Клапан балансировочный на теплый пол

Обновлено: 28.04.2024

Сделать схему теплого пола проще и дешевле помогут регуляторы обратного потока – RTL-краны. Самые известные фирмы, выпускающие оборудование для отопления, предлагают потребителям свои термостатические RTL-краны, — ограничители потока для теплого пола. В чем особенности такой регулировки температуры, — рассмотрим далее. Также, — как обычно регулируется температура теплого пола и какая она нужна….

Какая температура должна быть

Наибольшей комфортной температурой теплого пола считается 28 градусов. Комфортная температура для длительного применения настраивается индивидуально по предпочтениям. Но обычно она ниже, — 22- 26 градусов, чтобы покрытие полов «стало незаметным».

В отдельных помещениях, где не присутствуют постоянно, обычно неплохо, если температура будет несколько больше, – до 32 градусов. Это прихожая (веранда), туалет, ванная.

Чтобы поддержать температуру на заданном уровне применяются два разных способа.

Способы поддержания температуры теплого пола

Первый способ основан на стабильной высокой скорости движения теплоносителя.
Чтобы температура теплого пола была стабильной в него нужно подавать определенное количество тепловой энергии с помощью теплоносителя. Теплоноситель подготавливается с заданной температурой и в значительном объеме проходит по контуру.

Объем должен быть таким (скорость движения должна быть такой), чтобы на выходе из контура температура жидкости не уменьшилась больше чем на 10 градусов. Тогда в пределах контура разница температур будет незначительной и малозаметной. Например, в контур подается 45 градусов, на исходящей будет 35 градусов. А температура поверхности может быть 28 градусов.

Второй способ заключается в том, чтобы подавать жидкость большой температуры, но прерывисто, порциями. Порция горячей жидкости довольно быстро (за несколько минут) заполняет контур, после чего ее движение останавливается.

Жидкость остывает и отдает энергию стяжке. Теплоемкая стяжка постепенно поглощает и рассеивает энергию, не перегреваясь в месте нахождения трубопровода. Как только теплоноситель остывает до заданного значения, в контур снова подается порция горячей воды.

Например, в контур может подаваться жидкость 75 град, а ее замена будет производиться после остывания до 30 градусов. Вследствие распределения тепла в массивной стяжке на поверхности пола будет все время поддерживаться около 28 градусов.

Схема движения жидкости через смесительный узел

Схема регулировки температуры смесительным узлом

Чтобы регулировать температуру по первому способу, поддерживая значительную скорость движения жидкости, нужно установить смесительный узел, в котором вода подготавливается до заданной температуры.

Теплоноситель с котла поступает 65 – 80 градусов. Чтобы уменьшить температуру до требуемых 40 -50 градусов, устанавливают узел смещения, который часть обратки с теплого пола с температурой 30 — 35 градусов подает на вход в контура. В результате на входе термостатической головкой, регулирующей соотношение входящих потоков, поддерживается заданная температура, например, 45 градусов.

Схема размещения трехходового клапана, термостатической головки и насоса

Такую схему не сложно собрать самостоятельно, что будет дешевле. Основа – трехходовой клапан, шток которого регулируется термоголовкой. Управляющий элемент термоголовки целесообразней установить на другой ветви. Место установки насоса и трехходового клапана (подача/обратка) значения не имеет. Но насос обязательно должен устанавливаться в контуре коллектора теплого пола (за трехходовым клапаном по подаче), иначе трехходовой клапан работать не будет.

Настраивая термоголовку на определенную температуру обратки, мы можем задавать температуру теплых полов в широком диапазоне.Но для получения более холодных контуров остается только уменьшать скорость движения в них теплоносителя с помощью регулировочных кранов на коллекторе.

Как выглядит смесительный узел и распределительный коллектор в сборе

Схема регулировки температуры теплых полов ограничителями потока

Второй способ порционной подачи горячей жидкости в контуры теплого пола осуществляется с помощью термостатических кранов RTL (регуляторов потока). Смесительный узел не применяется – в контур подается теплоноситель высокой температуры, которая нужна для радиаторной сети.

На обратке каждого контура устанавливается кран RTL с термоголовкой RTL, который открывается при остывании жидкости до заданной температуры. Как только температура проходящей жидкости повышается больше заданного значения (контур наполнился горячей водой), кран почти полностью перекрывает ее движения до ее остывания.

Схема регулировки температуры в обогреваемом полу ограничителями потока

Эти краны устанавливаются только на обратку, чтобы оперативно реагировать на изменение температуры в контурах. Фактически краны RTL регулируют поток, – количество в единицу времени (литр/минуту). Они работают в зависимости от теплопотерь каждой комнаты (контура, участка стяжки ограниченного температурными швами), в зависимости от того насколько быстро остывает стяжка.

Особенность конструкции кранов RTL и унибоксов RTL

В кране RTL имеется латунный или медный сердечник, который плотно соприкасается с таким же сердечником устанавливаемой термоголовки RTL, поэтому температура весьма быстро передается на ее рабочее тело.

Термоголовка RTL реагирует только на температуру жидкости. Если она превышает заданный регулировкой уровень, кран перекрывает поток.

Кран RTL и головка RTL в сборе

Термоголовка RTL с виду весьма похожа на обычные термоголовки, которые устанавливаются на радиаторы, и которые измеряют температуру воздуха. Поэтому зачастую возникает недоумение – как головка на коллекторе «по воздуху» регулирует теплый пол в спальне….

Унибокс RTL представляет из себя кран и термоголовку объединенную в одном корпусе, который отдельно можно вмонтировать в стену так, что сверху будет одна крышка с термоголовкой, или без нее. Их предназначение – регулировка одного контура теплого пола, например, на этаже имеется теплый пол только в санузле. Применение унибоксов экономически выгодно, так как нет необходимости устанавливать смесительный узел только для одного контура.

Но конструкция может включать в себя не только RTL-головку, но и воздушную термоголовку, чтобы заодно контролировать и температуру воздуха в маленьком отдаленном помещении, где теплый пол может быть единственным отопительным прибором.

Унибокс RTL для регулировки потока теплых полов

Где выгодно применять RTL-регулировку потока в отопительных системах

Конструкция RTL-коллектора весьма компактна. Отсутствуют насос и смесительный узел, а сам коллектор обратки может быть собран из тройников, на входах которых установлены краны RTL с головками. Поэтому эта система целесообразна или незаменима там, где нет места на монтаж объемных конструкций. Например, такое может быть в квартире.

Также система с регулировкой обратного потока весьма выгодна в случае если контуров мало или контур вовсе один. Устанавливать в таком случае целый смесительный узел с насосом просто не выгодно. Применяются унибоксы, о чем сказано выше.

Установка унибокса RTL а также схема подключения регулятора потока в теплом полу

Как применяется RTL-регулировка, в чем ограничения

Контуры теплого пола подключаются к главной подающей магистрали просто параллельно, как ветвь радиаторов или один радиатор. Подача в контур теплого пола осуществляется ответвлением от подающей магистрали. А на обратке из контура устанавливается кран RTL на коллекторе или отдельно стоящий (унибокс), который затем подключается к общей обратке.

Количество контуров с регулировкой обратного потока может ограничивать производительность насоса в котле (в системе).

Следующее ограничение – теплоемкость стяжки. Данная система предназначена для работы с массивной бетонной стяжкой в качестве отопительного прибора, которая может рассеивать высокую температуру от порции воды, не перегреваясь фрагментами поверхностью.
Как сделать стяжку с отопительными контурами

Общее ограничение для применения регулировки обратного потока – длина контуров. Длина контура влияет как на соотношение «временая заполнения/время остывания», так и на общее гидравлическое сопротивление данного ответвления от общей сети. Опыт показывает, что при контурах с трубой 16мм система регулировки RTL отлично работает при длине контуров до 50 метров. Если контура были сделаны длиннее – то нужно устанавливать смесительный узел и пользоваться первым способом.

В спорных случаях может выручить применение 20-й трубы у которой сопротивление будет меньше.
Таким образом для RTL-системы регулировки обратно потока теплого пола стяжку нужно фрагментировать заранее температурными швами, на небольшую длину контуров 35 – 45 м.


Автоматический регулятор перепада давлений в комплекте с запорно-регулировочным клапаном

VT.040.G


Автоматический регулятор перепада давления

VT.041.G


Клапан запорно-регулировочный

VT.042.G


Автоматический регулятор перепада давления регулируемый

VT.043.G


Автоматический регулятор перепада давления с фиксированной настройкой

VT.044.G


Клапан балансировочный ручной

VT.054.N


Ручка балансировочного клапана VT.054

VT.220.P


Регулятор температуры прямого действия

VT.348.N


Ограничитель температуры прямого действия

VT.9154.02800


Картридж с для стабилизатора расхода VT.PICV

VT.PICC.G


Корпус автоматического стабилизатора расхода регулируемого динамического

VT.PICV.G

Балансировочные клапаны предназначены для гидравлической увязки между собой отдельных контуров или ветвей (стояков) систем водяного отопления и кондиционирования. Кроме систем отопления, клапаны могут использоваться в системах водоснабжения для ограничения расхода по группам потребителей и балансировки рециркуляционных трубопроводов ГВС.

В ассортименте VALTEC представлены три типа балансировочных устройств: статические балансировочные клапаны (VT.054.N, VT.042.N), балансировочные клапаны, независимые от перепада давления (VT.PICC.G), и автоматические регуляторы перепада давления (VT.041.G, VT.043.G, VT.044.G). Отдельная категория клапанов – регуляторы температуры прямого действия для систем ГВС (VT.348.N, VT.915).

© 2022 ООО «ВЕСТА РЕГИОНЫ»
Все права защищены.







Настройка теплого пола вызывает вопросы потому, что много вариаций конструкций гидравлики. Встречаются сложные коллектора с расходометрами, а есть и самодельные, сваренные из полипропилена… Известны несколько методов приемлемой настройки теплого пола, самый простейший из которых — с помощью балансировочного вентиля, руководствуясь субъективными ощущениями «горячая или не горячая» труба, «нормальная или ненормальная» температура теплого пола.

Но обычный подход заключается в другом, — каждый контур теплого пола настраивается по ротаметру в соответствии с расчетным расходом теплоносителя.

Но как настроить сам коллектор теплого пола? Многие коллектора оснащены двухходовыми клапаноми с термоголовкой, а также байпасом между подачей и обраткой, который снабжен настроечным клапаном, его нужно балансировать… Могут встретится коллектора с трехходовым клапаном, или другими вариантами…

Работа трехходового клапана

Трехходовой клапан смешивает два входящих в него потока, друга разновидность – разделяет их. Соотношение потоков и температура на выходе зависит от положения тарелки. Это регулируется утапливанием штока, на который в свою очередь надавливает термоголовка.

трехходовой клапан

Используются термоголовки с выносным датчиком, устанавливаемым на трубопровод, управляемые по температуре получаемого потока.

Таким образом, установив на входе в коллектор трехходовой клапан, мы может поддерживать в теплых полах нужную температуру теплоносителя, чаще 35 — 45 град. Настройка по температуре чаще заключается лишь в выставлении значений на термоголовке. Балансировать сам коллектор не нужно, только контура.

Схема гидравлики коллектора

Почему предпочитают двухходовые клапаны, а не трехходовые

В схеме с трехходовым клапаном температура теплоносителя будет слишком остро зависеть от положения тарелки клапана. Неточности в работе механизмов приводят к значительным ненужным результатам. Схема оказывается не столь надежной, как с двухходовым клапананом и байпасом.

Как работает коллектор с двухходовым клапаном

Двухходовой клапан регулирует расход «больше-меньше» в зависимости от утапливания штока термоголовкой. Устанавливается на входе в коллектор со стороны подачи и регулирует долю горячего теплоносителя, поступающего в коллектор, по сравнению с тем, что идет с обратки на подачу через байпас.

работает двухходовой клапан

Но эта система нуждается в предварительной настройке соотношения потоков через байпас и через открытый двухходовой клапан. Байпас же снабжается настроечным клапаном под шестигранный ключ. Его нужно настроить, но как правильно?

Или же на байпасе устанавливается двигатель, а настройка заложена в обратке коллектора. В общем нужно сделать предустановку количества с обратки теплого пола, по отношению к тому что идет с подачи от котла.

Как устроен коллектор

Какие термоголовки использовать, с какой температурой

Используемые термоголовки должны соответствовать температурному режиму теплых полов. Термоголовки имеют довольно узкие пределы регулировки температуры, например «40 – 70 град», или «50 – 80 град», поэтому их нужно правильно выбрать.

Наиболее подходящими остаются «20 – 50 градусов». Низкая граница в 20 градусов понадобится в спортивных комнатах, а также нередко летом для подогрева «ледяного» плиточного пола, но воздух при этом нагреваться не будет. Возможно также применение механизма с предустановкой «30 – 60 градусов» в системах частных домов.

Как настроить, отбалансировать коллектор с двухходовым клапаном

Сперва делается настройка расхода теплоносителя в каждом контуре с помощью ротаметров в соответствии с расчетом. При этом двухходовой клапан на входе полностью перекрывается, а кран на байпасе (подача с обратки) открывается, – жидкость циркулирует только по контуру теплого пола через байпас.

Регулировка ротаметров

После настройки контуров, двухходовой клапан полностью открывается, а вентиль на байпасе постепенно прикрывается. Как только тарелки на ротаметрах сдвинутся, — общий расход через контура начнет уменьшаться, – значит «Готово», система первично отбалансирована «по гидравлике» и работоспособна. Значит данная схема стала «чувствительной» к сопротивлению обратки.

Готовый коллектор с клапаном

Окончательная балансировка коллектора «По температуре» проводится после укладки стяжки и разогрева теплого пола в течении суток в номинальный режим. На вход коллектора от котла подается +50 градусов, а после байпаса на гребенке подачи должно быть +45 градусов. Если там температура больше, то клапан на байпас открывают (добавляется холод), если меньше, то закрывают. Но, чаще первоначальная настройка «по гидравлике» в особых корректировках не нуждается.

Где устанавливаются ротаметры — на подаче или на обратке?

Существуют два вида ротаметров, – или для подачи, или для обратки. Например, ротаметры для обратки отличают тем, что в нормальном положении тарелка утоплена вниз, а подходящая из контура (снизу) жидкость приподнимает тарелку.

У механизмов для подачи наоборот – без нагрузки тарелка находится вверху колбы, а жидкость идущая с коллектора будет ее опускать вниз.

Перепутать установку ротаметров, – значит запереть контуры, так как жидкость будет прижимать тарелки к седлу, система работать не будет.

Балансировочный клапан в системе отопления: для чего нужен и как работает

Отопительная система – это не просто набор труб и радиаторов, подключенных к источнику тепла. Для корректной работы используются вспомогательные компоненты, в число которых входит балансировочный клапан. Разбираемся, на каких принципах основана его работа, какими возможностями он обладает, какие разновидности существуют и как их монтируют.

Когда без балансировочного клапана не обойтись

Этот тип запорной водопроводной арматуры способен перераспределять горячую воду (корректировать систему) таким образом, чтобы каждый радиатор получал нужный объем тепла. Перераспределение проводится с помощью контроля давления и температуры теплоносителя. Регулировка гидравлического сопротивления проводится путем изменения диаметра трубы. Необходимость в балансировке возникает в следующих случаях:

  • При проектировании были допущены ошибки в расчетах.
  • Монтаж проводился с отступлениями от проектных расчетов.
  • Проводилась замена батарей; характеристики новых батарей не соответствуют проекту.
  • Изменялась конфигурация труб.
  • Во время эксплуатации нерегулярно проводилась чистка и промывка системы.

Когда в действие вступает хотя бы один из этих факторов, баланс системы нарушается. Это выражается в образовании воздушных пробок, из-за чего некоторые помещения недополучают тепла. Нарушение температурного режима, заложенного в проекте, сопровождается перерасходом энергии, и на нагрев воды вы тратите больше, чем запланировано.

Видимыми признаками разбалансировки служат следующие неудобства:

  • Запуск сопровождается сложностями; например, система не вытягивает номинальную мощность.
  • Отопительная система функционирует в штатном режиме, но наблюдаются значительные колебания температуры в разных комнатах.
  • Не удается достичь комфортной температуры, хотя котел работает на максимуме, а краны на радиаторах открыты полностью.

Как работает клапан и что он помогает улучшить

Балансировочный кран (или клапан) – это разновидность обычного водопроводного вентиля, в корпусе которого предусмотрены патрубки для подключения манометра (измерение давления), иногда есть дополнение в виде расходометра.

Работает он по тому же принципу: изменяет размер проходного сечения, правда, сделать это можно более дискретно. Для этого предназначен золотник (золотниковый клапан), который приводится в действие вращением рукоятки, и перекрывает поток. Когда сечение уменьшается, возрастает гидравлическое сопротивление на данном участке трубы, что позволяет уравнять потоки в разных трубах.

У балансировочной арматуры имеется особенность – пружина, жесткость которой регулируется вращением ручки. Увеличивая или ослабляя жесткость пружины, можно контролировать давление потока в конкретной трубе. Механизм делает удобной корректировку с помощью балансировочного клапана для любой системы отопления; принцип работы дает возможность задействовать его не только в работе отопления, но и, например, в конструкции теплого пола.


Использование вентиля позволяет получить следующие преимущества:

  • Экономия. После выполнения балансировки системы количество потребляемого топлива сокращается.
  • Гибкая регулировка микроклимата. Вы сможете устанавливать комфортную температуру независимо для каждого помещения.
  • Упрощение запуска системы. Запуск проходит без осложнений.
  • Универсальность. Арматура одинаково успешно используется в частных и многоквартирных домах. В частном жилье она гибко регулирует теплоотдачу в каждой комнате. В зданиях с ее помощью удобно балансировать стояки.

Разновидности

Балансировочные краны в системе отопления по способу управления изготавливаются в двух вариантах: ручные (статические) и автоматические. Ручные разновидности обладают следующими особенностями:

  • Они подходят для установки только в частных домах, когда схема разводки однотрубная.
  • При бюджетной стоимости хорошо справляются с регулировкой давления, дают возможность настраивать всю систему или отдельные участки.
  • Фиксирует характеристики рабочей среды в контрольных точках.


  • Если возникает необходимость, вы можете отключить часть системы для ремонта.
  • У ручной настройки имеется существенный минус. Она основывается на неких усредненных параметрах, а они, в свою очередь, рассчитываются для идеальных условий, потока теплоносителя с постоянной скоростью и температурой. Если параметры непостоянны во времени, балансировка не работает.

Для более сложных схем разводки применяются автоматические балансировочные вентили. Их монтируют парами, устанавливая на раздельные контуры подачи и обратки. Автоклапаны соединяют тонкой капиллярной трубкой; при возникновении перепада давления с ее помощью корректируют давление. Если автоматический балансировочный клапан изначально правильно настроить, дальнейшее вмешательство в его работу не потребуется.

Вентили можно различать по месту использования:

  • Радиаторные модели. Используются для механической корректировки фрагментов сети отопления.
  • Магистральные конструкции. Отличаются большими размерами и характерной наклонной формой корпуса; к ним можно присоединять измерительные устройства.

Особенности установки балансировочного вентиля

Монтаж балансировочных кранов для системы отопления необходим, если вы замечаете нарушения в распределении тепла по батареям разных комнат. Также балансировочную арматуру монтируют в новых зданиях, где они предусмотрены проектом. Монтаж выполняется с соблюдением следующих особенностей устройства:

  • Врезку арматуры в трубу проводят с учетом направления потока, которое указывается на корпусе.
  • Автоматические модели чувствительны к загрязнениям воды, поэтому перед устройством ставят фильтр.
  • Необходимо исключить влияние турбулентности на работу арматуры. Достаточно оставить перед вентилем прямой участок трубы, тогда поток воды будет двигаться без завихрений, а работа устройства будет более корректной.

Перед монтажом необходимо промыть трубу, проверить ее целостность. Монтаж крана балансировочного для отопления состоит из следующих действий:

  • Выбирают фрагмент трубы, подходящий для врезки клапана. Для стабильной работы будет достаточно, если прямой отрезок перед вентилем составит пять диаметров трубы, после него хватит двух-трех диаметров.
  • Устройство вкручивают в патрубок; для герметизации заранее укладывается льняное волокно со смазкой. Минимальное количество витков резьбы – семь.
  • Кран накручивают одним концом на трубу, другой присоединяют к батарее, с соблюдением направления потока теплоносителя. Пространственное размещение не влияет на работу, оно может быть любым.


Балансировка радиаторной сети

Чтобы провести балансировку, необходимо вычислить так называемый шаг регулировки (корректировочный шаг). Для этого число оборотов балансировочного вентиля для системы отопления (оно зависит от модели) делят на количество батарей. Например, если у шпинделя 4,5 оборота, а в доме установлено 10 радиаторов, то для этой конкретной системы корректировочный шаг будет равен 0,45 оборота.

Регулировку проводят, начиная с последней (самой дальней от источника тепла) батареи. Передвигаясь от нее к началу, каждый последующий радиатор закручивают на 0,45 оборота. Такой расчет является приблизительным, так как не учитывает мощности батарей. Чтобы настроить систему точнее, используют следующий метод:

  • Систему нагревают до 80°C, оставив все клапаны открытыми.
  • Замеряют температуру каждого радиатора; она будет разной.
  • Температуру выравнивают с помощью вентилей: ближний открывают на 1-1,5 оборота, средние – на 2,5 оборота.
  • Через 20-30 минут, когда тепло успевает перераспределиться, проводят еще один замер температуры. Разница значений между крайними радиаторами будет минимальной.

Профессиональные методы определяют правильное положение клапана на основании рабочих параметров: объема подачи воды и перепада давлений. Настройка проводится с помощью диаграмм и таблиц, прилагаемых к паспорту устройства.

Видео описание

Об особенностях автоматического клапана в следующем видео:


Коротко о главном

Балансировочный клапан нужен для предотвращения или корректировки нарушений в работе системы отопления (реже горячего водоснабжения). Существуют ручные и автоматические разновидности устройства, используемые для систем разной сложности.

Балансировка позволяет экономить расход тепла и распределять его равномерно, но для этого надо установить вентили по правилам, а потом проверить и подкорректировать температуру в радиаторах. Профессиональная балансировка основана на измерении рабочих параметров системы.

балансировочный клапан для отопления

Отопительное оборудование

Система отопления в многоквартирном доме имеет множество разветвлений и служит для обогрева помещений, которые неравномерно удалены от источника тепла. Чтобы тепло поступало во все помещения, и обеспечивались одинаковые температурные условия, систему отопления необходимо правильно отладить. Именно для этого подключается балансировочный клапан.

Для чего нужен?

Клапан служит для создания искусственного сопротивления на пути у воды. Таким образом, не весь объем воды поступает на ближайший участок, поток распределяется так, чтобы теплоноситель поступал и на отдаленные стояки. Чтобы правильно установить балансировочные клапаны, проектные организации предварительно делают гидравлический расчет отопления. В ходе расчета определяется разница между верхним и нижним значением давления на каждом стояке здания. Поэтому клапаны также называют регуляторами перепада давления.

Каждый клапан настраивается индивидуально с учетом произведенных расчетов функционирования системы. Таким образом, основное назначение клапанов – это увязка между собой контуров системы водяного отопления. Также к функциям клапана можно отнести ограничение расхода воды по группам потребителей и балансировка рециркуляционных трубопроводов горячего водоснабжения, и тепло-холодоснабжения систем вентиляции.

Принцип работы балансировочного вентиля

Алгоритм функционирования и принцип работы балансировочного клапана отопления состоит в регулировке размера прохода и соответственно давления (искусственного сопротивления на пути теплоносителя). Изменению подвергается внутренний проход посредством вращения рукояти и как следствия движения шпинделя с рабочим конусом.

При откручивании шпиндель и рабочий конус поднимаются вверх, что обеспечивает максимальную проводимость теплоносителя. При закручивании шпиндель давит на седло регулятора перепада давления и тем самым преграждает путь воде по контуру.

К дополнительным функциям балансировочного клапана можно отнести:

  • ограничение расхода источника тепловой энергии;
  • перекрытие трубопровода;
  • присоединение измерительных приборов;
  • слив рабочей жидкости.

Типы клапанов

Системы теплоснабжения могут иметь перманентный или переменный расход источника тепловой энергии. В зависимости от этого показателя различают две разновидности вентиля:

Ручные балансировочные клапана, как правило, применяют при постоянном расходе источника тепловой энергии. Регулировка осуществляется за счет рабочего конуса, выдвижение которого регулируется механическим поворотом рукояти. В свою очередь ручные клапаны подразделяются на следующие виды:

ручной балансировочный клапан

Ручной балансировочный клапан

Автоматические балансировочные клапна используются для гидравлической увязки систем отопления и других систем с переменным расходом теплоносителя. Примером использования автоматического клапана может быть двухтрубная система с термостатом (типичный вариант системы с переменным расходом теплоносителя). Для гидравлической увязки автоматический балансировочный вентиль используется в комплекте с запорно-балансировочным клапаном.

Автоматический балансировочный клапан

Автоматический балансировочный клапан

Когда термостатические клапаны вследствие изменения температуры воздуха в помещении меняют расход теплоносителя через отопительные приборы, следовательно, и перепад давления, необходимо следить за тем, чтобы перепад не превысил заданное значение. Эту задачу решает автоматический клапан.

Когда термостат закрывается, перепад увеличивается до значения, установленного на клапане. В результате клапан тоже закрывается, создает оптимальные условия для работы термостатических клапанов и защищает от слишком большого перепада, следовательно, предотвращает появление шума.

Каждый такой регулятор оснащен регулировочным блоком, разработанный специально под определенный тип и размер клапана, что обеспечивает точность поддержания перепада давления. При этом теплоноситель расходуется эффективно без перерасхода, а система отопления является гидравлически устойчивой, что исключает необходимость постоянной регулировки и перенастройки системы эксплуатационными службами.

Устройство балансировочного вентиля

Клапаны состоят из нескольких ключевых элементов:

  • корпус с патрубками для присоединения труб и внутренним круглым каналом с расширением вверху (седло);
  • рукоятка регулировки;
  • штуцеры для замеров расхода;
  • шпиндель с конусом (конус опускается в седло при завинчивании и ограничивает проход источника тепловой энергии).

балансировочный клапан устройство

Вид, комплектация и функциональное наполнение балансировочного клапана может различаться в зависимости от выбранной модели. Некоторые модели дополняются сливным патрубком или расходомером.

Парой измерительных штуцеров, которые позволяют замерить объем подачи жидкого источника тепловой энергии на входе и выходе снабжают большинство современных моделей. Также некоторые модели модернизируют за счет запорного сферического механизма, который позволяет полностью ограничить поток теплоносителя или осуществить слив отработанной жидкости.

Автоматизированные вентили имеют вместо вращающейся головки следящий привод. Этот элемент толкает запирающий механизм, а степень перекрытия определяется величиной поданного напряжения.

Установка. Где ставится?

Монтаж производится в контуре обратной ветви, что обеспечивает перманентное поступление жидкости в батареи при эксплуатации одного контура для горячего водоснабжения и обогрева пространства. При установке балансировочных вентилей на каждую батарею, монтаж производится в нижней части на выходном патрубке по диагонали от сферического крана подачи теплоносителя, который монтируется сверху.

В частном коттедже применяются регуляторы перепада давления для каждой батареи, при этом для каждого выходного патрубка предусматривают накидные гайки или иной вариант резьбового соединения. Автоматизированные установки не нуждаются в настройке. При применении двухклапанной конструкции автоматически повышается проход источника тепловой энергии на батареи, наиболее отдаленные от котла.

Балансировка реализуется за счет увеличения давления на контурах, ведущих к ближайшим к котлу батареям. Необходимость точного расчета показателей, которые выставляются на клапане, обусловлена особенностями модели. Для ручных клапанов, как правило, требуется регулировка с использованием расчетных данных или измерительного оборудования.

В высотных многоэтажках клапаны монтируются на каждом общем вертикальном трубопроводе (в обратную линию). При проведении расчетов применяются данные количества подачи источника тепловой энергии электронасосом и количество стояков.

Установка рабочих значений

Специалисты предлагают две основные опции настройки балансировочного клапана:

  • при помощи настроечной шкалы рукоятки;
  • при присоединении к клапану дифференциального манометра.

Первый вариант требует точного расчета установочного значения, которое рассчитывается на основании следующих данных:

  • разница между верхним и нижним давлением;
  • условный диаметр проводящего отверстия (Ду);
  • расход в стояке.

Для настройки проектного значения расхода необходимо с помощью рукоятки выставить нужное значение, которое, как правило, состоит из целого числа и десятых долей. Сначала выставляется целая часть, затем десятые доли. Вращение рукоятки осуществляется по часовой стрелке от полностью открытого положения. Для фиксации установленного значения в зависимости от модели либо используется шестигранник, либо значение устанавливается нажатием маховика.

Второй вариант используется только на установленном балансировочном клапане клапане при наличии расхода через него. К патрубкам клапана подключается дифференциальный манометр. Настройка производится путем вращения рукоятки с учетом показаний манометра.

Регулировка производится с учетом гидравлических расчетов, сделанных компетентными специалистами проектной организации. Монтаж и настройка производится профессиональными инженерами. Устройство монтируется с учетом нанесенной на клапан стрелки, указывающей направление течения теплоносителя. Перед установкой рекомендованными мерами считаются прочистка трубопроводной системы.

Подписывайтесь так же на наш Youtube, группу Вконтакте, Яндекс Дзен. Там много полезного и интересного контента!

Читайте также: