Коэффициент линейного расширения кирпичной кладки

Обновлено: 18.05.2024

В формулах (1)и (2) α — упругая характеристика кладки, принимается по п. 3.21.
Модуль упругости кладки с сетчатым армированием принимается таким же, как для неармированной кладки.
Для кладки с продольным армированием упругую характеристику следует принимать такой же, как для неармированной кладки; Ru — временное сопротивление (средний предел прочности) сжатию кладки, определяемое по формуле

где k — коэффициент, принимаемый по табл. 14:
R — расчетные сопротивления сжатию кладки, принимаемые по табл. 2 — 9 с учетом коэффициентов, приведенных в примечаниях к этим таблицам, а также в пп. 3.9 — 3.14.

Вид кладки Коэффициент k
1. Из кирпича и камней всех видов, из крупных блоков, рваного бута и бутобетона, кирпичная вибриро-ванная 2,0
2. Из крупных и мелких блоков из ячеистых бетонов 2,25

Упругую характеристику кладки с сетчатым армированием следует определять по формуле
(4)

В формулах (2) и (4) Rsku — временное сопротивление (средний предел прочности) сжатию армированной кладки из кирпича или камней при высоте ряда не более 150 мм, определяемое по формулам:
для кладки с продольной арматурой

для кладки с сетчатой арматурой

формула

μ — процент армирования кладки;
для кладки с продольной арматурой

где Аs и Аk — соответственно площади сечения арматуры и кладки, для кладки с сетчатой арматурой μ определяется по п. 4.30;
Rsn — нормативные сопротивления арматуры в армированной кладке, принимаемые для сталей классов А-I и А-II в соответствии с главой СНиП по проектированию бетонных и железобетонных конструкций, а для стали класса Вр-I — с коэффициентом условий работы 0,6 по той же главе СНиП.
3.21. Значения упругой характеристики α для неармированной кладки следует принимать по табл. 15.

2. Приведенные в табл. 15 (пп. 7 — 9) значения упругой характеристики а для кирпичной кладки распространяются на виброкирпичные панели и блоки.

3. Упругая характеристика бутобетона принимается равной α = 2000.

4. Для кладки на легких растворах значения упругой характеристики α следует принимать по табл. 15 с коэффициентом 0,7.

3.22. Модуль деформаций кладки Е должен приниматься:
а) при расчете конструкций по прочности кладки для определения усилий в кладке, рассматриваемой в предельном состоянии сжатия при условии, что деформации кладки определяются совместной работой с элементами конструкций из других материалов (для определения усилий в затяжках сводов, в слоях сжатых многослойных сечений, усилий, вызываемых температурными деформациями, при расчете кладки над рандбалками или под распределительными поясами) по формуле

где, e0 — модуль упругости (начальный модуль деформаций) кладки, определяемый по формулам (1) и (2).
б) при определении деформаций кладки от продольных или поперечных сил, усилий в статически неопределимых рамных системах, в которых элементы конструкций из кладки работают совместно с элементами из других материалов, периода колебаний каменных конструкций, жесткости конструкций по формуле

3.23. Относительная деформация кладки с учетом ползучести определяется по формуле

где σ — напряжение, при котором определяется ε;
ν — коэффициент, учитывающий влияние ползучести кладки;
v = 1,8 ‑ для кладки из керамических камней с вертикальными щелевидными пустотами (высота камня 138 мм);
v = 2,2 ‑ для кладки из глиняного кирпича пластического и полусухого прессования.
v = 2,8 — для кладки из крупных блоков или камней, изготовленных из тяжелого бетона;
v = 3,0 — для кладки из силикатного кирпича и камней полнотелых и пустотелых, а также из камней, изготовленных из бетона на пористых заполнителях или поризованного и силикатных крупных блоков:
v = 3,5 — для кладки из мелких и крупных блоков, изготовленных из автоклавного ячеистого бетона вида А;
v = 4,0 — то же, из автоклавного ячеистого бетона вида Б.
3.24. Модуль упругости кладки Е0 при постоянной и длительной нагрузке с учетом ползучести следует уменьшать путем деления его на коэффициент ползучести v.
3.25. Модуль упругости и деформаций кладки из природных камней допускается принимать по специальным указаниям, составленным на основе результатов экспериментальных исследований и утвержденным госстроями союзных республик в установленном порядке.
3.26. Деформации усадки кладки из глиняного кирпича и керамических камней не учитываются.
Деформации усадки следует принимать для кладок:
из кирпича, камней, мелких и крупных блоков, изготовленных на силикатном или цементном вяжущем, — 3•10-4;
из камней и блоков, изготовленных из автоклавного ячеистого бетона (вида А), — 4•10-4;
то же, из неавтоклавного ячеистого бетона (вида Б) — 8•10-4;
3.27. Модуль сдвига кладки следует принимать равным G = 0,4 Е0, где Е0 — модуль упругости при сжатии.
3.28. Величины коэффициентов линейного расширения кладки следует принимать по табл. 16.

В формулах (1)и (2) a - упругая характеристика кладки, принимается по п. 3.21.

Модуль упругости кладки с сетчатым армированием принимается таким же, как для неармированной кладки.

Для кладки с продольным армированием упругую характеристику следует принимать такой же, как для неармированной кладки; Ru - временное сопротивление (средний предел прочности) сжатию кладки, определяемое по формуле

где k - коэффициент, принимаемый по табл. 14:

R - расчетные сопротивления сжатию кладки, принимаемые по табл. 2 - 9 с учетом коэффициентов, приведенных в примечаниях к этим таблицам, а также в пп. 3.9 - 3.14.

1. Из кирпича и камней всех видов, из крупных блоков, рваного бута и бутобетона, кирпичная вибриро-ванная

2. Из крупных и мелких блоков из ячеистых бетонов

Упругую характеристику кладки с сетчатым армированием следует определять по формуле

В формулах (2) и (4) Rsku - временное сопротивление (средний предел прочности) сжатию армированной кладки из кирпича или камней при высоте ряда не более 150 мм, определяемое по формулам:

для кладки с продольной арматурой

для кладки с сетчатой арматурой

m - процент армирования кладки;

для кладки с продольной арматурой

где Аs и Аk - соответственно площади сечения арматуры и кладки, для кладки с сетчатой арматурой m определяется по п. 4.30;

Rsn - нормативные сопротивления арматуры в армированной кладке, принимаемые для сталей классов А-I и А-II в соответствии с главой СНиП по проектированию бетонных и железобетонных конструкций, а для стали класса Вр-I - с коэффициентом условий работы 0,6 по той же главе СНиП.

3.21. Значения упругой характеристики a для неармированной кладки следует принимать по табл. 15.

Упругая характеристика a

при марках раствора

при прочности раствора

1. Из крупных блоков, изготовленных из тяжелого и крупнопористого бетона на тяжелых заполнителях и из тяж злого природного камня (g ³ 1800 кг/м 3 )

2. Из камней, изготовленных из тяжелого бетона, тяжелых природных камней и бута

3. Из крупных блоков, изготовленных из бетона на пористых заполнителях и поризованного, крупнопористого бетона на легких заполнителях, плотного силикатного бетона и из легкого природного камня

4. Из крупных блоков, изготовленных из ячеистых бетонов вида:

5. Из камней ячеистых бетонов вида:

6. Из керамических камней

7. Из кирпича глиняного пластического прессования полнотелого и пустотелого, из пустотелых силикатных камней, из камней, изготовленных из бетона на пористых заполнителях и поризованного, из легких природных камней

8. Из кирпича силикатного полнотелого и пустотелого

9. Из кирпича глиняного полусухого прессования полнотелого и пустотелого

Примечания: 1. При определении коэффициентов продольного изгиба для элементов с гибкостью l0/i £ 28 или отношением l0/h £ 8 (см. п. 4.2) допускается принимать величины упругой характеристики кладки из кирпича всех видов как из кирпича пластического прессования.

2. Приведенные в табл. 15 (пп. 7 - 9) значения упругой характеристики а для кирпичной кладки распространяются на виброкирпичные панели и блоки.

3. Упругая характеристика бутобетона принимается равной a = 2000.

4. Для кладки на легких растворах значения упругой характеристики a следует принимать по табл. 15 с коэффициентом 0,7.

5. Упругие характеристики кладки из природных камней допускается уточнять по специальным указаниям, составленным на основе результатов экспериментальных исследований и утвержденным в установленном порядке.

3.22. Модуль деформаций кладки Е должен приниматься:

а) при расчете конструкций по прочности кладки для определения усилий в кладке, рассматриваемой в предельном состоянии сжатия при условии, что деформации кладки определяются совместной работой с элементами конструкций из других материалов (для определения усилий в затяжках сводов, в слоях сжатых многослойных сечений, усилий, вызываемых температурными деформациями, при расчете кладки над рандбалками или под распределительными поясами) по формуле

где, e0 - модуль упругости (начальный модуль деформаций) кладки, определяемый по формулам (1) и (2).

б) при определении деформаций кладки от продольных или поперечных сил, усилий в статически неопределимых рамных системах, в которых элементы конструкций из кладки работают совместно с элементами из других материалов, периода колебаний каменных конструкций, жесткости конструкций по формуле

3.23. Относительная деформация кладки с учетом ползучести определяется по формуле

где s - напряжение, при котором определяется e;

n - коэффициент, учитывающий влияние ползучести кладки;

v = 1,8 ‑ для кладки из керамических камней с вертикальными щелевидными пустотами (высота камня 138 мм);

v = 2,2 ‑ для кладки из глиняного кирпича пластического и полусухого прессования;

v = 2,8 - для кладки из крупных блоков или камней, изготовленных из тяжелого бетона;

v = 3,0 - для кладки из силикатного кирпича и камней полнотелых и пустотелых, а также из камней, изготовленных из бетона на пористых заполнителях или поризованного и силикатных крупных блоков:

v = 3,5 - для кладки из мелких и крупных блоков, изготовленных из автоклавного ячеистого бетона вида А;

v = 4,0 - то же, из автоклавного ячеистого бетона вида Б.

3.24. Модуль упругости кладки Е0 при постоянной и длительной нагрузке с учетом ползучести следует уменьшать путем деления его на коэффициент ползучести v.

3.25. Модуль упругости и деформаций кладки из природных камней допускается принимать по специальным указаниям, составленным на основе результатов экспериментальных исследований и утвержденным госстроями союзных республик в установленном порядке.

3.26. Деформации усадки кладки из глиняного кирпича и керамических камней не учитываются.

Деформации усадки следует принимать для кладок:

из кирпича, камней, мелких и крупных блоков, изготовленных на силикатном или цементном вяжущем, - 3×10 -4 ;

из камней и блоков, изготовленных из автоклавного ячеистого бетона (вида А), - 4×10 -4 ;

то же, из неавтоклавного ячеистого бетона (вида Б) - 8×10 -4 ;

3.27. Модуль сдвига кладки следует принимать равным G = 0,4 Е0, где Е0 - модуль упругости при сжатии.

3.28. Величины коэффициентов линейного расширения кладки следует принимать по табл. 16.

Коэффициент линейного расширения кладки at град. - 1

1. Кирпич глиняный полнотелый, пустотелый и керамические камни

2. Кирпич силикатный, камни и блоки бетонные и бутобетон

3. Природные камни, камни и блоки из ячеистых бетонов

Примечание. Величины коэффициентов линейного расширения для кладки из других материалов допускается принимать по опытным данным.

Коэффициенты температурного (линейного) расширения строительных материалов

В таблице представлены значения коэффициента линейного расширения строительных материалов (КТЛР) и некоторых металлов при температуре до 100°С. Размерность коэффициента расширения в таблице — м/(м·°С) или 1/град (К -1 ).

В таблице рассмотрены: алюминий Al, медь Cu, сталь, гранит, базальт, кварцит, песчаник, известняк, стеновой кирпич, клинкерный кирпич, силикатный кирпич, легкобетонные камни, газобетонные блоки, бетон, железобетон, цементный раствор, известковый раствор, сложные штукатурки, дерево, параллельно волокнам, стекло.

Из указанных строительных материалов наиболее низким коэффициентом теплового линейного расширения обладает клинкерный кирпич (его КТЛР равен 3,5·10 -6 1/град), а также древесина, штукатурки, стеновой кирпич и базальт. Следует отметить, что высокий коэффициент теплового расширения свойственен металлам таким, как алюминий, медь или сталь. Например, коэффициент линейного расширения алюминия равен 24·10 -6 1/град, что в 2 раза больше, чем у стали.

Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.

Чтобы вычислить увеличение линейных размеров материала за счет теплового расширения, необходимо умножить значение температурного коэффициента линейного расширения на линейный размер материала и на разность температур в градусах Цельсия или Кельвина. Например, стеновой кирпич (КТЛР= 0,000006 град -1 ) длиной 240 мм при нагревании на 100 градусов удлинится на 0,144 мм.

Коэффициенты линейного расширения строительных материалов - таблица

По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.


, (9)

где - напряжение, при котором определяется ;


- коэффициент, учитывающий влияние ползучести кладки:


=1,8 - для кладки из керамических камней с вертикальными щелевидными пустотами (высота камня от 138 до 220 мм);


=2,2 - для кладки из керамического кирпича пластического и полусухого прессования;


=2,8 - для кладки из крупных блоков или камней, изготовленных из тяжелого бетона;


=3,0 - для кладки из силикатного кирпича и камней полнотелых и пустотелых, а также из камней, изготовленных из бетона на пористых заполнителях или поризованного и силикатных крупных блоков;


=3,5 - для кладки из мелких и крупных блоков или камней, изготовленных из автоклавных ячеистых бетонов;


=4,0 - то же, из неавтоклавных ячеистых бетонов.

3.24. Модуль упругости кладки при постоянной и длительной нагрузке с учетом ползучести следует уменьшать путем деления его на коэффициент ползучести .

3.25*. Модуль упругости и деформаций кладки из природных камней допускается принимать по специальным указаниям, составленным на основе результатов экспериментальных исследований и утвержденным в установленном порядке.


из кирпича, камней, мелких и крупных блоков, изготовленных на силикатном или цементном вяжущем, - 3·10;


из камней и блоков, изготовленных из автоклавных ячеистых бетонов на песке и вторичных продуктах обогащения различных руд - 4·10;


то же, из автоклавных бетонов на золе - 6·10;

3.27. Модуль сдвига кладки следует принимать равным , где - модуль упругости при сжатии.




Материал кладки


Коэффициент трения при состоянии поверхности

4. РАСЧЕТ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ПЕРВОЙ ГРУППЫ (ПО НЕСУЩЕЙ СПОСОБНОСТИ)

КАМЕННЫЕ КОНСТРУКЦИИ

Центрально-сжатые элементы

4.1. Расчет элементов неармированных каменных конструкций при центральном сжатии следует производить по формуле


, (10)


где - расчетная продольная сила;


- расчетное сопротивление сжатию кладки, определяемое по табл.2-9*;


- коэффициент продольного изгиба, определяемый по п.4.2;


- площадь сечения элемента;

- коэффициент, учитывающий влияние длительной нагрузки и определяемый по формуле (16) при =0.

При меньшем размере прямоугольного поперечного сечения элементов см (или с меньшим радиусом инерции элементов любого сечения см) коэффициент следует принимать равным единице.


4.2. Коэффициент продольного изгиба для элементов постоянного по длине сечения следует принимать по табл.18 в зависимости от гибкости элемента


(11)


(12)


и упругой характеристики кладки , принимаемой по табл.15*, а для кладки с сетчатым армированием - по формуле (4).


- расчетная высота (длина) элемента, определяемая согласно указаниям п.4.3;


- наименьший радиус инерции сечения элемента;


- меньший размер прямоугольного сечения.

4.3. Расчетные высоты стен и столбов при определении коэффициентов продольного изгиба в зависимости от условий опирания их на горизонтальные опоры следует принимать:

а) при неподвижных шарнирных опорах (рис.4, );

б) при упругой верхней опоре и жестком защемлении в нижней опоре: для однопролетных зданий , для многопролетных зданий (рис.4, );

в) для свободно стоящих конструкций (рис.4, );

г) для конструкций с частично защемленными опорными сечениями - с учетом фактической степени защемления, но не менее , где - расстояние между перекрытиями или другими горизонтальными опорами, при железобетонных горизонтальных опорах - расстояние между ними в свету.

3.20. Модуль упругости (начальный модуль деформаций) кладки при кратковременной нагрузке должен приниматься равным:

для неармированной кладки


; (1)

для кладки с продольным армированием


. (2)

В формулах (1) и (2) - упругая характеристика кладки, принимается по п.3.21.

Модуль упругости кладки с сетчатым армированием принимается таким же, как для неармированной кладки.

Для кладки с продольным армированием упругую характеристику следует принимать такой же, как для неармированной кладки; - временное сопротивление (средний предел прочности) сжатию кладки, определяемое по формуле


, (3)

где - коэффициент, принимаемый по табл.14;

- расчетные сопротивления сжатию кладки, принимаемые по табл.2-9* с учетом коэффициентов, приведенных в примечаниях к этим таблицам, а также в пп.3.9-3.14.

1. Из кирпича и камней всех видов, из крупных блоков, рваного бута и бутобетона, кирпичная вибрированная

2. Из крупных и мелких блоков из ячеистых бетонов

Упругую характеристику кладки с сетчатым армированием следует определять по формуле


. (4)

В формулах (2) и (4) - временное сопротивление (средний предел прочности) сжатию армированной кладки из кирпича или камней при высоте ряда не более 150 мм, определяемое по формулам:

для кладки с продольной арматурой


; (5)

Читайте также: