керамические кирпичи и камни, бетонные блоки, природные камни правильной формы и мелкие блоки.

Несущие каменные стены должны возводить из кладки на растворах со специальными добавками, повышающими сцепление раствора с кирпичом или камнем, с обязательным заполнением всех вертикальных швов раствором.

Кладка несущих стен без заполнения вертикальных швов раствором и без железобетонных обойм или включений допускается при применении керамических камней с пазо-гребневым соединением только на площадках с расчетной сейсмичностью 7 баллов и менее.

При расчетной сейсмичности 7 баллов допускается возведение несущих стен зданий из кладки на растворах с пластификаторами без применения специальных добавок, повышающих прочность сцепления раствора с кирпичом или камнем.

6.14.2 Запрещается при отрицательной температуре выполнение кладки несущих, самонесущих стен, заполнение каркаса и перегородок, в том числе усиленных армированием или железобетонными включениями, из кирпича (камня, блоков) при возведении зданий на площадках сейсмичностью 9 и более баллов.

При расчетной сейсмичности 8 баллов и менее допускается выполнение зимней кладки с обязательным включением в раствор добавок, обеспечивающих твердение раствора при отрицательных температурах.

Допускается ведение кладки в сейсмических районах при отрицательной температуре воздуха из подогретого до положительной температуры кирпича (камня, блока) на растворах без противоморозных добавок с дальнейшим укрыванием и выдержкой при положительной температуре до набора прочности раствором не менее 20% проектной.

6.14.3 Расчет каменных конструкций должен проводиться на одновременное действие горизонтально и вертикально направленных сейсмических сил.

Значение вертикальной сейсмической нагрузки при расчетной сейсмичности 7-8 баллов должно быть 15%, а при сейсмичности 9 баллов - 30% соответствующей вертикальной статической нагрузки.

Направление действия вертикальной сейсмической нагрузки (вверх или вниз) следует принимать более невыгодным для напряженного состояния рассматриваемого элемента.

6.14.4 Для кладки несущих и самонесущих стен или заполнения, участвующего в работе каркаса, следует применять следующие изделия и материалы:

а) полнотелый и пустотелый кирпич, керамические камни марки не ниже М125 при сейсмичности площадки строительства 8 и 9 баллов, и марки не ниже M100 при сейсмичности 7 баллов.

Изделия с пустотами должны иметь: диаметр вертикальных цилиндрических пустот и размер стороны квадратных пустот не более 20 мм, а ширину щелевых пустот не более 16 мм. Пустотность материала кладки без железобетонных включений или обойм (рубашек) не должна превышать 25%;

б) камни и блоки правильной формы из ракушечников, известняков марки не менее 35 или туфов (кроме фельзитового) марки 50 и выше;

в) для несущих стен следует применять бетонные камни, сплошные и пустотелые блоки из легкого и ячеистого бетонов классов по прочности на сжатие не ниже В3,5, марок по средней плотности не ниже D600; для самонесущих стен - классов по прочности на сжатие не ниже В2,5, марок по плотности не ниже D500.

Для возведения перегородок и ненесущих стен допускается применение кирпича и керамических камней марки не ниже М75 без ограничения размеров и пустот и гипсовых пазогребневых плит.

Штучная кладка стен должна выполняться на смешанных цементных растворах марки не ниже М25 в летних условиях и не ниже М50 - в зимних или на специальных клеях. Для кладки блоков следует применять раствор марки не ниже М50 и специальные клеи.

6.14.5 Кладки в зависимости от их сопротивляемости сейсмическим воздействиям подразделяют на категории.

Категория кирпичной или каменной кладки, выполненной из материалов, предусмотренных 6.14.4, определяется временным сопротивлением осевому растяжению по неперевязанным швам (нормальное сцепление), значение которого должно быть в пределах:

кПа - для кладки категории I;

- для кладки категории II.

Для повышения временного сопротивления осевому растяжению по неперевязанным швам (нормальное сцепление) следует применять растворы со специальными добавками.

Требуемое значение необходимо указывать в проекте. При проектировании значение следует назначать в зависимости от результатов испытаний, проводимых в районе строительства.

При невозможности получения на площадке строительства (в том числе на растворах с добавками, повышающими прочность их сцепления с кирпичом или камнем) значения , применение кирпичной или каменной кладки не допускается.

Примечание - При расчетной сейсмичности 7 баллов допускается применение кладки из естественного камня при . При этом высота здания должна быть не более трех этажей, ширина простенков - не менее 0,9 м, ширина проемов - не более 2 м, а расстояния между осями стен - не более 12 м.

Проектом производства каменных работ должны предусматриваться специальные мероприятия по уходу за твердеющей кладкой, учитывающие климатические особенности района строительства. Эти мероприятия должны обеспечивать получение необходимых прочностных показателей кладки.

6.14.6 Значения расчетных сопротивлений кладки , , по перевязанным швам должны соответствовать СП 15.13330, а по неперевязанным швам - определяют по формулам (10)-(12) в зависимости от значения , полученного в результате испытаний, проводимых в районе строительства:

Сопротивление кирпичной кладки сжатию в большой мере зависит от сопротивления кирпичей изгибу и скалыванию: первые трещинки в кирпичах появляются именно из-за изгибающих и скалывающих напряжений в них. Эти напряжения возникают вследствие неравномерной плотности раствора в швах кладки. Неравномерность плотности раствора наблюдается уже при выходе его из мешалки. Она увеличивается еще больше, когда каменщик, разостлав неровный слой раствора, обжимает его давлением кирпича.

На прочность кладки влияют и другие факторы: упругие свойства раствора, квалификация каменщиков и, как следствие, толщина, форма и наполнение швов, форма Кирпичей, размеры сечения кладки, система ее перевязки и др.

Упругие свойства раствора сказываются отрицательно из-за бблыиего поперечного расширения при сжатии у раствора (особенно у слабого) по сравнению с кирпичом. Опыты показали, что у цементного раствора 1:4 поперечное расширение примерно в 10 раз больше, чем у глиняного кирпича. В кладке расширение растворных швов сдерживают кирпичи. Вследствие этого в кирпичах возникают растягивающие усилия, которые в значительной степени уменьшают их сопротивляемость.

Растворы одинаковой марки могуг обладать разной поперечной расшн - ряемостью. Поэтому при применении для кирпичной кладки шлаковых и других легких растворов в формулу (7.1) для RH вводят поправочный коэф- фициет 0,85, а при применении цементных растворов с органическими пластификаторами без извести — коэффициент 0,9 (см. примечание 1 к таблице 3 приложения II и пояснения на стр. 32).

От квалификации каменщиков зависит толщина горизонтальных швов в кладке. Чем толще швы, тем больше влияние их поперечного расширения при сжатии, тем слабее кладка. Опыты показывают, что кирпичная кладка на известковом растворе (ои деформируется больше, чем цементный) при швах толщиной 25 мм получается на 25с/о слабее, чем при швах в 10 мм. Но важно также, чтобы швы были и не слишком тонкими, так как они должны сгладить обычные неровности граней камней и неравномерности их толщины. Оптимальной для прочности кирпичной кладки является толщина горизонтальных швов в 10—12 мм.

От квалификации каменщиков зависит и равномерность толщины и плотности горизонтальных швов. Квалифицированные каменщики дают более равномерные швы, в результате чего сопротивление кладки сжатию может увеличиться до 30°/о и даже больше. Так сильно сказывается «рука» каменщика.

В известной степени сопротивление кладки сжатию зависит и от заполнения вертикальных швов. Если швы заполнены тщательно, они включаются в работу кладки на сжатие, препятствуют поперечному расширению камней в кладке и смягчают концентрацию напряжений у вертикальных швов. В невибрируемой кладке вертикальные швы хорошо заполняются при применении раствора с глубиной погружения конуса 12 см.

Чем жестче раствор, тем хуже получаются швы. Поэтому при применении для кирпичной кладки жестких цементных растворов (например, состава 1:5; 1:6) без добавки извести или глины следует, согласно нормам, R брать с коэффициентом 0,85 (см. примечание 1 к таблице 3 приложения II).

На прочность кладки большое влияние может оказать и форма кирпичей. Если поверхность у них очень искривлена, толщина швов получается очень неравномерной, и от этого увеличивается изгиб кирпичей в кладке. Уменьшение прочности кладки по этой причине может достичь 25®/о.

Влияние размеров сечения проявляется в том, что прочность при сжатии (считая на единицу площади сечеиия) у толстых стен получается меньшей, чем у тонких. Объясняется это меньшей однородностью сечений у толстых стеи.

Сопротивление кладки сжатию мало зависит от системы перевязки, если ее расслаиванию на отдельные столбики препятствует достаточное количество тычков, т. е., если в кладке из кирпича или керамических камней расстояние в свету между тычковыми рядами ие превышает 400 мм и в кладке из бетонных камней — двух рядов кладки (см. главу 5). Пр и уменьшенных против требуемого минимального количествах тычков в 1, 5 раза следует, согласно нормам, учитывать снижение прочности кладки н а 10°уо и при уменьшенных в 2 раза — на 25°/в.

Степень сцепления камней с раствором при правильной форме камней ыало влияет на прочность кладки при сжатии.

Прочность бутовой кладки (в противоположность кладке из камней правильной формы) зависит главным образом от сцепления раствора с камнем.

Прочность бутобетона зависит (при не слишком слабых камнях) в основном от прочности бетона (см. табл. 8 в приложении II).

Смотрите также:

Объясняется это тем, что на прочность кладки влияют следующие факторы.
Этим и обусловливается значительное снижение прочности кладки по сравнению с прочностью составляющих ее материалов.

На снижение прочности бутовой кладки, например, влияет главным образом то, что неправильная форма камней обеспечивает их соприкосновение лишь через отдельные участки, не создает хорошей перевязки кладки.

Техника печной кладки. Прочность кладки зависит от того, как будет уложен кирпич, каково его качество, как приготовлен раствор и как намочен кирпич. Если при кладке кирпича получается единый, общий массив, как бы монолит, то качество кладки надежное.

Осн. значение имеют прочность и вид камня и раствора, а также качество кладки. В СССР были изучены особенности работы каменной кладки из различных видов камня и раствора и факторы, влияющие на ее прочность.

Если в кладке слишком много раствора, прочность кладки будет низка.
Факторы влияющие на усадку бетона. Влияние ухода и условия твердения бетона. Дифференциальная усадка бетона.

Способность кладки воспринимать, не разрушаясь, нагрузку от вышележащих конструкций и других воздействий называют прочностью.

Прочность кладки зависит от свойств кирпича (камня) и раствора, из которых кладка сложена. Предел прочности при сжатии, например, кирпичной кладки, выполненной даже на высокомарочном растворе, при обычных методах возведения составляет не более 40. 50 % предела прочности кирпича. Объясняется это тем, что поверхности кирпича и шва кладки не идеально плоские, плотность и толщина слоя раствора в горизонтальных швах не везде одинакова и вследствие этого давление в кладке неравномерно распределяется по поверхности кирпича и вызывает в нем кроме напряжений сжатия напряжение изгиба и среза. Поэтому каменные материалы, слабо сопротивляющиеся изгибу, разрушаются в кладке раньше, чем сжимающие напряжения в них достигнут предела прочности при сжатии. Например, кирпич имеет в 4. 6 раз меньший предел прочности при изгибе, чем при сжатии.

Напряженное состояние в кладке возникает не только от сжимающих, а и от горизонтальных, изгибающих, вибрационных и других нагрузок. Способность кладки сохранять свое положение при действии этих нагрузок называют устойчивостью. Предельные величины ее предусмотрены Строительными нормами и правилами.

Под воздействием внешних нагрузок в кладке создается напряженное состояние, которое распространяется по схеме, показанной на 18.

Если постепенно увеличивать нагрузку на кладку до величины, превышающей предел прочности ее, то сначала в отдельных кирпичах появятся вертикальные трещины (19, а) преимущественно под вертикальными швами, там, где концентрируются напряжения растяжения и изгиба. При росте нагрузки трещины увеличатся, разделяя кладку на столбики (19, б). Окончательное разрушение кладки происходит из-за выпучивания этих столбиков в результате потери ими устойчивости (19, в). Напряженное состояние при осевом сжатии кладок из других каменных материалов аналогично напряженному состоянию кирпичной кладки.

Влияние свойств раствора на прочность кладки. Чем ниже марка раствора в кладке, тем легче он сжимается и, следовательно, тем больше общие деформации кладки, а в каждом кирпиче — напряжения изгиба и среза. Поэтому, чтобы получить более прочную кладку, применяют соответственно раствор более высокой марки.

Однако повышение прочности раствора незначительно увеличивает прочность кладки. Гораздо большее значение имеет пластичность раствора. Пластичные растворы лучше расстилаются по постели кирпича, обеспечивая равномерную толщину и плотность шва. Это повышает прочность кладки за счет уменьшения напряжения изгиба и среза в отдельных кирпичах.

Влияние размеров и формы каменных материалов на прочность кладки. С увеличением высоты камня уменьшается количество горизонтальных швов в кладке и увеличивается пропорционально квадрату высоты камня сопротивление его изгибу. В связи с этим при одинаковой прочности камней более прочной оказывается кладка, выполненная из камней большей высоты.

При правильной форме камней швы в кладке заполняются раствором равномернее, чем при неправильной, лучше передается нагрузка от камня к камню, лучше перевязывается кладка и прочность ее более высока. На снижение прочности бутовой кладки, например, влияет главным образом то, что неправильная форма камней обеспечивает их соприкосновение лишь через отдельные участки, не создает хорошей перевязки кладки, значительную часть которой приходится заполнять раствором.

Влияние качества швов кладки на ее прочность. Хорошее заполнение горизонтальных и вертикальных швов раствором, равномерное уплотнение и одинаковая толщина швов, правильная перевязка обеспечивают высокую прочность кладки. Низкое качество кладки, применение растворов, не соответствующих требованиям проекта, могут привести к разрушению кладки.

Чем толще шов, тем труднее достигнуть равномерной его плотности и тем в большей степени кирпич работает в кладке на изгиб и срез. При толстых швах увеличивается деформация и снижается прочность кладки. Поэтому для каждого вида кладки установлена определенная толщина швов, увеличение которой снижает прочность конструкций. Насколько качество кладки характеризуется равномерностью заполнения раствором и уплотнения горизонтальных швов, можно видеть на примере одного из испытаний. Одновременно из одного и того же кирпича и раствора выполняли кладку высококвалифицированные каменщики и каменщики низкой квалификации. Предел прочности кладки, выполненной высококвалифицированными каменщиками, оказался 5 МПа, каменщиками низкой квалификации — 2,8 МПа, т. е. в 1,8 раза меньше.

Плотность кладки обусловливает такие качества каменных конструкций, как высокая огнестойкость, большая по сравнению с другими материалами химическая стойкость, сопротивляемость атмосферным воздействиям и, как следствие этого, большая долговечность. В то же время большая плотность увеличивает теплопроводность кладки, поэтому нередко наружные кирпичные стены зданий приходится делать намного толще, чем это требуется по условиям прочности и устойчивости.

При уменьшении плотности каменных материалов с 1800 (кладка из керамического кирпича) до 800 кг/см2 (камни из ячеистого бетона) толщина стен и потребность в материалах уменьшаются на 55%, а масса стен — на 80 %. Это значит, что для кладки выгодно применять материалы более низкой плотности (пустотелые, пористые), обладающие хорошими теплотехническими свойствами.

На теплотехнические свойства каменных конструкций влияет также качество кладки: стены с плохо заполненными раствором швами легко продуваются и промерзают зимой.

Читайте также: