Коэффициент уплотнения бетона в25

Обновлено: 16.05.2024

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА
РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНЫЕ (ТИПОВЫЕ) ЭЛЕМЕНТНЫЕ НОРМЫ РАСХОДА ЦЕМЕНТА
ПРИ ИЗГОТОВЛЕНИИ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ
ИЗДЕЛИЙ И КОНСТРУКЦИЙ

FEDERAL (STANDARDIZID) ELEMENT NORMS OF CEMENT'S EXPENSE
FOR MANUFACTURE CONCRETE AND REINFORCED - CONCRETE

ARTICLES AND CONSTRUCTIONS

Дата введения 1996-01-07

1 РАЗРАБОТАНЫ НИИЖБ, ВНИИжелезобетон, ЦНИИЭУС, Государственным предприятием "Туластройпроект", Главным управлением совершенствования ценообразования и сметного нормирования в строительстве Минстроя России.

2 ВНЕСЕНЫ Главным управлением совершенствования ценообразования и сметного нормирования в строительстве Минстроя России.

ВЗАМЕН СНиП 5.01.23-83 "Типовые нормы расхода цемента для приготовления бетонов сборных и монолитных бетонных, железобетонных изделий и конструкций".

СНиП 82-02-95 "Федеральные (типовые) элементные нормы расхода цемента при изготовлении бетонных и железобетонных изделий и конструкций" разработан в развитие СНиП 82-01-95.

Настоящий СНиП регламентирует федеральные (типовые) элементные нормы расхода цемента на приготовление бетонов для сборных и монолитных бетонных и железобетонных изделий и конструкций массового производства.

Федеральные (типовые) элементные нормы расхода цемента разработаны для тяжелых, мелкозернистых и легких бетонов, применяемых во всех видах строительства.

В основу базовых норм расхода цемента положены технологические и статистические зависимости производства бетона, полученные при применении материалов для бетона, качество которых соответствует действующим стандартам на эти материалы, а условия изготовления бетона, изделий и конструкций из него отвечают современному уровню отечественного производства. Приведенная в нормах система коэффициентов, учитывающая колебания показателей качества материалов для бетона и технологических режимов производства, позволяет осуществлять привязку базовых норм расхода цемента к конкретным условиям предприятий - изготовителей бетона, изделий и конструкций из него, а также рассчитывать усредненные и укрупненные нормы для заданных условий при различных параметрах оптимизации (минимизация стоимости или расхода ресурсов, максимизация производительности и т.д.).

В отличие от ранее действующих норм расхода цемента (СНиП 5.01.23-83 и других нормативных документов), в которых единственным параметром оптимизации было снижение расхода цемента посредством установления плановых заданий по его экономии, в настоящих нормах приведены технологически и статистически обоснованные коэффициенты, применение которых дает возможность оценить и учесть влияние вариации основных условий производства на расход цемента при безусловном обеспечении всех нормируемых показателей качества бетона.

В типовых элементных нормах впервые установлены дифференцированные минимальные расходы различных видов цементов, рассчитанные из условий обеспечения долговечности изделий и конструкций при различных условиях их эксплуатации, а также сняты необоснованные запреты и ограничения (на максимальный расход цемента, изменения режимов тепловой обработки, обязательное применение определенных видов и марок цемента, добавок и т.д.).

Все это позволит инженеру-технологу творчески подойти к процессу разработки и применения норм на конкретном производстве и получить при этом максимальный технико-экономический эффект.

1 Область применения

Настоящие федеральные (типовые) элементные нормы расхода цемента (далее - типовые элементные нормы - ТЭН) входят в общую структуру подсистемы (комплекса) норм и нормативов расхода материальных ресурсов в строительстве (СНиП 82-01-95), разработаны в соответствии с установленной Системой нормативных документов в строительстве (СНиП 10-01-94), служат основой для разработки всех видов норм расхода цемента этой подсистемы (комплекса).

ТЭН в бетоне при изготовлении бетонных и железобетонных изделий и конструкций распространяются на все виды строительства из тяжелых, мелкозернистых и легких бетонов.

Положения настоящего нормативного документа обязательны для органов управления, предприятий, организаций, объединений независимо от организационно-правовых форм и ведомственной принадлежности, а также для организаций, осуществляющих разработку норм и нормативов расхода материалов в строительстве.

2 Нормативные ссылки

В настоящих ТЭН использованы положения следующих документов:

СНиП 3.03.01-87 "Несущие и ограждающие конструкции".

СНиП 3.09.01-85 "Производство сборных железобетонных конструкций и изделий".


СНиП 10-01-94 "Система нормативных документов в строительстве. Основные положения".


СНиП 82-01-95 "Разработка и применение норм и нормативов расхода материальных ресурсов в строительстве. Основные положения".

ГОСТ Р 1.0-92 "Государственная система стандартизации Российской Федерации. Основные положения".


ГОСТ Р 1.5-93* "Государственная система стандартизации Российской Федерации. Общие требования к построению, изложению, оформлению и содержанию стандартов".

ГОСТ 6133-84 "Камни бетонные стеновые. Технические условия".

ГОСТ 7473-94 "Смеси бетонные. Технические условия".

ГОСТ 8736-93 "Песок для строительных работ. Технические условия".

ГОСТ 9757-90 "Гравий, щебень и песок искусственные пористые. Технические условия".


ГОСТ 13015.0-83 "Конструкции и изделия бетонные и железобетонные сборные. Общие технические требования".


ГОСТ 18105-86 "Бетоны. Правила контроля прочности".

ГОСТ 22266-76 "Цементы сульфатостойкие. Технические условия".

ГОСТ 23464-79 "Цементы. Классификация".

ГОСТ 24211-91 "Добавки для бетонов. Общие технические требования".

ГОСТ 25820-83 "Бетоны легкие. Технические условия".

ГОСТ 26633-91 "Бетоны тяжелые и мелкозернистые. Технические условия".

В настоящем документе применены термины в соответствии с приложением А, СНиП 10-01-94 и ГОСТ Р 1.0-92.

4 Общие положения

4.1 ТЭН предназначены для разработки на их основе усредненных (укрупненных) федеральных (типовых) и территориальных (региональных), а также местных (фирменных) элементных норм расхода цемента.

4.2 Нормы распространяются на приготовление тяжелых, мелкозернистых и легких бетонов для сборных и монолитных бетонных и железобетонных изделий и конструкций, применяемых для всех видов строительства.

4.3 ТЭН регламентируют содержание цемента в 1 куб.м бетона изделий и конструкций (в плотном теле), обеспечивающее ему заданные свойства (класс прочности на сжатие, марки по плотности, морозостойкости, водонепроницаемости), предусмотренные проектной документацией при применении технологических приемов и режимов производства, а также цементов и заполнителей, отвечающих требованиям действующих стандартов строительных норм и правил.

Примечание - Соотношение между классами и марками бетона приведено в приложении Б.

4.4 ТЭН определяют чистый расход цемента в бетоне и не включают производственные потери цемента при его транспортировке, хранении и применении.

4.5 ТЭН не должны использоваться для непосредственного назначения местных (фирменных) элементных норм расхода цемента и номинальных составов бетона без лабораторных подборов составов и учета конкретных условий производства.

4.6 ТЭН устанавливаются умножением базовой нормы расхода цемента на коэффициенты, приведенные в соответствующих пунктах настоящего документа, учитывающие проектные характеристики бетона, цемента, заполнителей, а также технологические особенности производства. При разработке территориальных (региональных) и местных (фирменных) норм значения этих коэффициентов должны приниматься с учетом конкретных местных условий.

4.7 Разработка и утверждение усредненных (укрупненных) федеральных (типовых), территориальных (региональных) и местных (фирменных) элементных норм расхода цемента должны производиться в соответствии со СНиП 82-01-95.

5 Федеральные (типовые) элементные нормы расхода
цемента для тяжелых и мелкозернистых бетонов
сборных бетонных и железобетонных изделий

5.1 Федеральные (типовые) элементные нормы расхода цемента распространяются на изделия из тяжелых и мелкозернистых бетонов, изготовляемые по поточно-агрегатной, конвейерной, стендовой или кассетной технологиям с применением для уплотнения бетона и формования изделий всех видов вибрационных воздействий и предназначенные для работы в эксплуатационных условиях под статической нагрузкой в неагрессивной водной или воздушной среде.

ТЭН не распространяются на изделия, изготовляемые:

с применением методов уплотнения бетонной смеси прокатом, вибровакуумированием, центрифугированием;

с применением тепловой обработки при повышенном (сверх атмосферного) давлении;

из бетонов класса по прочности на сжатие более В40 и специальных видов бетона (жаростойких и жароупорных, кислотостойких, декоративных, а также предназначенных для эксплуатации в химически агрессивной водной или газовой среде, для радиационной защиты и т.п.).

5.2 ТЭН в тяжелых и мелкозернистых бетонах сборных бетонных и железобетонных изделий дифференцированы с учетом:

проектных классов бетона по прочности на сжатие;

нормируемых величин отпускной прочности бетона на сжатие, а также передаточной прочности бетона для предварительно напряженных конструкций;

проектных марок по морозостойкости и водонепроницаемости;

характеристик вида и марки цемента, вида и предельной крупности заполнителей, а также других свойств этих материалов;

удобоукладываемости бетонной смеси и условий формования изделий;

условий твердения бетона в изделиях.

5.3 ТЭН разработаны для бетонов, однородность которых соответствует по ГОСТ 18105 среднему уровню прочности на сжатие, равной нормируемой.

5.4 Базовые нормы расходы цемента для тяжелых бетонов, используемых при производстве изделий по поточно-агрегатной, конвейерной и стендовой технологиям, приведены в табл.1, при производстве изделий по кассетной технологии - в табл.2. Базовые нормы расхода цемента для мелкозернистых бетонов приведены в табл.3.

Условия применения базовых норм и коэффициентов, учитывающих характеристики бетонов, цемента, заполнителей, удобоукладываемость бетонных смесей, режимы твердения, приведены в последующих пунктах настоящего документа.

Усадка бетона – явление, которое возникает при твердении бетонной смеси и заключается в уменьшении объема элемента или конструкции. Оно происходит из-за потери материалом влаги, уплотнения, протекания различных химических реакций и физических процессов. Чаще всего коэффициент усадки бетона небольшой, но пренебрегать эти фактором не рекомендуется, поскольку в будущем это может сказаться на эксплуатационных характеристиках здания, в том числе на его долговечности.

Усадочные трещины в бетоне

Виды усадки бетона и причины их возникновения

По времени появления и развития различают следующие виды усадочных процессов:

  • Ранний (капиллярный, пластический). Этот вид усадки протекает в течение 2-8 часов после заливки и уплотнения бетона. Происходит из-за потери бетонной смесью воды под воздействием яркого солнца, ветра, высоких температур окружающей среды. Вода из бетонной смеси может вытекать через неплотно соединенные элементы опалубки. Величина ранней усадки – 0-4 мм/метр. Для снижения усадки бетона после вибрирования бетонную поверхность во время высыхания увлажняют. Особенно часто это делают в первые часы после заливки. Уменьшить раннюю усадку позволяет корректный монтаж опалубки.
  • Аутогенный. Его начало совпадает с началом схватывания. Процесс возникает в «молодом» бетоне и может длиться от нескольких дней до нескольких недель, пока материал затвердевает и набирает марочную прочность. Происходит в результате гидратации цемента в смесях с водоцементным соотношением ниже 0,45. Величина усадки небольшая – 0-1 мм/м.
  • При высыхании. Начинается в момент прекращения ухода за бетонной конструкцией, может длиться от нескольких недель до нескольких лет. Причиной протекания процесса является низкая относительная влажность окружающего воздуха. В зависимости от ее значения усадка бетона при высыхании составляет – 0-5 мм/м. В современном строительстве проблема возникновения и протекания этого процесса решается введением минеральных добавок и грамотным армированием.

Уменьшение линейных размеров конструкции может продолжаться до полутора лет. Но наиболее интенсивно этот процесс проходит в первые 3-4 месяца, а затем значительно замедляется.

Определение коэффициента усадки бетона

Коэффициент усадки бетона – относительная величина, измеряемая в процентах в соответствии с ГОСТом 24544-81, СНиПами, среднее значение – 1,5%, максимально допустимое – 3%. Усадочный коэффициент определяется изменением объема (или линейного размера) относительно исходной величины.

Усадка бетона

Способы снижения усадки

Значительные усадочные процессы крайне негативно влияют на эксплуатационные характеристики зданий и сооружений – приводят к образованию трещин и разрушению строительных конструкций.

Поэтому в современном строительстве принимаются эффективные меры, сводящие усадочные процессы к минимуму:

  • Оптимизация состава бетонной смеси. Использование алитовых цементов обеспечивает меньшие усадочные процессы по сравнению с алюминатными вяжущими. Усадочный коэффициент снижает использование портландцемента (а не глиноземных или высокоактивных цементов), крупнофракционных тяжелых заполнителей.
  • Обеспечение нормативных условий набора прочности бетонной конструкцией.
  • Использование расширяющихся цементов и добавок, сводящих к минимуму усадочные процессы.
  • Качественное усиление бетонной конструкции с помощью арматурной стали или композитной арматуры. Наличие объемного или плоского каркаса положительно влияет на снижение усадочных процессов.

Увеличивают усадочные процессы: низкая относительная влажность воздуха, нарушение нормативных условий твердения, применение ускорителей твердения бетона, использование легких заполнителей.


Расчетные сопротивления бетона для предельных состояний первой и второй групп определяются делением нормативных сопротивлений на соответствующие коэффициенты надежности по бетону при сжатии или растяжении принимаемые для основных видов бетона по табл.11.

Коэффициенты надежности по бетону при сжатии и растяжении и для расчета конструкций по предельным состояниям

при назначении класса бетона по прочности

Тяжелый, напрягающий, мелкозернистый, легкий и поризованный

2.12. Нормативные сопротивления бетона (с округлением) в зависимости от класса бетона по прочности на сжатие приведены в табл.12.

Вид сопро- тивления

Нормативные сопротивления бетона и расчетные сопротивления бетона для предельных состояний
второй группы и при классе бетона по прочности на сжатие

Сжатие осевое (приз- менная

Тяжелый и мелко- зернис- тый

Растя- жение осевое


и

Легкий при мелком заполни- теле:

Примечания: 1. Над чертой указаны значения в МПа, под чертой - в кгс/см.

2. Группы мелкозернистых бетонов приведены в п.2.3.

3. Значения сопротивлений приведены для ячеистого бетона средней влажностью 10%.


4. Для керамзитоперлитобетона на вспученном перлитовом песке значения и принимают как для легкого бетона на пористом песке с умножением на коэффициент 0,85.


5. Для поризованного бетона значения и принимают такими же, как для легкого бетона, а значения и умножают на коэффициент 0,7.


6. Для напрягающего бетона значения и принимают такими же, как для тяжелого бетона, а значения и умножают на коэффициент 1,2.

Нормативное сопротивление бетона растяжению в случаях, когда прочность бетона на растяжение не контролируется, принимается в зависимости от класса бетона по прочности на сжатие согласно табл.12.

Нормативное сопротивление бетона осевому растяжению в случаях, когда прочность бетона на растяжение контролируется на производстве, принимается равным его гарантированной прочности (классу) на осевое растяжение.


2.13. Расчетные сопротивления бетона (с округлением) в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены: для предельных состояний первой группы -соответственно в табл.13 и 14, второй группы - в табл.12.

Вид сопроти- вления

Расчетные сопротивления бетона для предельных состояний первой группы и при классе бетона по прочности на сжатие

Каков коэффициент усадки бетона и как его увеличить


Усадка бетона представляет собой явление, в котором залитая масса изменяет свои размеры и конфигурацию в процессе схватывания.

Что представляет собой осаждение

Схватывание бетона в зависимости от его марки и наличия специальных добавок происходит в течение нескольких десятков минут или часов. Зачем же требуется определять возможную величину усадки бетона в ходе строительных работ?

Вернуться к оглавлению

  • пластическая;
  • молодого бетона;
  • зрелого бетона.

Пластическая усадка бетона.

Вернуться к оглавлению

Коэффициент – это показатель, отражающий изменение объема относительно первоначального в процессе заливки.

Усадка молодого бетона.

Вернуться к оглавлению

Абсолютная величина усадки бетона.

Вернуться к оглавлению

Коэффициент изменения объема бетона.

Вернуться к оглавлению

Во избежание получения некачественного бетона и высокого коэффициента усадки требуется соблюдать несколько важных правил:

Изменение коэффициента поперечных деформаций бетона при испытании на внецентренное сжатие.

Вернуться к оглавлению

Уплотнение бетонной смеси

В результате уплотнения бетонная смесь заполняет форму, причем уплотненная бетонная смесь должна иметь однородное строение и минимальный объем воздушных пустот; после уплотнения остается не более 2 — 3% воздуха (т. е. 20 — 30 дм³ на 1 м³ бетона).

Рисунок-1. Влияние интенсивности уплотнения на прочность бетона:


1 — сильное уплотнение; 2 — слабое уплотнение

Вибрирование бетона

Об интенсивности виброуплотнения можно судить по величине амплитудного значения ускорения w (см/с²), сообщаемого колеблющимся частицам при угловой скорости ω (рад/с); w=aω²=a4𲃲

Интенсивность вибрирования принято выражать в единицах земного ускорения g, например интенсивность равна 2g, 4g, 8g. Эта характеристика интенсивности показывает, во сколько раз ускорение, сообщаемое частицам при вибрировании, больше ускорения силы тяжести.

Для виброуплотнения подвижных и мелкозернистых бетонных смесей оптимальные амплитуды уменьшаются до 0,15 — 0,4 мм; соответственно необходимой интенсивности увеличивается частота колебаний до 50 — 150 Гц.

При принятых параметрах вынужденных колебаний для каждой бетонной смеси имеется своя критическая продолжительность виброуплотнения.

а — рыхло насыпанной в форму; б — после виброуплотнения (по Ю. Сторку)

Более продолжительное вибрирование приводит к расслоению смеси и снижению прочности бетона. В зависимости от рода привода и движущей энергии различают электромеханические, электромагнитные и пневматические вибраторы.


При применении вибраторов наряду с обычными мерами по охране труда следует обращать особое внимание на технические мероприятия по устранению вредного действия вибрации на организм человека.

Переносные вибраторы применяют при изготовлении изделий (в особенности крупноразмерных) на стендах, а также для уплотнения монолитного бетона на строительной площадке.


а — безынерционным (пневматический); б — инерционный (гравитационный); в — то же, подрессорный; г — вибрационный

При величине прессующего давления поверхности изделия 0,05 — 0,15 МПа можно способом вибропрессования плотно уложить особо жесткие бетонные смеси с количеством воды затворения 120 — 130 кг/м³ и В/Ц= 0,3 — 0,35.

Способы уплотнения бетонной смеси

Виброштампование часто применяют для формования коробчатых и ребристых плит, лестничных маршей со ступеньками и других профилированных изделий. Бетонная смесь, уложенная в форму, формуется и уплотняется при помощи погружаемого в нее виброштампа.

Вибропрокат осуществляется на специальных вибропрокатных станках. Этим способом изготовляют изделия из тяжелого и легкого бетонов (например, вибропрокатные керамзитобетонные панели).

Уплотнение бетона

Уплотнение бетона необходимо производить для удаления воздуха из бетона после его укладки. Если не уплотнять бетон, может произойти его расслоение и некоторые другие негативные факторы. Всё это приводит к тому, что качество монолитной конструкции после её застывания существенно снижается. Имеется несколько способов препятствовать подобному процессу и одну из наиболее высоких эффективностей предоставляет именно уплотнение бетона. Необходимо рассмотреть подобный процесс со всех сторон, чтобы иметь о нём полное представление.

Уплотнение бетона, как это ясно из названия, позволяет получить наибольшую плотность смеси после её укладки. Оно может быть выполнено вручную или с использованием специального оборудования. Подобные мероприятия требуются при работе с жёсткой смесью. Причина весьма проста – подвижные составы отлично занимают предоставленную им форму и без сторонних воздействий. При этом, чрезмерная подвижность не является положительным моментом и приводит к быстрому расслоению бетона по плотности. Тяжёлый заполнитель опускается в нижнюю часть, а в верхней половине присутствуют более лёгкие компоненты.

Прежде всего, необходимо выбрать определённый метод уплотнения. Использовать оборудование лучше всего в тех случаях, когда показатель жёсткости повышен. В других ситуациях хорошо себя зарекомендовал простейший ручной метод – штыкование. Он подразумевает применение металлического штыря длиной около метра. Когда укладывается новый слой состава, необходимо протыкать его несколько десятков раз. Штырь не должен уходить слишком глубоко или затрагивать только поверхность. Важно не делать слишком резких движений, иначе это приведёт к проникновению пузырьков воздуха.

Если смесь обладает низкой подвижностью и может быть отнесена к категории жёстких, то уплотнение бетона должно производиться с использованием специального оборудования. Для решения подобной задачи может быть использован вибратор. Он представляет собой металлический штырь, способный колебаться с заданной частотой. Волны, распространяясь в структуре бетонной смеси, приводят к её уплотнению.

По своему принципу работы подобные устройства можно разделить на три основные группы:

Внутренние. Данный тип оборудования считается одним из наиболее эффективных в тех сферах, где он может быть использован. Принцип функционирования предельно прост: штырь погружается в состав и работает на заданной частоте.

Вибраторы, укрепляемые на опалубке. Как понятно из названия, крепление производится непосредственно на конструкцию опалубки, а от неё колебания передаются составу.

Вибраторы поверхностного типа. Устанавливаются на поверхности бетонной смеси. Имеют относительно невысокий коэффициент полезного действия. Несмотря на подобный момент, являются довольно привлекательным вариантом для целого ряда случаев.

Читайте также: