Коэффициент теплотехнической однородности для кирпичных стен

Обновлено: 16.05.2024

ГОСТ Р 54851-2011

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОНСТРУКЦИИ СТРОИТЕЛЬНЫЕ ОГРАЖДАЮЩИЕ НЕОДНОРОДНЫЕ

Расчет приведенного сопротивления теплопередаче

Dissimilar building envelopes. Calculation of reduced total thermal resistance

Дата введения 2012-05-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 РАЗРАБОТАН Учреждением "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

4 Настоящий стандарт разработан с учетом основных нормативных положений международного стандарта ИСО 14683:2007* "Тепловые мостики при строительстве зданий - Линейная теплопередача - Упрощенные методы и стандартные значения" (ISO 14683:2007 "Thermal bridges in building construction - Linear thermal transmittance - Simplified methods and default values, NEQ")

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Настоящий стандарт устанавливает методы определения теплозащитных характеристик ограждающих конструкций зданий и сооружений в соответствии с требованиями Федерального закона N 384-ФЗ от 30 декабря 2009 г. "Технический регламент о безопасности зданий и сооружений", согласно которому здания и сооружения, с одной стороны, должны исключать в процессе эксплуатации нерациональный расход энергетических ресурсов, а с другой - не создавать условия для недопустимого ухудшения параметров среды обитания людей и условий осуществления различных технологических процессов.

Настоящий стандарт разработан с целью подтверждения соответствия теплотехнических характеристик наружных ограждений зданий и сооружений нормативным значениям и требованиям контроля этих показателей согласно [1] с учетом требований ГОСТ Р 51380 и ГОСТ Р 51387. Настоящий стандарт позволяет оценить уровень теплозащиты ограждающих конструкций при приемке зданий и последующей эксплуатации, наметить мероприятия по повышению уровня теплозащиты зданий в случае отклонения энергопотребления от действующих нормативных требований.

В рамках реализации Федерального закона N 261-ФЗ от 23 ноября 2009 г. "Об энергосбережении и повышении энергетической эффективности" настоящий стандарт является одним из базовых стандартов, обеспечивающих теплотехническими параметрами энергетический паспорт и энергоаудит эксплуатируемых зданий.

1 Область применения

Настоящий стандарт устанавливает методы расчета приведенного сопротивления теплопередаче неоднородных ограждающих конструкций помещений жилых, общественных, административных, бытовых, сельскохозяйственных, производственных зданий и сооружений, а также совокупности ограждающих конструкций, отделяющих внутренний объем здания от наружной среды.

В зависимости от типа ограждающей конструкции и теплотехнических неоднородностей, входящих в структуру ограждения, настоящий стандарт предлагает методы теплотехнического расчета обобщенной теплозащитной характеристики теплотехнически неоднородного ограждения, разделяющего пространства с различными температурно-влажностными средами (в пределах одного помещения, группы соседних помещений, этажа, всего фасада здания, ограждений, контактирующих снаружи с грунтом, и т.д.). Настоящий стандарт также учитывает в теплотехнических расчетах наружных ограждений такие виды теплотехнических неоднородностей, как примыкания элементов ограждения здания (наружные и внутренние углы, примыкания стен к покрытиям и перекрытиям первого этажа над холодным подвалом или уложенным по грунту, примыкание наружных ограждений к внутренним), и отдельных элементов наружных ограждений (стыки между соседними панелями, откосы проемов, связи между облицовочными слоями ограждений).

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р 51263-99 Полистиролбетон. Технические условия

ГОСТ Р 51380-99 Энергосбережение. Методы подтверждения соответствия показателей энергетической эффективности энергопотребляющей продукции их нормативным значениям

ГОСТ Р 51387-99 Энергосбережение. Нормативно-методическое обеспечение. Основные положения

ГОСТ 11024-84 Панели стеновые наружные бетонные и железобетонные для жилых и общественных зданий. Общие технические условия

ГОСТ 19010-82 Блоки стеновые бетонные и железобетонные для зданий. Общие технические условия

ГОСТ 21562-76 Панели металлические с утеплителем из пенопласта. Общие технические условия

ГОСТ 23486-79 Панели металлические трехслойные стеновые с утеплителем из пенополиуретана. Технические условия

ГОСТ 24594-81 Панели и блоки стеновые из кирпича и керамических камней. Общие технические условия

ГОСТ 25485-89 Бетоны ячеистые. Технические условия

ГОСТ 25820-2000 Бетоны легкие. Технические условия

ГОСТ 26254-84 Здания и сооружения. Методы определения сопротивления теплопередаче ограждающих конструкций

ГОСТ 26602.1-99 Блоки оконные и дверные. Методы определения сопротивления теплопередаче

ГОСТ 30494-96 Здания жилые и общественные. Параметры микроклимата в помещениях

ГОСТ 31310-2005 Панели стеновые трехслойные железобетонные с эффективным утеплителем. Общие технические условия

ГОСТ 31359-2007 Бетоны ячеистые автоклавного твердения. Технические условия

ГОСТ 31360-2007 Изделия стеновые неармированные из ячеистого бетона автоклавного твердения. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.1 теплопередача: Перенос теплоты от одной окружающей среды через ограждающую конструкцию к другой окружающей среде.

3.2 наружная ограждающая конструкция здания: Конструктивный элемент здания, защищающий внутреннее пространство, в котором поддерживаются требуемые параметры микроклимата, от воздействий наружной среды.

3.3 линейная теплотехническая неоднородность: Линейная зона примыкания двух ограждающих конструкций, влияющего на изменение теплового потока, проходящего через наружное ограждение (стык между соседними панелями, угол, образованный из двух наружных ограждений или наружного ограждения с внутренним, откос проема, соединительное ребро внутри ограждения и др.).

3.4 точечная теплотехническая неоднородность: Локальный соединительный элемент многослойного наружного ограждения, обеспечивающий его конструктивную целостность и повышающий теплопотери в зоне его прохождения (гибкие связи, дюбели, шпонки и другие точечные соединения, проходящие через теплоизоляционные слои ограждения),

3.5 условное сопротивление теплопередаче ограждающей конструкции , м·°С/Вт: Величина, характеризующая уровень сопротивления прохождению теплоты через однородную часть наружного ограждения при разности температур воздушных сред, расположенных по обе его стороны.

3.6 приведенное сопротивление теплопередаче ограждения , м·°С/Вт: Средневзвешенное по площади сопротивление теплопередаче совокупности видов ограждающих фрагментов и их элементов, образующих теплотехнически неоднородную конструкцию (панель, окно, витраж, светпропускающий фонарь, наружную дверь, ворота), часть здания (стену, фасад, покрытие, перекрытие над холодным подвалом или подпольем, ограждение, контактирующее с грунтом, ограждение, разделяющее помещения с различными температурами внутреннего воздуха) или наружное ограждение здания в целом.

3.7 коэффициент теплотехнической однородности : Безразмерный показатель, оценивающий снижение уровня теплозащиты ограждения вследствие наличия в нем различного вида теплотехнических неоднородностей (соединительных элементов облицовок ограждения, пронзающих теплоизоляционные слои, стыков между элементами ограждающих конструкций с примыканием к ним внутренних ограждений, откосов, угловых соединений, в том числе примыканий стен к покрытиям, перекрытиям над холодными пространствами, мест закрепления в стенах балконных плит и т.п.) и численно выражаемый отношением приведенного сопротивления теплопередаче ограждения к сопротивлению теплопередаче его зоны, удаленной от теплопроводных включений.

4 Методы расчета приведенного сопротивления теплопередаче наружных ограждающих конструкций

4.1 Общие положения

4.1.1 Приведенное сопротивление теплопередаче наружной неоднородной ограждающей конструкции здания , м·°С/Вт, представляет собой основную теплозащитную характеристику наружного ограждения, в основу расчета которого положена усредненная по площади плотность теплового потока , Вт/м, проходящего через ограждение в расчетных условиях эксплуатации

Численные значения теплового потока, проходящего через неоднородное ограждение, определяют на основе расчета одно-, двух- и трехмерных температурных полей. Участки многослойного ограждения, имеющие однородные теплоизоляционные, конструкционные и прочие слои, расположенные перпендикулярно к направлению теплового потока, возникающего при эксплуатации здания, и удаленные от всякого рода теплотехнических неоднородностей и теплопроводных включений, обеспечивают равномерную по площади теплопередачу и характеризуются условным (по глади) сопротивлением теплопередаче.

При проектировании наружных ограждающих конструкций здания в силу конструктивных особенностей оболочки здания и видов наружных ограждений возникают различного рода теплотехнические неоднородности: они в силу конструктивных особенностей примыкания наружных и внутренних ограждений имеют преимущественно линейный характер (наружные и внутренние углы наружных стен, примыкания наружных стен к внутренним стенам и перекрытиям, примыкания наружных стен к покрытиям и перекрытиям первого этажа над холодным подвалом или уложенным по грунту, стыки между соседними панелями, откосы проемов). Теплопотери через эти виды теплотехнических неоднородностей определяют расчетом на ЭВМ двухмерных стационарных температурных полей фрагментов наружных ограждений при расчетных значениях температур разделяемых воздушных сред и условиях теплообмена на поверхностях расчетного фрагмента.

В многослойных ограждающих конструкциях для обеспечения конструктивной целостности и устойчивости в эксплуатационных условиях вводят различные типы связей между облицовочными слоями (соединительные ребра, в т.ч. перфорированные, гибкие стержневые связи, шпонки). К этой категории неоднородностей относятся угловые примыкания откосов проемов, примыкания угла наружных стен к покрытию или перекрытию первого этажа. Теплопотери через эти виды теплопроводных включений или примыканий определяют расчетом на ЭВМ двухмерных (в цилиндрических координатах) или трехмерных стационарных температурных полей фрагментов при расчетных значениях температур и условиях теплообмена.

4.1.2 Таким образом, теплотехнический расчет неоднородных наружных ограждающих конструкций, содержащих углы, проемы с заполнениями (оконными и дверными блоками, воротами), соединительные элементы между наружными облицовочными слоями (ребра, шпонки, стержневые связи), сквозные и несквозные теплопроводные включения, выполняют на основе расчета температурных полей. Приведенное сопротивление теплопередаче , м·°С/Вт, неоднородной ограждающей конструкции или ее участка (фрагмента) вычисляют по формуле

где - площадь неоднородной ограждающей конструкции (стены, окна, двери, ворот) или ее фрагмента, м, по размерам с внутренней стороны, включая откосы оконных и дверных проемов (для стен);

- суммарный тепловой поток через конструкцию или ее фрагмент площадью , Вт, определяемый на основе расчета температурного поля на ЭВМ либо экспериментально по ГОСТ 26254 или ГОСТ 26602.1 с внутренней стороны;

- коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, принимаемый в соответствии с таблицей 6 [1] с учетом примечания к этой таблице;

- расчетная температура внутреннего воздуха, °С, принимаемая по ГОСТ 30494;

- расчетная температура наружного воздуха, °С, принимаемая по средней температуре наиболее холодной пятидневки с обеспеченностью 0,92, см. [1].

4.1.3 На основе расчета на ЭВМ температурных полей ограждающей конструкции определяют также температуры на их поверхностях . По полученным значениям устанавливают соответствие требуемым температурным характеристикам наружных ограждений:

- расчетному перепаду температур между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, определяемому по формуле (4) [1]; при этом расчетный перепад температур не должен превышать нормируемых значений , установленных в таблице 5 [1];

Значения коэффициента теплотехнической однородности некоторых типов ограждающих конструкций, используемого для теплотехнического расчета.

- для стен с оконными проемами r = 0, 75 - 0,85 в зависимости от соотношения площади окон к площади фасада (для соотношения 0,18 величина r = 0,8);

- для глухих участков стен r = 0,92;

- для перекрытий верхнего этажа, совмещенных с покрытием кровли r = 0,95;

- для утепленного чердачного или цокольного перекрытия r = 0,97.

Вид стен и использованные материалы

Из однослойных легкобетонных панелей

Из трехслойных железобетонных панелей с эффективным утеплителем и гибкими связями

Из трехслойных железобетонных панелей с эффективным утеплителем и железобетонными шпонками или ребрами из керамзитобетона

Из трехслойных железобетонных панелей с эффективным утеплителем и железобетонными ребрами

Из трехслойных панелей на основе древесины, асбестоцемента и других листовых материалов с эффективным утеплителем при полистовой сборке при ширине панелей 6 и 12 м без каркаса

Из трехслойных металлических панелей с утеплителем из пенопласта без обрамлений в зоне стыка

Из трехслойных металлических панелей с утеплителем из пенопласта с обрамлением в зоне стыка

Из трехслойных металлических панелей с утеплителем из минеральной ваты с различным каркасом

Из трехслойных асбестоцементных панелей с минераловатным утеплителем с различным каркасом

Фасадные системы с эффективным утеплителем и тонким наружным штукатурным слоем

Навесные фасадные системы с эффективным утеплителем и облицовочным слоем на относе, образующим вентилируемую воздушную прослойку

Конструкции наружных ограждений

1. Сплошная кладка из крупноформатных пустотелых пористых керамических камней

2. Сплошная кладка из пустотелого керамического, силикатного камня

3. Сплошная кладка из полнотелого и пустотелого керамического, силикатного обыкновенного и утолщенного кирпича

4. Сплошная кладка из полнотелого и пустотелого керамического, силикатного обыкновенного и утолщенного кирпича и камня, утепленная пенополиуретаном, напыляемым толщиной 30-35 мм

5. Облегченная кладка из полнотелого, пустотелого керамического силикатного кирпича или камня с внутренним слоем из плитного эффективного утеплителя с гибкими стальными связями или сетками

6. Облегченная кладка из полнотелого, пустотелого керамического кирпича или камня с внутренним слоем из плитного эффективного утеплителя с поперечными связями

7. Кладка из полистиролбетонных блоков с арматурой в растворных швах, отштукатуренная по металлической сетке с обеих сторон

8. Кладка полистиролбетонных блоков, облицованная с наружной стороны в полкирпича с поперечными металлическими сетками в растворных швах

9. Однослойные легкобетонные панели с монтажной арматурой

10. Легкобетонные панели с термовкладышами и монтажной арматурой

11. Трехслойные железобетонные панели с эффективным утеплителем и гибкими стальными связями

12. Трехслойные железобетонные панели с эффективным утеплителем и железобетонными шпонками или поперечными ребрами из керамзитобетона

13. Трехслойные железобетонные панели с эффективным утеплителем и поперечными железобетонными ребрами

14. Трехслойные металлические панели с эффективным утеплителем

15. Трехслойные асбоцементные панели с эффективным утеплителем

16. Железобетонные, кирпичные конструкции с плитным утеплителем, закрепленным дюбелями, оштукатуренные по капроновой или металлической сетке (термофасад)

17. Железобетонные и кирпичные конструкции (20-25 см) с плитным эффективным утеплителем, с вентилируемой воздушной прослойкой и облицовочным слоем (массой не более 20 кг/м) на подконструкции, прикрепленной к стене двумя (на 1 м стены) стальными кронштейнами (вентилируемый фасад здания)

18. Железобетонные и кирпичные конструкции (20-25 см) с плитным эффективным утеплителем, с вентилируемой воздушной прослойкой и облицовочным слоем (массой не более 20 кг/м) на подконструкции, прикрепленной к стене двумя (на 1 м стены) алюминиевыми кронштейнами с термической прокладкой (вентилируемый фасад здания)

19. Железобетонные и кирпичные конструкции (20-25 см) с плитным эффективным утеплителем, с вентилируемой воздушной прослойкой и облицовочным слоем (массой не более 30 кг/м) на подконструкции, прикрепленной к стене тремя (на 1 м стены) стальными кронштейнами (вентилируемый фасад здания)

20. Железобетонные и кирпичные конструкции (20-25 см) с плитным эффективным утеплителем, с вентилируемой воздушной прослойкой и облицовочным слоем (массой не более 30 кг/м) на подконструкции, прикрепленной к стене тремя (на 1 м стены) алюминиевыми кронштейнами (вентилируемый фасад здания)

21. Железобетонные и кирпичные конструкции (20-25 см) с плитным эффективным утеплителем, с вентилируемой воздушной прослойкой и облицовочным слоем (массой не более 30 кг/м) на подконструкции, прикрепленной к стене металлическими кронштейнами (4 шт/м стены) (вентилируемый фасад здания)

22. Конструкции чердачных перекрытий и над подвалами:

а) из железобетонных панелей с плитным эффективным утеплителем

б) из железобетонных плит по металлическим балкам с плитным эффективным утеплителем

в) из деревянных элементов (балок, брусьев) с плитным эффективным утеплителем

Конструкции наружных стен

Сплошная кладка из полнотелого или пустотелого керамического, силикатного кирпича или камня

Сплошная кладка из обыкновенных и крупноформатных пустотных пористых керамических камней с облицовкой из лицевого керамического кирпича, камня

Облегченная кладка из полнотелого, пустотелого керамического, силикатного кирпича или камня, слоем плитного или монолитного утеплителя

Однослойные легкобетонные панели

Легкобетонные панели с термовкладышами

Трехслойные железобетонные панели с эффективным утеплителем и гибкими связями

Трехслойные железобетонные панели с эффективным утеплителем и железобетонными шпонками

Трехслойные железобетонные панели с эффективным утеплителем и железобетонными ребрами

Трехслойные металлические панели с эффективным утеплителем

Трехслойные асбестоцементные панели с эффективным утеплителем

Кладка из полистиролбетонных, ячеистобетонных блоков на клею с проволочной арматурой в горизонтальных швах, связывающей наружную облицовку из пустотелого кирпича со слоем внутренней штукатурки

Кладка из полистиролбетонных блоков на клею с проволочной арматурой в горизонтальных швах, связывающей наружный и внутренний слои штукатурки

Все без исключения стены и покрытия (и другие виды ограждающих конструкций зданий и сооружений) нельзя назвать изотермическими. Другими словами, говоря распределение температурного поля по сечению, перпендикулярного потоку тепла в конструкции не представляет собой постоянную величину, из-за присутствия всевозможных теплопроводных включений (так называемых "мостиков холода"), которые практически всегда в том или ином виде присутствуют в конструкции ограждения. В качестве теплопроводящих включений могут выступать арматурные стальные или композитные стержни в перевязке облицовочной кладки к несущим конструкциям , цементно-песчаный раствор или клей в кладке, фиксаторы теплоизоляционный материалов, углы и примыкания перекрытий и покрытий. Поэтому принимается такое понятие, как приведенное сопротивление теплопередаче ограждения Rreq, что есть величина равная осредненным теплотехническим характеристикам комбинированной (неоднородной по составу) конструкции, поток тепла в которой при постоянном по времени режиме не представляющийся одномерным по перпендикулярному сечению конструкции.

Таким образов Rreq равен сопротивлению теплопередаче однослойного ограждения такой же единицы площади, которая пропускает поток теплоты тот же что и в фактической конструкции при одном и том же градиенте температур между внутренней и наружной поверхностью ограждения. В том случае если отбросить влияние вышеуказанных теплопроводных включений или как мы уже говорили "мостиков холода" в конструкции ограждения, то его теплозащитные характеристики удобно представить с помощью понятия условного сопротивления теплопередаче. После того как мы определись с такими понятиями как условное и приведенное сопротивление, можно ввести определение коэффициента теплотехнической однородности r которое представляет собой отношение приведенного сопротивления теплопередаче к условному сопротивлению теплопередаче. Таким образом, r зависит от характеристик материалов и толщин составляющих ограждающей конструкцию слоев , а также от присутствия самих теплопроводных включений. Численное значение коэффициента r оценивает, насколько эффективно используются теплоизоляционные свойства утеплителя в ограждающей конструкции и влияние на это наличие теплоизоляционных включений. Исходя из решений по конструкции ограждения значение коэффициента теплотехнической однородности варьируется в пределах от 0,5 до 0,98 . Если оно равно 1, это значит, что фактически теплопроводных включений нет, и эффективность слоя теплоизоляционного материала максимальна использована.

Определение коэффициента теплотехнической однородности ограждающих конструкций.

Значение коэффициента r необходимо определять с помощью достаточно трудоёмких расчетов с использованием метода температурных полей или путем проведения замеров теплопроводности на основании эксперимента. В частности коэффициент теплотехнической однородности - r можно также рассчитать по указаниям, которые есть в СП 23-101-2004 «Проектирование тепловой защиты зданий». На практике же достаточно принять значение коэффициента по действующим нормативным документам. Если при принятом по нормативным документам коэффициенте теплотехнической однородности конструкция ограждения все равно не соответствует действующим нормам то коэффициент можно повысить, подтвердив его применяемые значения расчетом.

В том случае когда в рассчитываемой конструкции ограждения не удается выдержать требования нормативных документов предъявляемых к коэффициенту теплотехнической однородности использование такой конструкции подлежит пересмотру. Тут возможны различные варианты, такие как замена самих применяемых типов и видов материалов в ограждении, уменьшение толщины швов в кладке, замена связующей стальной арматуры на композитную, изменение размеров кладочный блоков.

Учет коэффициента при расчете кладок.

Если же в конструкции ограждений применяется кладка из ячеистобетонных, керамзитбетонных и полистирольных блоков, следует учесть цементно-песчанные или клеевые швы кладки. Это связано в первую очередь с тем, что для кладки в СП 23-10-2004 при теплотехническом расчете ограждений при определении приведенного значения сопротивления теплопередаче значения теплопроводности материалов должны приниматься с учетом наличия швов. В СП 23-101-2004 в приложении Д для таких материалов, как ячеистый бетон, керамзитобетон, полистиролбетон и т.д. представлены теплотехнические характеристики сплошных(цельных) материалов. Связано это с тем, что фактически швы в кладке обладают гораздо большей теплопроводностью, чем сам материал кладки. Для корректного теплотехнического расчета ограждающих конструкций с применении вышеуказанных материалов также необходимо вводить коэффициент теплотехнической однородности.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КЛАДКА КАМЕННАЯ И ИЗДЕЛИЯ ДЛЯ НЕЕ

Методы определения расчетных значений показателей теплозащиты

Masonry and masonry products. Methods for determining estimates of the thermal protection

Дата введения 2013-07-01

1 РАЗРАБОТАН институтом НИИСФ РААСН (федеральное государственное бюджетное учреждение "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

4 В настоящем стандарте учтены основные нормативные положения европейского регионального стандарта ЕН 1745:2002* "Кладка каменная и изделия для нее. Методы определения значений показателей теплозащиты конструкции" (EN 1745:2002 "Masonry and masonry products. Methods for determining design thermal values") в части условий определения теплопроводности на изделиях для кладки

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

5 ВВЕДЕН ВПЕРВЫЕ

1 Область применения

Настоящий стандарт устанавливает лабораторные методы определения расчетных значений теплозащитных свойств наружных стен из каменных кладок. Настоящий стандарт распространяется на кладки из керамических, бетонных, композитных штучных стеновых изделий (полнотелых и пустотелых камней, блоков, кирпичей), включая слоистые кладки со вставками из теплоизоляционных материалов.

Настоящий стандарт не распространяется на натурный метод определения сопротивления теплопередаче наружных стен из каменных кладок эксплуатируемых зданий в зимний период по ГОСТ Р 54853.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р 54851-2011 Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче

ГОСТ Р 54853-2011 Здания и сооружения. Метод определения сопротивления теплопередаче ограждающих конструкций с помощью тепломера

ГОСТ 379-95 Кирпич и камни силикатные. Технические условия

ГОСТ 530-2012 Кирпич и камень керамические. Общие технические условия

ГОСТ 6133-99 Камни бетонные стеновые. Технические условия

ГОСТ 7076-99 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме

ГОСТ 24816-81 Материалы строительные. Метод определения сорбционной влажности

ГОСТ 25380-82 Здания и сооружения. Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции

ГОСТ 26254-84 Здания и сооружения. Методы определения сопротивления теплопередаче ограждающих конструкций

ГОСТ 31360-2007 Изделия стеновые неармированные из ячеистого бетона автоклавного твердения. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется принять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 каменная кладка: Элемент ограждающей конструкции из штучных стеновых изделий (камни, блоки, кирпичи), уложенных по установленному правилу с применением кладочного раствора.

3.2 изделие для каменной кладки: Элемент кладки - строительный блок, камень, кирпич, кладочный раствор, штукатурный раствор и др.

3.3 изделие полнотелое стеновое: Строительный блок, камень или кирпич, который не содержит пустот, за исключением поверхностных выемок, таких как отверстия для захвата, желоба и т.д.

3.4 композитный строительный блок: Строительный блок, состоящий из нескольких материалов.

3.5 теплозащитные свойства: Теплопроводность, Вт/(м·°С), и термическое сопротивление, (м·°С)/Вт.

3.6 нормативные значения теплозащитных свойств: Значения теплотехнических показателей (теплопроводности и/или термического сопротивления) строительных материалов или изделий в сухом состоянии, определяемые по настоящему стандарту как основа для получения расчетных значений теплозащитных свойств.

3.7 расчетные значения теплозащитных свойств: Значения теплотехнических показателей (теплопроводности и/или термического сопротивления) строительных материалов или изделий при условиях эксплуатации (в условиях эксплуатационной влажности).

3.8 условия эксплуатации: Условия, влияющие на теплозащитные характеристики материалов и изделий в зависимости от влажностного режима помещений и зон влажности района строительства.

3.9 стационарный тепловой режим: Режим, при котором все рассматриваемые теплофизические параметры не меняются со временем.

3.10 плотность теплового потока: Тепловой поток, проходящий через единицу площади.

3.11 термическое сопротивление: Отношение разности температур наружной и внутренней поверхностей фрагмента кладки к плотности теплового потока в условиях стационарного теплового режима.

3.12 эквивалентная теплопроводность: Отношение толщины конструктивного элемента каменной кладки к его термическому сопротивлению.

3.13 средняя температура образца: Среднеарифметическое значение температур, измеренных на наружной и внутренней поверхностях стенового изделия.

3.14 относительная массовая влажность материала: Процентное отношение массы влаги к массе материала в сухом состоянии.

3.15 приведенное сопротивление теплопередаче: Сопротивление теплопередаче ограждающей конструкции с учетом термического сопротивления, теплообмена внутренней и наружной поверхностей и теплопроводных включений (термических неоднородностей).

3.16 удельные потери теплоты через линейную неоднородность: Теплопотери через растворные швы на вертикальных и горизонтальных стыках стеновых изделий.

3.17 теплопроводность при равновесной влажности: Теплопроводность образца, измеренная при средней температуре 10 °С на изделии, выдержанном до постоянной массы при температуре 20 °С.

4 Общие положения

Методы определения термического сопротивления и эквивалентной теплопроводности основаны на создании в кладке или ее элементе условий стационарного теплообмена и измерении температур внутренней и наружной поверхностей, а также плотности теплового потока, проходящего через кладку или ее элемент.

Настоящий стандарт содержит описание элементного метода определения расчетных значений теплопроводности изделий для кладки с последующим вычислением приведенного сопротивления теплопередаче, а также фрагментного метода определения теплотехнических параметров кладки в климатической камере.

Элементный метод заключается в определении расчетных теплотехнических показателей изделий для кладки в условиях эксплуатационной влажности с последующим вычислением приведенного сопротивления теплопередаче фрагмента наружной стены из каменной кладки по ГОСТ Р 54851. Расчетное массовое отношение влаги в материале при условиях эксплуатации принимается равным максимальному сорбционному увлажнению материалов по [1] (условия эксплуатации Б). Расчетную теплопроводность устанавливают при указанной выше влажности материалов.

Фрагментный метод предусматривает устройство кладки в климатической камере, в которой по обе стороны испытуемого фрагмента создают температурно-влажностный режим, соответствующий расчетным зимним условиям эксплуатации по [2] и [3].

5 Метод определения расчетных теплотехнических показателей изделий для кладки в условиях эксплуатационной влажности с последующим вычислением приведенного сопротивления теплопередаче наружной стены из каменной кладки (элементный метод)

5.1 Подготовка штучных стеновых изделий к испытаниям

К штучным стеновым изделиям относятся кирпич и камни керамические по ГОСТ 530, камни бетонные по ГОСТ 6133, блоки из ячеистого бетона по ГОСТ 31360, кирпич и камни силикатные по ГОСТ 379, а также другие стеновые штучные изделия, выпускаемые в соответствии с требованиями нормативных документов.

Испытания штучных стеновых изделий заключаются в определении значений плотности брутто в сухом состоянии, теплопроводности в сухом состоянии, теплопроводности во влажном состоянии, приращения теплопроводности на 1% увлажнения.

5.1.1 Проводят отбор образцов из представленной партии числом не менее 10 шт. для испытаний: 5 шт. в сухом и 5 шт. во влажном состоянии. Полнотелые и пустотелые камни с равномерным расположением вертикальных пустот по всему сечению отбирают для испытания только в положении "ложок". Камни с продольным неравномерным расположением пустот по всему сечению камня отбирают для испытаний в двух вариантах: в положении "ложок" и в положении "тычок". Крупноформатные керамические камни отбирают для испытаний в положении "тычок", если другого варианта установки их в кладке не предусмотрено проектом.

5.1.2 Бетонные и композитные стеновые изделия, обладающие остаточной влажностью, не подлежат дополнительному увлажнению. Отбирают пять образцов для испытания во влажном состоянии и пять образцов в сухом состоянии. Высушивают бетонные и композитные изделия в сушильной камере при температуре 90 °С до постоянной массы.

5.1.3 Керамические изделия (кирпичи, камни) подвергают предварительному высушиванию до постоянной массы, после чего одна часть партии подлежит увлажнению, вторая - кондиционированию при температуре (20±2) °С и относительной влажности (45±5)% в течение 3 сут. Объемное увлажнение керамических изделий проводится полным окунанием в воду температурой (18±2) °С на срок 10 мин; после извлечения образцы выдерживают на воздухе при температуре (20±2) °С и относительной влажности (45±5)% в течение 2-3 сут до достижения влажности материала 3%-5% по массе. При кондиционировании образцы укладывают на прокладки, образцы не должны касаться друг друга. Высушенные образцы после кондиционирования относят к сухим образцам. Сухие и влажные образцы подлежат испытаниям по 5.3.

5.2 Подготовка образцов кладочных и штукатурных растворов

5.2.1 Подготовка образцов заключается в приготовлении растворной смеси стандартной консистенции согласно технологическому описанию и формовании образцов-пластин размерами 250х250х30 мм в количестве 5 шт. Отформованные образцы выдерживают перед испытаниями в течение 7 сут в камере нормального твердения. По завершении процесса твердения образцы готовят к проведению испытаний по ГОСТ 7076.

5.3 Проведение экспериментальных определений эквивалентной теплопроводности штучных стеновых изделий

5.3.1 Испытания проводят в климатической камере, состоящей из холодного и теплого отсеков. При испытании в камере устанавливают температурный режим, обеспечивающий среднюю температуру изделий 10 °С.

5.3.2 Теплопроводность штучных стеновых изделий определяют на пяти влажных образцах и пяти сухих образцах. Теплопроводность измеряют при средней температуре изделия 10 °С.

5.3.3 Изделия устанавливают в проем климатической камеры в количестве не менее пяти образцов каждого типа. Каждое изделие тщательно теплоизолируют, обкладывая по всем боковым граням эффективным утеплителем (пенополистирол, пенополиэтилен, пенополиуретан), с тем чтобы термическое сопротивление тепловой изоляции каждой из граней изделия было не менее 10 (м·°С)/Вт.

5.3.4 На наружную (грань образца, обращенная в холодную зону) и внутреннюю (грань образца, обращенная в теплую зону) грани каждого образца устанавливают датчики температуры. На внутреннюю грань устанавливают преобразователи (датчики) теплового потока по ГОСТ 25380. Датчики теплового потока должны плотно прилегать к поверхности образца без образования воздушных зазоров; допускается выравнивать поверхность образца посредством нанесения слоя термопасты.

5.3.5 После установления стационарного теплового режима на образце проводят не менее десяти измерений температур и плотности теплового потока с периодичностью 0,5 ч.

5.3.6 После проведения испытаний образцы взвешивают и высушивают до постоянной массы при температуре 90 °С.

5.4 Проведение экспериментальных определений теплопроводности кладочных и штукатурных растворов

5.4.1 Теплопроводность кладочных и штукатурных растворов определяют на образцах по ГОСТ 7076.

5.4.2 Теплопроводность кладочных и штукатурных растворов определяют на образцах размерами 250х250х30 мм после 7 сут нормального твердения. Последовательно определяют теплопроводность влажного образца и теплопроводность этого же образца после его высушивания.

5.4.3 После первичного определения теплопроводности образец взвешивают, высушивают до постоянной массы при температуре 90 °С и вновь проводят измерения по ГОСТ 7076.


Цели и принципы стандартизации в РФ установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения стандартов организаций - ГОСТ Р 1.4-2004 «Стандартизация в Российской Федерации. Стандарты организаций. Общие положения»

Сведения о стандарте

1 РАЗРАБОТАН Российским обществом инженеров строительства (РОИС) совместно со специалистами других организаций

2 УТВЕРЖДЕН РОИС, ЦНИИСК им В.А. Кучеренко - филиал ФГУП НИЦ «Строительство», НИИЖБ - филиал ФГУП НИЦ «Строительство», Национальным институтом технического регулирования, Самарским государственным архитектурно-строительным университетом, ЗАО «Победа ЛСР» (С.-Петербург)

3 ОДОБРЕН И РЕКОМЕНДОВАН ДЛЯ ПРИМЕНЕНИЯ в качестве нормативного документа в строительстве Экспертным Советом экономической рабочей группы при Администрации Президента РФ протоколом № 1 от 6 февраля 2006 г.

5 ВВЕДЕН ВПЕРВЫЕ

В соответствии с изменениями № 3 СНиП II-3-79* «Строительная теплотехника», введенными 1995 г., требуемый уровень теплозащитных качеств наружных стен необоснованно завышен в 3-3,5 раза. В большинстве регионов страны его можно обеспечить применением только мягких утеплителей с недостаточно изученной долговечностью в климатических условиях России. Расходы на ремонт таких стен значительно превышают экономию от снижения энергозатрат на отопление зданий.

Введенный в действие СНиП 23-02-2003 «Тепловая защита зданий» взамен СНиП II-3-79* не решил возникших проблем, поскольку в нем сохранены те же завышенные требования к теплозащитным качествам наружных стен зданий. Сложилось положение, при котором новая система нормирования теплозащитных качеств наружных ограждающих конструкций не удовлетворяет современную строительную практику и ограничивает применение новых отечественных теплоэффективных, долговечных, огнестойких керамических, ячеистобетонных, полистиролбетонных, пенополиуретановых (с наполнителями), легких керамзитобетонных материалов, альтернативных мягким минераловатным, пенополистирольным. Это обусловило необходимость разработки данного стандарта.

Стандарт СТО 00044807-001-2006 разработан на основе требований Федерального закона «О техническом регулировании» в целях обеспечения безопасного проживания, отдыха и работы граждан в помещениях и повышения долговечности стен при рациональном уровне теплозащитных качеств.

В стандарте использован двухуровневый принцип нормирования теплозащитных качеств наружных стен:

1 - по санитарно-гигиеническим условиям, не допускающим образования конденсата и плесени на внутренней поверхности наружных стен, покрытий, перекрытий, а также их морозного разрушения в результате переувлажнения. Ниже этого уровня теплозащитные качества стен принимать запрещается;

2 - из условий энергосбережения и долговечности. Второй уровень установлен с целью экономии энергозатрат на отопление зданий и снижения расходов на капитальные ремонты стен.

В разделе «Долговечность наружных стен зданий» представленные данные позволяют подходить дифференцированно к выбору строительных материалов для обеспечения требуемого уровня теплоизоляции наружных стен с учетом числа капитальных ремонтов в пределах прогнозируемой долговечности.

В приложение 3 «Расчетные теплотехнические показатели строительных материалов и конструкций» внесены:

данные по новым долговечным крупноформатным пустотелым камням из пористой керамики и другим теплоизоляционным материалам на клинкерном вяжущем;

кладки стен из новых типов эффективного пустотелого керамического кирпича и камня;

откорректированные значения коэффициентов теплопроводности силикатного кирпича, ячеистых бетонов, изготавливаемых по современным технологиям;

данные по теплопроводности кладок стен из блоков и камней, изготовленных из ячеистого бетона, полистиролбетона и легкого керамзитобетона;

предложения по приведению в единую систему расчетных коэффициентов теплопроводности материалов, определенных по разным методикам.

Использование внесенных теплотехнических показателей строительных материалов при проектировании зданий обеспечит равнозначные теплопотери наружных стен в процессе эксплуатации зданий при одинаковых значениях сопротивлений теплопередаче.

Настоящий стандарт разработан Российским обществом инженеров строительства (ген. директор канд. экон. наук О.А. Хоров, директор научного центра д-р техн. наук А.И. Ананьев - руководитель работы, зав. кафедрой ТГВ МГСУ д-р техн. наук, проф. Ю.Я. Кувшинов), д-р техн. наук, проф. ТТ. Маклакова, канд. техн. наук, доцент кафедры Архитектуры МГСУ А.А. Плотников, Центральным научно-исследовательским институтом строительных конструкций им. В.А. Кучеренко (ЦНИИСК им. В.А. Кучеренко) - филиал ФГУП НИЦ «Строительство» (директор д-р техн. наук, проф. В.М. Горпинченко, зам. директора канд. техн. наук О.И. Пономарев, зав. лаб. канд. техн. наук М.К. Ищук, зав. сектором. Л.М. Ломова), Научно-исследовательским институтом бетона и железобетона (НИИЖБ) - филиал ФГУП НИЦ «Строительство» (директор д-р техн. наук, проф. А.С. Семченков, зав. лаб. канд. техн. наук Т.А. Ухова, нач. отдела Д.В. Литвиненко), Национальным институтом технического регулирования (Председатель правления - проф. А.В. Рубцов), Самарским государственным архитектурно-строительным университетом (ректор д-р техн. наук, проф. М.И. Бальзанников, проректор по научной работе д-р техн. наук, проф. Н.Г. Чумаченко, д-р техн. наук Л.Д. Евсеев, зав кафедрой канд. техн. наук, доцент Ю.С. Вытчиков), ЗАО «Победа ЛСР», г. С.-Петербург (Управляющий С.А. Бегоулев, начальник управления перспективного развития канд. техн. наук А.А. Акберов).

В разработке разделов 4, 5 и приложений 3, 4 стандарта принимали также участие ОАО «Голицынский керамический завод», Московская обл. (ген. директор В.А. Крюков), ЗАО «Норский керамический завод», г.Ярославль (ген. директор Ю.И. Марченко), «Строительные технологии XXI век» (ген. директор В.К. Тихое), фирма Винербергер, Австрия (в лице доверенного представителя А. Хофера), ООО «Винербергер кирпич», г. Киржач (директор Карл Талер), ОАО «Альтаир», г. Ижевск (ген. директор О.Б. Наговицын), ОАО «Новокубанский завод керамических стеновых материалов», Краснодарский край (ген. директор В.Д. Курбатов), ОАО ВНИИСТРОМ им. П.П. Будникова (ген. директор Ю.В. Гудков), Бежецкий опытно-экспериментальный завод (ген. директор Н.С. Савостов), ООО «БОЭЗ-Развитие+», г. Бежецк (ген. директор Л.П. Дмитриев), Производственно-строительная компания «РИТМ-Л» (гл. инженер Т.Д. Локшин), ЦНИИОМТ-М (ген. директор д-р техн. наук, проф. ИИ Олейник). Главное управление архитектуры и строительства Самарской области (руководитель управления В.И. Жуков), ФГУП ЦНИ-ИЭПсельстрой (зам. директора канд. техн. наук В.А. Заренин), НУКУС КОНСТРАКШНЗ ЛТД (технический директор Родивое Батинич, инж. ОВК Милош Батинич, инж. АЛ. Ананьев), Верхневолжский институт, Тверское отделение РОИС (директор канд. техн. наук НА. Вязовченко), РООИ «ЭКОС» (директор канд. техн. наук А.Н Савицкий), ГУППИ «Тверыражданпроект» (директор СТ. Демидов), Ярославгражданпроект (зам. ген. директора по проектным работам ТВ. Великанова), ОАО «ТЕРМОСТЕПС - МТЛ», г. Самара (технический директор - гл. конструктор Е.Р. Бабурин, инж. В.Э. Пташкин), ЗАО Фирма «Горжилпроект», г. Самара (ген. директор Ю.Г. Скворцов).

СТАНДАРТ ОРГАНИЗАЦИИ

ТЕПЛОЗАЩИТНЫЕ СВОЙСТВА ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЙ

Дата введения 2006-03-01

Настоящий стандарт распространяется на проектирование ограждающих конструкций новых и реконструируемых жилых, общественных, производственных и сельскохозяйственных зданий с естественной вентиляцией для холодного периода года с нормируемыми температурой и относительной влажностью воздуха.

В стандарте установлены требования к сопротивлению теплопередаче, паропроницанию, воздухопроницанию, долговечности ограждающих конструкций, теплоусвоению поверхности полов и дан порядок теплотехнических расчетов.

К ограждающим конструкциям относятся наружные стены, полы на грунте, внутренние стены и перегородки между помещениями с различной температурой внутреннего воздуха, покрытия над верхними этажами, перекрытия над подвалами, техническими подпольями и проездами, заполнения проемов (окна, витражи, витрины, фонари, двери, ворота).

В настоящем стандарте приведены ссылки на нормативные документы, перечень которых дан в приложении 1.

3.1 Ограждающие конструкции совместно с системами отопления, вентиляции, кондиционирования воздуха должны обеспечивать нормируемые значения температуры, относительной влажности воздуха в помещениях при оптимальном энергопотреблении.

3.2 В целях сокращения энергопотребления в зимний период на создание нормируемых параметров микроклимата помещений при проектировании зданий следует предусматривать:

а) объемно-планировочные решения с учетом обеспечения наименьшей площади наружных ограждающих конструкций и минимально возможным соотношением периметра стен к площади здания;

б) расположение зданий на генеральном плане застройки с учетом розы ветров и требований по инсоляции помещений и озеленению территории;

в) применение конструкций окон с повышенными теплозащитными качествами, пониженной воздухопроницаемостью притворов и фальцев, а также с теплоотражающими пленками и покрытиями;

г) рекуперацию теплоты вентиляционных выбросов с использованием ее на подогрев приточного воздуха при наличии механической вентиляции;

д) применение поквартирного учета расхода тепловой энергии и более эффективных отопительных приборов и систем отопления с местным и пофасадным регулированием температурного режима;

е) рациональное применение эффектных теплоизоляционных материалов для повышения теплозащитных качеств, без снижения долговечности наружных стен.

3.3 При оценке долговечности сплошных кирпичных, блочных несущих и самонесущих наружных стен необходимо учитывать деструкционные процессы в материалах, происходящие от совокупного воздействия внутренних усилий (изгибающих моментов, поперечных и продольных сил) и наружных, вызываемых односторонним периодическим температурным воздействием, а также периодическим замораживанием и оттаиванием влаги в порах.

3.4 В слоистых самонесущих и ненесущих наружных стенах деструкция теплоизоляционных материалов значительно опережает разрушение несущей части стены из прочных долговечных материалов. Поэтому теплотехническую долговечность слоистых наружных стен в первую очередь следует определять по снижению теплозащитных качеств утеплителя до установленного предела.

4.1 Расчетные параметры воздуха в помещениях для расчета теплозащитных качеств наружных ограждающих конструкций жилых, общественных, административных и бытовых зданий следует принимать по таблице 1, составленной согласно ГОСТ 30494. Для помещений зданий, не указанных в таблице 1, параметры воздуха следует принимать по СанПиН 2.1.2.1002, ГОСТ 30494, ГОСТ 12.1.005 и нормам проектирования соответствующих зданий.

4.2 Параметры воздуха в помещениях производственного назначения, а также с влажным и мокрым режимами общественных зданий следует принимать согласно ГОСТ 12.1.005, ГОСТ 2.04.005 и нормам технологического проектирования соответствующих зданий.

4.3 Температура внутренних поверхностей углов стен, оконных откосов, теплопроводных включений в стенках и панелях в виде диафрагм из бетона или металла, межпанельных стыков, гибких связей, оконных обрамлений не должна быть ниже температуры точки росы воздуха, замеренной на расстоянии 10 см от внутренней поверхности стены при расчетной температуре, относительной влажности воздуха, приведенных в таблице 1.

Таблица 1 - Расчетные параметры воздуха в помещениях зданий

Температура воздуха, °С

Относительная влажность воздуха, %

Температура, °С, воздуха на расстоянии 10 см от наружной стены

Расчетная температура точки росы на внутренней поверхности наружной стены, °С

Читайте также: