Какой из экскаваторов применяют для возведения стены в грунте

Обновлено: 29.04.2024

Метод стена в грунте является технологией возведения заглублённых строительных сооружений, к которым относятся ограждающие конструкции котлованов, подпорных стен, строительство фундаментов и различных подземных сооружений. Технология позволяет отказаться от использования шпунтов и создать прочную конструкцию, устойчивую к движению грунта.

Технология устройство стена в грунте лучше всего строить городские подземные конструкции: тоннели, парковки, подземные гаражи, многоярусные комплексы, станции метро.

ООО «Главрент» предлагает услуги по аренде спецтехники, применяемой для строительства по технологии стена в грунте. Опыт специалистов и большой парк грейферов, кранов, бурильных установок и вибропогружателей позволяет компании успешно решать большинство задач.

Принцип возведения сооружений способом стена в грунте

Она является простой в использовании: сначала подготавливается траншея, из которой производится выемка грунта, и проводятся мероприятия по предотвращению обрушения стенок. В подготовленную траншею опускается арматурный каркас, производится его бетонирование.

При строительстве используется следующая техника:

  • грейферная или буровая установка,
  • кран,
  • труба для вертикального бетонирования,
  • автобетоносмеситель,
  • вибропогружатель,
  • насосное оборудование.

Навесное оборудование подбирается в зависимости от условий. Так, в тяжёлых грунтовых условиях допустимо применять установки с гидрофрезой или многошпиндельные буровые установки. Для обычных грунтов традиционно используют грейферы – подвесное оборудование для выемки грунта, устанавливаемое на гусеничные экскаваторы.

При расчёте несущей способности здания учитываются грунтовые условия – водоносные уровни и давление, которое может оказываться будущим объектом на близлежащие здания. Для сооружения определяется несущая способность, давление грунта, показатели глубины промерзания (при фундаментах с глубиной залегания выше 3 метров), выполняются теплотехнические расчёты.

устройства возведения.jpg

«Сухая» и «мокрая» технология возведения

Различают два способа строительства: сухой и мокрый. Строительство «сухим» методом разрешается при отсутствии грунтовых вод и достаточной устойчивости самого грунта. Он наиболее более экономный и простой, так как при строительстве нет необходимости использования глинистого раствора.

«Мокрая» позволяет защитить вертикальные стенки траншеи с помощью вязкого глинистого раствора – бентонитовой суспензии. Это тиксотропный материал, который имеет стабильную предсказуемую структуру: не расслаивается в состоянии покоя, а при механическом воздействии разжижается до состояния текучести, оставаясь достаточно вязким, сохраняющим заданные показатели водоотдачи. Бентонит обладает ещё одним важным свойством: он является водоупором и в состоянии покоя (без механического воздействия) способен образовывать на стенах траншеи корку глины толщиной до 4 мм. Именно поэтому «мокрый» способ отлично подходит при строительстве стены в сложных гидрогеологических условиях, в т.ч. при неглубоком залегании водоупорного горизонта.

Приготовление тиксотропного раствора выполняется на основе специальных высокодисперсных или местных глин, удовлетворяющих требованиям по плотности, верхнему и нижнему пределам пластичности и набуханию. Приготовление глинистого раствора из местных материалов позволяет значительно удешевить строительство.

Основные методы устройства стены в грунте

Существует два основных способа возведения стены в грунте: с помощью буросекущих свай и разработки траншеи.

Возведение зданий с помощью свай заключается в строительстве сплошного ряда секущихся между собой (или касающихся друг друга) буронабивных или грунтоцементных свай. Бурение свай осуществляется в несколько потоков, точки бурения скважин второго потока подбираются таким образом, чтобы перекрыть часть сечения свай из первого потока. Несмотря на то, что несущая способность свай второго потока оказывается ниже, чем первой, в итоге формируется бетонная стена достаточной прочности.

С помощью буросекущих свай применяется при ограждении стройплощадки, строительстве подпорных стен, создания противофильтрационных завес и т.п. Для строительства основания дома способ буросекущих свай не подходит.

Строительство с помощью траншеи более эффективно. Сооружение стены до разработки котлована даёт технологическое преимущество при строительстве оснований зданий, где проектом предусматривается многоярусная подземная инфраструктура, включающая подвалы, цокольные этажи, парковки, гаражи или хранилища. Возведение сооружений способом стена в грунте с помощью траншейного метода отличается высокой надёжностью и позволяет защитить подземную инфраструктуру от грунтовых вод.

Разработка траншеи проводится захватками через одну, определяющий момент – ширина захвата грейфера. После бетонирования и схватывания захваток первой очереди приступают к бетонированию траншей второй очереди и т.д.

стена в грунте.jpg

Технология строительства

Технологическая схема устройства включает следующие этапы:

  1. Выемка породы под глинистым раствором с установкой разделительных элементов (ограничителей, которыми могут быть железные балки, шпунтины или трубы) по торцам траншеи-захватки. Ограничители отделяют элементы бетонирования, предотвращают попадание бетона из одного участка в другой и обеспечивают водонепроницаемость стыков. После заливки бетона ограничители могут извлекаться или же оставаться элементом конструкции. Строительство траншеи осуществляется с контролем отклонения уровня заглубления (инклинометрией).
  2. Установка арматурного каркаса.
  3. Бетонирование стены и извлечение ограничителей. Бетонирование осуществляется вертикально перемещаемой трубой с применением виброустановки. Вытесняемый бетоном защитный раствор откачивается. После очистки глинистого раствора от примесей породы он может использоваться снова.
  4. После набора прочности бетоном начинаются земляные работы внутри периметра. Работы проводятся послойно, при необходимости стенки котлована дополнительно укрепляются буроинъекционными грунтовыми анкерами.

«Стена в грунте» – это оптимальный способ строительства при постройке зданий на значительной (до 20 м) глубине вблизи имеющихся зданий. Такое возведение позволяет совместить строительство элементов основания будущего здания и подземной инфраструктуры.

Нельзя не отметить высокую скорость работ, низкий уровень шума и всесезонность метода: технология обустройства может применяться вне зависимости от сезона.

Среди недостатков можно выделить сложность работ в холодный период года: зимой глинистый раствор налипает на арматуру, из-за чего ухудшается её сцепление с бетоном. Данная проблема решается заменой монолитного каркаса на сборный железобетон.

возведение методом стена в грунте.jpg

Используемая техника

Для строительства и обустройства стены в грунте в ООО «Главрент» применяется следующая спецтехника:

    грузоподъёмностью от 50 до 100 тонн и гусеничный кран IHI CCH700 грузоподъёмностью 70 тонн;
  • землеройная техника: гусеничный экскаватор Komatsu PC200 с телескопической стрелой и грейфером, грейферная установка Hitachi EX200, грейферная установка Liebherr HS850, грейферная установка Liebherr LRB250/HS843HD; , позволяющие устанавливать буросекущие сваи диаметром до 1500 мм; ABI TM 16/20B, вибропогружатель Movax SPH80 с боковым захватом шпунта;
  • универсальная буровая установка MDT230B для струйной цементации грунтов.

Имеющееся оборудование позволяет строить стены шириной до 1200 мм и глубиной до 45 м. Доступный набор челюстей грейферной установки – 500, 600, 800 и 1000 мм.

Техника предоставляется в аренду с сертифицированным экипажем (зарплата специалистов включена в стоимость аренды) и оперативно доставляется до объекта. Возможна работа техники в две смены (смена – 11 часов), обеспечивается круглосуточная техническая поддержка.

Вся спецтехника находится в отличном состоянии, соответствует заявленным характеристикам и имеет все разрешительные документы на эксплуатацию.

Strict warning: Only variables should be passed by reference в функции duble_node() (строка 191 в файле /home/s/seryis/ofips.rf/public_html/sites/all/themes/adaptivetheme/at_ofips/template.php).

§ VI.5. ОБОРУДОВАНИЕ ДЛЯ СООРУЖЕНИЯ СТЕНЫ В ГРУНТЕ И СПОСОБЫ ЕЕ УСТРОЙСТВА

VI.5.1. Общие сведения

Стена в грунте является особым видом подземных сооружений, применяемых в строительстве различных зданий промышленного и гражданского назначения. Стена в грунте может быть использована в качестве несущей или ограждающей конструкции, противофильтрационной завесы и в ряде других случаев.

Материалом для изготовления стен в грунте служат бетон, железобетон, грунт, цементно-глинопесчаные растворы, битумные смеси и т.п. в зависимости от ее назначения и характера работы сооружения.

Формы стен в грунте и их размеры также определяются их назначением (рис. VI-9) и, кроме того, применяемым при изготовлении стен в грунте оборудованием и способом их устройства. В практике строительства наиболее распространены два типа конструкций стен в грунте — свайные, образованные секущимися буронабивными сваями, и траншейные. Толщина свайных стен составляет, как правило, 0,5—2 м, а глубина может достигать 80 м. Толщина траншейных стен может быть 0,2—1 м, а глубина их редко превышает 15—20 м.

При изготовлении свайных стен применяют отечественное или импортное оборудование, например станки «Беното», которые позволяют устраивать стены методом секущихся свай. Под защитой обсадных труб изготовляются две буронабивные сваи с расстоянием между ними в свету менее одного диаметра сваи.

Конструкция бетоно-свайных и траншейных противофильтрационных завес

После этого бурится скважина между ними, захватывая часть сечения уже изготовленных свай, причем бурение для упрощения производства работ ведется по свежеесхватившемуся бетону. После окончания бурения скважина бетонируется, завершая изготовление участка стены. При необходимости сваи в стене могут быть армированы металлическим каркасом.

Обычно образование и заполнение выемки с сохранением при этом вертикальности и целостности стенок обеспечивается применением тиксотропных глинистых растворов. Кроме обеспечения устойчивости стенок выемки глинистый раствор используется для транспортирования разрабатываемой породы на поверхность. В связи с этим, рассматривая оборудование для разработки траншей, бурения скважин и бетонирования при устройстве стен в грунте необходимо также иметь некоторые сведения об оборудовании для приготовления, очистки и транспортирования глинистого раствора.

При устройстве стен в грунте кроме машин и оборудования для приготовления и очистки глинистых растворов, для проходки скважин и траншей необходимо оборудование для заполнения скважин и траншей тем или иным материалом.

VI.5.2. Оборудование для приготовления и очистки глинистых растворов

Для приготовления глинистых растворов применяются лопастные растворосмесители и быстроходные турбинные растворомешалки типа РМ. В последнее время появились турбулентные растворосмесители типа С. Краткая характеристика растворосмесителей приведена в табл. VI-3. При приготовлении глинистых растворов используются также и глиномешалки различных типов. Глиномешалки Г-2-П-2-4 и МГ-2-4 применяются для приготовления глинистых, цементно-песчаных, цементноглинистых, цементно-песчано-глинистых и других растворов.

Техническая характеристика растворосмесителей

Показатель Марка
С-868 ЛРМ-350 РМ-500 РМ-750
Емкость, л 65 350 500 750
Частота вращения смесительного органа, об/мин 600 56 500 570
Электродвигатель:
тип
мощность, кВт


2,8

АО-32-4
1

АО-52-6
4,5

АО-52-4
7
Габариты, мм:
длина
ширина
высота

1475
595
815

1200
1200
1200

1500
1400
1300

2000
1100
1000
Вес, кН 1,34 2,0 3,5 5,12

Принцип действия и конструкции их аналогичны. Глиномешалка МГ-2-4 представляет собой барабан сварной конструкции емкостью 4 м 3 , вдоль которого проходят два параллельно расположенных и вращающихся в разные стороны рабочих вала с лопастями для размельчения глины и размешивания раствора. Готовый раствор сливается через клапан, предусмотренный в нижней части глиномешалки.

Очистка глинистых растворов осуществляется следующими механизмами.

Глинистый раствор очищается от крупных минеральных частиц виброситами типа СВ. Для тонкой очистки глинистого раствора, а также для регенерации утяжеленных глинистых растворов используются ситогидроциклонные установки, полностью удаляющие из глинистого раствора частицы размером 0,1 мм, а также значительное количество частиц размером 0,05 мм.

VI.5.3. Приборы для контроля качества глинистых растворов

Качество приготовления глинистых растворов проверяется в лаборатории ЛГР-3. В комплект оборудования лаборатории входит ареометр АГ-2, вискозиметр СПВ-5, отстойник ОМ-2, прибор ВМ-6, цилиндр ЦС-2, мерный цилиндр, пробоотборник ПТР-1, а также лабораторная посуда, термометр, секундомер и инструкции по применению перечисленных приборов.

Для измерения статического напряжения сдвига глинистых растворов служит переносной прибор СНС-2.

Смородинов М.И. Справочник по общестроительным работам. Основания и фундаменты

Strict warning: Only variables should be passed by reference в функции duble_node() (строка 191 в файле /home/s/seryis/ofips.rf/public_html/sites/all/themes/adaptivetheme/at_ofips/template.php).

VI.5.4. Машины и оборудование для устройства свайных и траншейных стен в грунте

Для проходки скважин при устройстве стен в грунте, состоящих из секущихся свай, могут быть использованы практически все буровые машины, применяемые для устройства буронабивных свай, описанные в главе VI. Наибольшее распространение при устройстве стен в грунте и противофильтрационных завес в СССР получили станки ударно-канатного бурения, такие, как УКС-22М, УКС-30М, БС-1М. Схема устройства бетоно-свайных стен показана на рис. VI-10.

Устройство непрерывных траншейных стен и противофильтрационных завес для отрывки траншей осуществляется драглайнами, грейферами (разработанными «Фундаментпроектом», НИИСП Госстроя УССР и др.), машинами ВНИИГС, ВИОГЕМ.

Схема устройства свайных стенок

а — выбуренная порода; 1 — буровой станок; 2 — штанга; 3 — долото; 4 — насос; 5 — вибрационное сито; 6 — направляющая труба; I — скважины первой очереди; II — скважины второй очереди

В энергетическом строительстве бурение скважин, образующих непрерывную, траншею производит агрегат СВД-500, разработанный Киевским проектно-конструкторским отделом института Гидропроект. Агрегат предназначен для устройства стенок различного назначения; он выпускается Челябинским механическим заводом Главэнергостроймеханизации предприятием Министерства энергетики и электрификации СССР.

Агрегат СВД-500 состоит из следующих основных частей: экскаватора Э-505 (или Э-652) со снятой стрелой, рамы, направляющего шаблона, эрлифтной системы, а также бурового агрегата, который представляет собой электробур со встроенным приводом. Для выполнения работ агрегатом необходимо также иметь два компрессора ДК-9 и глиномешалку МГ-2-4. Общий вес агрегата 480 кН. Ниже приведена техническая характеристика агрегата СВД-500.

Показатель Значение
Ширина траншеи, мм 480—500
Глубина м до 20
Производительность, м/ч 0,5—2
Мощность привода буровой машины, кВт 94
Частота вращения бура, об/мин 256
Вес буровой машины, кН 24,5
Производительность эрлифта, м 3 /ч 300—600

Выбуренная агрегатом непрерывная траншея для бетонирования разделяется на отдельные элементы с помощью трубчатого разделительного шаблона, извлекаемого после твердения бетона. Методы бетонирования аналогичны применяемым при других способах устройства стенок.

VI.5.5. Оборудование для устройства траншейных стенок, применяемое за рубежом

Метод ELSE основан на использовании специального скреперного ковша, передвигающегося по жесткой направляющей мачте (рис. VI-11). Направляющая мачта опускается в траншею по мере ее разработки.

Схема сооружения траншей методом ELSE

а, б — разработка траншеи; в — разработка удлинения траншеи; г — бетонирование; 1 — направляющая мачта; 2 — скреперный ковш; 3 — бентонитовый раствор; 4 — бетон

При необходимости мачта может разбивать крупные включения породы. Грунт вынимается ковшом из-под бентонитового раствора. Ширина траншеи определяется размерами ковша и может достигать 0,4; 0,5; 0,7; 0,8 м. Максимальная глубина траншеи 25 м. Траншеи чаще всего разрабатываются секциями длиной 3—6 м, но можно, переставляя агрегат, прорезать и непрерывную траншею. Преимущество метода — отсутствие шума и вибраций. Однако валуны и крепкие породы являются серьезным препятствием и ограничивают применение этого метода.

Метод «Радио — Маркони» (или «Солетанж») основан на ударном принципе бурения снарядом, совмещенным с эрлифтом (рис. VI-12).

Схема бурения траншей методом Радио - Маркони

1 — бентонитовый раствор; 2 — насос; 3 — долото; 4 — опережающие скважины; I — пионерная траншея. Последовательность разработки показана стрелками

После выемки пионерной траншеи и заполнения ее бентонитовым раствором бурят по краям траншеи на полную глубину направляющие скважины. Затем буровая машина перемещается вдоль оси траншеи и слоями разрабатывает грунт. Бурение происходит с обратной циркуляцией глинистого раствора. Ударное бурение производится долотом, скользящим по неподвижной колонне всасывающих труб. Выбуренная порода и раствор подаются на очистную систему (вибросита и гидроциклоны) центробежным насосом. Буровая машина перемещается по рельсам и может делать траншеи прямолинейные и криволинейные в плане. Стенка возводится бурением и бетонированием вначале траншеи первой очереди с последующим замыканием оставшихся промежутков элементами второй очереди. Бетон укладывают способом вертикально перемещающейся трубы (ВПТ). Французская фирма «Солетанж» выпускает специальные агрегаты для проходки траншей и скважин. Техническая характеристика наиболее распространенного агрегата CLS-58, следующая:

Показатель Значение
Глубина бурения скважин, м до 150
Ширина траншеи, м 0,5—1,2
Грузоподъемность лебедок, кг 2000 и 2500

Метод «ИКОС-Федер» (рис. VI-13) основан на применении грейферного бурения под бентонитовым раствором. Грейферные ковши имеют удлиненную форму и большой вес. Челюсти ковша снабжены механическим или гидравлическим приводом. Грейфер подвешивается на канате, а для небольших глубин — на жесткой штанге. Из-за цикличности процесса разработки траншеи при ее углублении производительность агрегата снижается.

Показатель Значение
Производительность насосов:
циркуляционного, м 3 /ч
вспомогательного, м 3 /ч
вакуумного, л/мин
гидроциклонного, л/мин

480
14,8
1800
2500
Скорость передвижения, м/мин 1,32—2,57
Установленная мощность двигателей, кВт до 196
Производительность агрегата, м 2 /ч 0,5—4

Схема устройства траншей методом ИКОС - Федер

а — бурение опережающей скважины; б — разработка траншеи грейфером; в — бетонирование траншеи; г — разработка долотом с раздвижными кромками промежутка между забетонированными элементами; 1 — долото; 2 — насос; 3 — вибросито; 4 — бентонитовый раствор; 5 — опалубочная труба; 6 — долото с раздвижными кромками; 7 — бетон; 8 — опережающие скважины. Направление движения материалов (бентонитового раствора, бетона) показано стрелками

Метод «Титания» основан на использовании вращательного бурения. Для бурения скважины с обратной циркуляцией глинистого раствора на полную глубину будущей траншеи колонна буровых труб оборудуется резцами, расположенными по всей ее высоте с небольшими промежутками. Одновременно с вращением буровой колонне сообщается движение вверх-вниз на 0,3—0,5 м (примерное расстояние между резцами), а весь агрегат медленно перемещается вдоль оси стенки, образуя траншею на всю глубину. Циркуляция глинистого раствора по трубам диаметром 150 мм обеспечивается насосом. Ширина траншеи 0,4—1 м. Весит агрегат около 60 кН. Рассматриваемый способ может применяться в легких грунтах при создании стенок на небольшую глубину. Бетонирование осуществляется отрезками длиной 2—6 м, которые отделяются специальным металлическим шаблоном.

Станки для бурения траншей способом, сходным с методом «Титания», выпускаются также фирмой «Зальцгиттер» ФРГ.

Оборудование аналогичного типа выпускается в ГДР, США и в других странах.

Смородинов М.И. Справочник по общестроительным работам. Основания и фундаменты

Метод «стена в грунте», или «траншейная стенка» (особый способ производства строительных работ), является одним из важнейших достижений фундаментостроения в 20-м столетии. В наши дни с помощью этой технологии решаются сложные задачи строительства при возведении подземных сооружений, подпорных стен, противофильтрационных завес, фундаментов глубокого заложения и др. [20, 26].

Основным звеном этой прогрессивной технологии является разработка глубоких траншей без крепления стенок под глинистым раствором Проходка таких траншей возможна в разнообразных и неблагоприятных инженерно-геологических и гидрогеологических условиях: например, при наличии слабых глинистых грунтов, плывунов, при высоком уровне подземных вод без водопонижения и т.п.

Глинистый раствор представляет собой разбавленную суспензию бентонитовой глины, в которую вводятся некоторые добавки (измельченные минералы — барит, гематит, магнезит и др.) Эта суспензия обладает высокой устойчивостью и тиксотропными свойствами, т.е. частицы глинистого минерала монтмориллонита, составляющего главный компонент бентонитовой глины, не выпадают в осадок, а остаются во взвешенном состоянии неопределенно долгое время. Вязкость суспензии падает в результате сотрясений Суспензия в зависимости от концентрации глины и добавок (утяжелителей) обладает сравнительно высокой плотностью (1,1—1,3 г/см 3 ), поэтому она оказывает на стенки траншеи значительное давление, не воспринимаемое поровой водой окружающего грунта. Это давление воспринимает активное боковое давление грунта, чем обеспечивается устойчивость стенок прорези (траншеи). Подобный эффект сохраняется и в грунтах, обладающих высокой фильтрационной способностью, поскольку поры таких грунтов быстро заиливаются глиной раствора (явление кольматажа), утечка раствора из траншеи прекращается и суспензия воспринимает распор грунта.

Траншея в грунте, заполненная бентонитовой суспензией, представляет собой противофильтрационную завесу (она резко сокращает притоки воды в строительные котлованы) или разделительную конструкцию (последняя выполняет ту же роль, что и разделительный шпунт). Однако гораздо чаще траншея, заполненная суспензией, — лишь начальный этап производства работ. Ее используют для возведения в ней железобетонной конструкции (в последующем она будет работать вначале в качестве крепления котлована, а затем как конструкция фундамента), выполняемой в сборном или монолитном варианте.

Технологическая схема устройства стены в грунте (в одном из возможных вариантов) приведена на рис. 9.9. Прорезь в грунте проходят грейферным экскаватором с плоским ковшом, который подвешивается на жесткой штанге. Ширина прорези в зависимости от размеров ковша задается 0,5—1,5 м; глубина стенки — до 100 м. Стенке придается в плане любая форма: прямоугольная, круглая, в виде креста, «ромашки» и т.п., что удобно при необходимости передачи на основание больших сосредоточенных сил.

Стадии выполнения работ способом стена в грунте

а — выемка грунта из траншей под глинистым раствором; б — заполнение траншей тампонажным раствором; в — установка панелей; 1 — сборная панель; 2 — грейфер; 3 — тампонажный раствор; 4 — глинистый раствор

Свободно стоящая стена при одностороннем ее откапывании может иметь лишь ограниченную высоту. Поэтому в необходимых случаях применяют два типа креплений: распорное и анкерное (грунтовой анкер). Последний тип крепления представляет наибольший интерес как весьма прогрессивная и эффективная конструкция. Грунтовой анкер устраивают следующим образом (рис. 9.10). Через железобетон траншейной стенки пробуривают горизонтальную или наклонную скважину (с креплением или без него), в скважину вводят (забивают) специальное устройство — заделку анкера. В заделке закрепляют трос или стержень. На траншейной стенке устанавливают распределительную пластину, через которую натягивают анкер силой, обеспечивающей устойчивость стенки при откапывании, чтобы ее перемещения не превышали заданной величины. Длину анкеров устанавливают таким образом, чтобы якорь (активная часть устройства) был расположен за пределами призмы обрушения, а сопротивление анкера достигало необходимой величины. Обычно длина анкера составляет 6—20 м (активная часть 1—6 м), диаметр активной части — 0,2—0,4 м, напряжение (контролируется динамометрами либо по величине удлинения троса или стержня при натяжении) — в зависимости от вида грунта 150—200 кН. Грунтовые анкеры размещают рядами, в несколько ярусов, чем обеспечивается устойчивость и неподвижность стен любой высоты.


1 — призма обрушения; 2 — стена в грунте (железобетон); 3 — тяж анкера (трос); 4 — резиновый пакер (уплотнитель); 5 — ерш (активная часть анкера); I — заделка (активная часть); II — пассивная часть; III — натяжное (стопорное) устройство (пунктирные линии — глубина разработки грунта в котловане перед установкой очередного анкера)

Способ «стена в грунте» наиболее приемлем при возведении фундаментов вблизи существующих зданий, так как при этом исключаются динамические воздействия на грунт (как при забивке свай), обеспечиваются минимальные притоки воды в котлован (поэтому не требуется выполнять глубинное водопонижение, опасное для окружающих котлован зданий) и гарантируется устойчивость грунтов оснований существующих фундаментов, поскольку стенка обладает достаточной жесткостью и прочностью.

В мировой и отечественной практике известны многочисленные примеры успешного применения этого способа при возведении массивных зданий и подземных сооружений в непосредственной близости от существующих зданий, эксплуатация которых не прерывалась при выполнении строительных работ. Опыт показал, что траншея, заполненная глинистым раствором, сохраняет устойчивость даже в тех случаях, когда она разрабатывается возле фундаментов зданий (на участках возле зданий стена в грунте выполняется захватками длиной 3—5 м, что гарантирует безопасность работ). В таких условиях приближение нового строительства к существующим зданиям лимитируется только размерами применяемого оборудования, т.е. несколькими десятками сантиметров.

В ближайшие годы способ «стена в грунте» должен получить широкое распространение при реконструкции промышленных предприятий и при подземном строительстве в городах, что особенно важно в условиях слабых грунтов.

6. Применение свай в тиксотропной рубашке

Одним из путей существенного снижения динамического воздействия при реконструкции или возведении фундаментов вблизи зданий является способ забивки свай в тиксотропной рубашке, разработанный в Уфимском НИИпромстрое. Этот метод позволяет снизить энергоемкость забивки призматических свай до 40 %, а следовательно, уменьшить число ударов на забивку свай до 50 %, облегчить режим работы дизель-молотов, снизить суммарное динамическое воздействие на окружающую среду.

Сущность метода заключается в подаче в образующуюся при забивке околосвайную полость воды (или твердеющего раствора), которая, разжижая глинистую фракцию грунта, образует тиксотропную рубашку, позволяющую на время забивки снизить трение грунта о боковую поверхность сваи.

На основании проведенных экспериментально-производственных работ НИИпромстроем разработана «Инструкция по проектированию и устройству фундаментов из свай в «рубашке» (ВСН 65.03.81) [13].

7. Метод шахтной проходки

В стесненных условиях реконструкции действующих промышленных предприятий в плотных и скальных грунтах в ряде случаев может оказаться весьма эффективным метод шахтной проходки без остановки технологического оборудования [19]. Этот метод по сравнению со способом опускного колодца позволяет: повысить степень индустриализации работ, снизить трудоемкость до 25 %, значительно сократить размеры котлованов и расход бетона.

Метод шахтной проходки был применен при реконструкции действующих цехов Магнитогорского металлургического комбината по проекту, разработанному Магнитогорским Гипромезом [37].

Перлей Е.М., Рукавцов А.М. Особенности проектирования и строительства свайных фундаментов и заглубленных помещений при реконструкции действующих предприятий

Швайбург Г.Б. Использование горно-проходческих методов при реконструкции действующих цехов Магнитогорского металлургического комбината // Возведение фундаментов при реконструкции предприятий в стесненных условиях строительства: Материалы семинара

Сотников С.Н. Проектирование и возведение фундаментов вблизи существующих сооружений


Основы технологии производства земляных работ экскаваторами

В качестве примера рассмотрим основные технологические параметры рабочего места экскаватора с оборудованием прямая лопата.


Рис. 1. Параметры рабочих мест экскаватора, оборудованного прямой лопатой при боковой открытой проходке

Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:

Рабочее место экскаватора — это площадка, на которой он стоит, часть поверхности земли, с которой вынимают грунт, площадка, на которой стоят подаваемые под погрузку автомобили-самосвалы, а также при разработке грунта в отвал — место отсыпки грунта. По мере разработки грунта рабочее место перемещается.

Размеры и форма рабочего места зависят от габаритов экскаватора, вида рабочего оборудования и размеров земляного сооружения. Проектируют его и организуют с учетом требований техники безопасности.

Методы определения технологических параметров рабочего места экскаваторов с различными видами сменного рабочего оборудования подробно изложены в учебном пособии А. К. Рейша «Основы техно-

Высота разработки Нз определяется точкой, лежащей на пересечении линии наибольшего радиуса копания R3 и линии траектории 4—3.

Наибольший радиус копания R3 равен наибольшему горизонтальному расстоянию на высоте пяты стрелы, когда ковш повернут до образования оптимального угла копания, а рукоять повернута от стрелы с полным использованием хода штока гидроцилиндра.

Средний угол поворота на выгрузку и определяют следующим образом. Контур разрабатываемого экскаватором грунта с одной стоянки 1—2-3-^4—5—6 через равные расстояния по высоте разбивают плоскостями и на каждом сечении определяют центр тяжести (Ц.Т.) площади сечения. Все центры тяжести от Ц.Т.В до Ц.Т.Н соединяют линией, которая представляет собой прямую.


Рис. 2. Параметры рабочего места экскаватора, оборудованного обратной лопатой при боковой открытой проходке

При применении на гидравлических экскаваторах грейфера без удлинителя выемка получается сравнительно широкой, но неглубокой, с удлинителем — узкой, но глубокой.

Грунт экскаваторы разрабатывают проходками.

Схемы производства работ, в которых экскаватор, разрабатывая грунт, укладывает его в отвал, кавальер или в земляное сооружение, называют бестранспортными.

Бестранспортная схема, при которой грунт укладывают в отвал или насыпь без последующей его перевалки (переэкскавации), называется простой, а с последующей частичной или полной переэкскавацией — сложной.

Схема, при которой грунт грузят экскаватором в самосвалы и отвозят в заданное место, называется транспортной. При этом схемы движения грунтовозного транспорта могут быть различными.

Например, при работе прямой лопатой применяют две схемы: тупиковые — самосвалы подходят к экскаватору и возвращаются по тому же пути;

сквозные — автомобили подъезжают к экскаватору без маневрирования и уезжают после погрузки по дороге, являющейся продолжением въездного пути.

Выбор схемы производства работ зависит от особенностей строительства. Так, в водохозяйственном, нефтегазопровод-ном и транспортном строительстве преобладают бестранспортные схемы работ, а в промышленном и жилищном строительстве — транспортные.

Грунт разрабатывают лобовыми или боковыми, закрытыми и открытыми проходками.


Рис. 3. Параметры рабочего места экскаватора, оборудованного драглайном при боковой открытой проходке


Рис. 4. Параметры рабочего места экскаватора, оборудованного грейфером:
а — при механическом приводе, 6 — при гидравлическом приводе, в — то же, с удлинителем

По боковой закрытой проходке ось движения экскаватора располагается сбоку от выемки и экскаватор разрабатывает три откоса выемки — два боковых и торцовый; при открытой проходке экскаватор перемещается вдоль разрабатываемой полосы, где также разрабатывает боковые и торцовый откосы.

Производство работ прямой лопатой.

При работе прямой лопатой применяют только транспортные схемы, так как вследствие малых линейных размеров рабочего оборудования экскаватор не может уложить в отвал весь выработанный грунт. Прямую лопату применяют при устройстве разрезных и пионерных траншей на карьерах, больших котлованов и выемок при дорожном и гидротехническом строительстве.

В зависимости от условий работы экскаваторы прямой лопатой разрабатывают грунт лобовыми и боковыми проходками. В лобовых проходках узких для сокращения времени маневрирования транспорта устраивают промежуточные въезды, в широких — экскаватор в процессе работы перемещается на небольшие расстояния в правую и левую части забоя. Автомобили самосвалы подходят поочередно вдоль обоих откосов выемки.

При работе боковой проходкой экскаватор устанавливают так, чтобы он разрабатывал грунт перед собой и с одной из боковых сторон. С другой боковой стороны устраивают землевозные пути. Как правило, транспортные пути и экскаватор располагают на одном уровне.

При сооружении глубоких выемок в гидротехническом и дорожном строительстве проектная глубина выемок может значительно превышать технологические возможности экскаватора. В этом случае глубокие выемки разбивают на уступы и ярусы, высота которых должна соответствовать возможностям экскаватора.

Верхнюю часть выемки разрабатывают бульдозерами, затем часть выемки — скреперами, оставшуюся часть разбивают на ярусы и разрабатывают экскаваторами, оборудованными прямой лопатой. Остающаяся часть грунта и откосы дорабатываются драглайнами.

Производство работ обратной лопатой. При работе обратной лопатой применяют транспортные и бестранспортные схемы разработки и лобовые и боковые проходки, при которых ось рабочего хода экскаватора смещена в сторону подхода транспортных средств. Боковая проходка при работе обратной лопатой может быть закрытой и открытой.

При закрытой боковой проходке грунт разрабатывается по’ схеме, показанной на рис. 6, а и б. При открытой боковой проходке одна из сторон рабочего места остается свободной от грунта. Параметры разрабатываемого сооружения зависят от вида боковой проходки. Так, при закрытой боковой проходке крутизна обоих откосов выемки может быть задана одинаковой или разной, при этом во втором случае глубина разработки увеличивается в 1,6 раза. При открытой боковой проходке глубина разработки может быть увеличена еще на 20%. Однако при такой схеме возможный объем отвала (площадь его сечения S) и расстояние между отвалом и выемкой К уменьшаются по сравнению с работой закрытой боковой проходкой примерно в 10 раз. Это предопределяет необходимость при такой схеме работ (боковой открытой проходкой) использовать погрузку грунта в транспорт.

Производство работ драглайном. Экскаваторы, оборудованные драглайном, могут разрабатывать грунт в отвал или с погрузкой в транспортное средство. В том и другом случае применяют лобовую или боковую проходку.

Радиус копания и высота, разгрузки у оборудования драглайна выше, чем у обратной лопаты, что позволяет применять его при выполнении работ на крупных объектах. При разработке узких траншей и выемок экскаватор устанавливают по оси земляного сооружения и разрабатываемый грунт укладывают на правую или левую сторону от выемки.

В дорожном строительстве драглайн часто используют для возведения насыпей высотой до 3 м. При этом работу ведут в такой последовательности. Сначала экскаватором, установленным в положение I — I, разрабатывают левый резерв, укладывая грунт послойно в тело насыпи. Затем экскаватор перемещается на другую сторону насыпи в положение II — II и укладывает грунт во вторую половину нижней части насыпи. Разрабатывая грунт из положение III — III , увеличивает резерв и укладывает послойно грунт в верхнюю часть насыпи.


Рис. 5. Схема разработки глубокой выемки:
1 — поперечными проходками скрепера, 2 — продольными проходками скрепера, 3 — прямой лопатой, 4 — драглайном; I…XII — проходки


Рис. 6. Схемы разработки выемок обратной лопатой:
а — боковой закрытой проходкой с одинаковой крутизной откосов, б — то же, с разной, в — боковой открытой проходкой

Наибольшее распространение получили варианты бестранспортных схем работы драглайном: выполнение работ одной продольной проходкой с односторонним размещением отвалов; четырьмя продольными проходками с двусторонним размещением отвалов.

В практике выполнения вскрышных работ в карьерах применяют несколько вариантов совместной работы драглайна и бульдозера.

Разрабатывает и перемещает вскрышной грунт бульдозер, а укладывает в отвал — экскаватор. Бульдозер снимает верхний слой вскрышных грунтов на всей площади участка и перемещает его за пределы разрабатываемого участка непосредственно в отвал. С увеличением глубины выемки, когда бульдозер не сможет транспортировать грунт за пределы участка, он перемещает вскрышные грунты до границ вскрываемого контура по всей длине его. Далее грунт перемещается в отвал экскаватором, который устанавливают за пределами вскрываемого участка. Перемещаясь по оси I—I, параллельной границе участка, экскаватор отсылает перемещенный бульдозером грунт в отвал 1. Затем его устанавливают на этом отвале и он, двигаясь по оси II — II, перемещает доставленный бульдозером грунт в отвал. В заключение экскаватор, двигаясь по оси III — III , расположенной непосредственно у границы вскрываемого участка, перемещает оставшийся в выемке грунт в отвал.


Рис. 7. Схемы возведения насыпи из резервов:
а — разработка правого резерва, б — разработка левого резерва, в — расширение левого резерва

При такой схеме организации работ бульдозер вынужден транспортировать грунт к границе вскрываемого участка, преодолевая длинные крутые подъемы, что снижает его производительность. Эта схема находит применение при разработке участков шириной 50…60 м с глубиной до 4 м.

Разрабатывает вскрышной грунт экскаватор, а перемещает в отвал — бульдозер. Вскрываемый участок разбивают на проходки (I—/, II — II, III — III ) максимальной для данного экскаватора ширины. Разрабатывая грунт боковыми проходками, экскаватор перемещает его во временные отвалы. Бульдозер транспортирует грунт из временных отвалов в постоянные, расположенные за пределами вскрываемого участка. Из последней проходки экскаватор перемещает грунт в постоянный отвал, Существенный недостаток этой схемы — малоэффективный способ отвалообразова-ния бульдозером, так как основной объем грунта в постоянном отвале размещается на большой площади. Бульдозер, как и в первом случае, вынужден преодолевать длинные и крутые подъемы, перемещаясь по разрыхленному грунту, что снижает его производительность.


Рис. 8. Схемы разработки выемок драглайном боковой проходкой:
а — закрытой с одинаковой крутизной откосов, б — то же, с различной крутизной откосов, в — открытой с одинаковой крутизной откосов

Комбинированная схема. Бульдозер снимает верхний слой вскрышных грунтов и транспортирует их за пределы вскрываемого участка в постоянный отвал. Затем вводят в работу экскаватор, который, передвигаясь вдоль откоса выработки, перемещает грунт, доставленный бульдозером в отвал. Последующее перемещение грунта в отвал экскаватор производит, перемещаясь по отвалу. Высокий уровень стоянки экскаватора способствует увеличению объема отвала.

Комбинированная схема выполнения земляных работ находит применение при разработке грунтов шириной 30…40 м, мощностью вскрышных грунтов 4…5 .м. При этой схеме достигается высокая производительность обеих машин, входящих в комплект, так как бульдозер перемещает грунт на сравнительно небольшое расстояние без преодолевания больших подъемов, а экскаватор разрабатывает разрыхленный грунт.

Производство работ грейфером. Экскаваторы с грейферным ковшом применяют для погрузки и разгрузки сыпучих грунтов (песка, шлака, щебня, гравия), а также для рытья колодцев, котлованов под фундаменты отдельно стоящих сооружений, опор линий электропередачи, силосных башен, зачистки траншей при строительстве магистральных трубопроводов, для рытья различных углублений, котлованов сложного профиля и для обратной засыпки.

На участках со сложным профилем грунт также разрабатывают экскаватором; оборудованным грейфером. Этот же экскаватор отрывает все углубления и приямки, предусмотренные проектом на участках, вырытых драглайном.

Засыпка грунта в пазухи котлованов и за стенки фундаментов. Эти работы выполняют по мере готовности фундаментов. Экскаватор, перемещаясь вдоль бровки котлована (по периметру), набирает из отвала грунт и укладывает его равномерно небольшими слоями в пазухи или за стенки фундамента. Высота насыпанного грейфером слоя грунта не должна превышать 1… 1,5 м. Этот грунт разравнивают бульдозером (а при стесненных условиях — вручную) и уплотняют трамбовочными плитами, пневматическими трамбовками или другим способом.


Рис. 10. Простые схемы вскрышных работ одной проходкой (а), двумя (6), двумя в односторонний отвал (в), четырьмя (г)


Рис. 11. Схемы вскрышных работ экскаваторами, оборудованными драглайнами:
а, б — укладка грунта в отвал экскаватором и бульдозером, в — перекидка грунта экскватором и разравнивание бульдозером


Рис. 12. Схемы применения оборудования грейфера на канатной подвеске:
а — засыпка пазух, б — разработка котлована под опускной колодец; 1 — грунт для засыпки пазух, 2 — слои грунта, уплотняемые трамбовками, 3 — шпальная клетка, 4 — земляная подушка

Устройство котлованов под опускные колодцы на строительстве металлургических предприятий. Оборудованные грейфером экскаваторы являются ведущими в комплектах машин, выполняющих такие земляные работы. Колодец в форме неправильного шестиугольника высотой 11 м и массой 1200 т был установлен на земле. Рядом с ним на земляной подушке и шпальной клетке подготовили место для установки экскаватора, оборудованного грейфером. Грейфер разрабатывал грунт внутри колодца и отсыпал его в отвал. Грунт из отвала грузил на транспорт второй экскаватор, оборудованный прямой лопатой. По мере выработки грунта внутри колодца последний опускался под действием собственного веса.

Устройство котлована под опускные колодцы при наличии грунтовых вод. В этих случаях наиболее эффективно применять грейфер. Даже при хорошей организации водоотлива применение других землеройных машин затруднено. Грейферный ковш позволяет разрабатывать грунт под водой. Гидравлические экскаваторы, оборудованные грейфером, выполняют также выемки под отдельно стоящие опоры.

Гусеничные экскаваторы при работе в забоях во влажных или заболоченных грунтах вязнут, поэтому экскаваторы необходимо устанавливать на настилах, состоящих из отдельных щитов (еланей). Щиты могут быть деревянными или металлическими. Для работы экскаватора необходимо столько щитов, чтобы их общая длина была в 1,5 раза длиннее гусеничного хода.

Экскаватор после разработки грунта передвигается на заранее уложенные щиты. После этого с помощью крюка, укрепленного на тяговой цепи ковша драглайна, перекладывают освободившиеся щиты для дальнейшего передвижения.

Читайте также: