Как измерить влажность газобетона

Обновлено: 17.05.2024

Интернет переполнен вопросами о точке росы в строительстве. Что это такое? Где находится точка росы? Как не допустить её появление в наружных стенах? Как устранить её? Как вывести точку росы за пределы стен? Точка росы кажется чем-то страшным, с чем обязательно нужно бороться… Наша статья для тех, кто хочет раз и навсегда победить этого «страшного зверя». Рассмотрим проблему точки росы применительно к стенам из газобетона в загородном домостроении.

Точка росы: что это такое?

В воздухе всегда в той или иной степени содержатся пары воды. Когда температура воздуха опускается до определённого значения, водяной пар переходит из газообразного состояния в жидкое. То есть превращается в воду, конденсируясь на поверхности, которая холоднее его собственной температуры. Это физическое явление можно наблюдать повсюду:

  • Утренняя роса на траве
  • Запотевшие окна зимой
  • Запотевшая бутылка, взятая из холодильника
  • Капельки воды на холодных стенах подвального помещения в отопительный период

Точка росы – это температура, при которой водяной пар превращается в конденсат. Строго говоря, понятие «точка» некорректное. В технической литературе используют термин «плоскость максимального увлажнения». Потому что конденсат образуется не в точке, а в некоторой зоне, области.

Появление конденсата зависит от двух факторов:

  • Количества водяного пара в воздухе
  • Температуры воздуха

Точка росы в газобетонной стене

Расстроим тех, кто боится точки росы в наружных стенах загородного дома. В регионах с холодными зимами не существует однослойных стен из любого каменного материала (кирпич, поризованная керамика, пено-, газобетон и пр.), внутри которых зимой не было бы точки росы. Даже в таком энергоэффективном каменном материале, как газобетон, не может быть плюсовой температуры по всей толщине. А значит, в определённом месте кладки (в первой трети стены со стороны улицы) плюс переходит в минус, и водяной пар, стремящийся из внутренних помещений дома на улицу, превращается в конденсат.

Что же делать? Ничего. На протяжении многих веков человечество строит каменные дома с точками росы, и ничего плохого не происходит. Стоят себе и стоят. Конечно, со временем они стареют и разрушаются, но на это уходят сотни лет. Достаточно посмотреть на сохранившиеся средневековые кирпичные церкви: их стены до сих пор не утратили своих эксплуатационных свойств. Точно также и точка росы в газобетонное стене не представляет никакой опасности.

Многие боятся, что точка росы снизит морозостойкость кладки. Ведь известно, что влага, которая зимой накапливается в толще пористых стеновых материалов, циклически замерзает и оттаивает, тем самым разрушая стены. Но в случае газобетона бояться этого не стоит, учитывая два момента:

  • Газобетон – паропроницаемый материал, он не накапливает влагу. И даже если за зиму в его толще образуется небольшое количество влаги, вся она испаряется за лето.
  • Той влаги, которая появляется в стене зимой, недостаточно для того, чтобы в результате циклов замораживания и оттаивания разрушать кладку. Неслучайно газобетон YTONG имеет очень высокую марку по морозостойкости – F100 (по результатам независимых испытаний). Это означает, что срок его службы – не менее 100 лет, согласно СП 15.13330.2012*.

Чтобы гарантировать долговечность газобетонного дома, нужно лишь соблюдать технологию его сооружения, в частности:

  • Отделывать газобетонную кладку снаружи можно через 2-6 месяцев после строительства дома. На выходе с производственной линии газобетонные блоки имеют повышенную влажность, и нужно время, чтобы они высохли.
  • Лучше использовать паропроницаемые отделочные материалы, которые не станут препятствием для выхода пара из стен.
  • Если необходимо закрыть фасад материалом паронепроницаемым или с меньшей паропроницаемостью, чем у газобетона, предусматривайте вентилируемый воздушный зазор между кладкой и отделкой. Так делают, например, фасады с облицовкой из керамического кирпича. А облицовку из декоративного бетонного камня или клинкерной плитки закрепляют с помощью системы вентфасада (при условии, что подобная облицовка закрывает более 25% площади фасада).

Подробную информацию о возведении дома из газобетона можно получить на курсе по строительству из YTONG

Так в чём же проблема?

О том, что точка росы может представлять опасность, стали говорить тогда, когда началась мода на повсеместное утепление наружных стен. Увы, утеплитель не спасает от точки росы, она остаётся в конструкции стены. Но теперь она действительно может оказаться проблемой, если нарушена технология выполнения фасадных работ. Притом конструкция утеплённых (многослойных) стен намного сложнее, чем однослойных, и при её устройстве намного проще допустить ошибки.

Минеральная вата

Согласно современным нормам, в средней полосе России однослойные стены толщиной 375 мм из газобетонных блоков плотностью D400 утеплять, как правило, не требуется**. Они достаточно «тёплые», чтобы можно было тратить небольшие суммы на обогрев дома. Но бывают ситуации, когда наружные стены из газобетона приходится утеплять:

  • В регионах с суровыми зимами, где газобетонная стена при разумной толщине не может обеспечить необходимую теплозащиту.
  • В зданиях с неоптимизированной системой отопления или с очень большой площадью остекления в сочетании с не энергоэффективными стеклопакетами. Утеплитель компенсирует потери тепла.
  • Для исправления ошибок, допущенных при строительстве дома из газобетона. Например, когда у здания толстые растворные швы, железобетонные перекрытия, не имеющие терморазрывов в местах опирания на ограждающие стены и т.п.
  • Некоторые заказчики из различных соображений строят многослойные наружные стены такого типа: несущую часть делают тоньше (обычно 200-250 мм), из более плотных и, как следствие, более «холодных» блоков D500, а необходимое сопротивление теплопередаче добирают за счёт теплоизоляции.

При этом возникает вопрос: какой утеплитель выбрать? Минеральную вату или пенополистирол (обычный, экструдированный)? Производители газобетона рекомендуют материалы на основе каменного или стеклянного волокна (минеральную вату). Структура этих материалов схожа со структурой самого газобетона: поры, через которые беспрепятственно движется воздух. Поэтому утеплитель не затрудняет выход водяного пара из кладки, и стена работает в правильном режиме.

Точка росы в такой конструкции смещается в толщу утеплителя или на границу утеплителя и наружной отделки. Никакой опасности точка росы, как правило, не представляет. Конденсат выпадает в очень малых количествах и «выносится» благодаря постоянному движению воздуха из помещения на улицу. При этом толщина слоя минваты ни на что не влияет.

Единственная проблема – нельзя допускать накопления влаги в утеплителе. Минеральная вата отлично сберегает тепло, но только в сухом состоянии. Если же она увлажняется, то резко теряет изоляционные свойства. А «пирог», где сочетаются намокшая минвата и тонкая стена из газобетона высокой плотности, – это колоссальные затраты на отопление дома.

Как избежать увлажнения утеплителя из минеральной ваты?

Итак, точка росы сама по себе не опасна. Проблемы возникают тогда, когда она появляется в стене, где зимой накапливается влага. Поэтому надо заранее сделать расчёт влагонакопления многослойной ограждающей конструкции в отопительный период, используя, например, один из онлайн-калькуляторов. Как правило, влагонакопление оказывается в допустимых пределах, при условии, что в утеплённой стене нет препятствий для выхода пара на улицу.

Несколько рекомендаций, как не допустить намокание волокнистого утеплителя. Они во многом совпадают с рекомендациями по устройству неутеплённых газобетонных стен:

  • Нельзя монтировать вплотную к таким утеплителям отделочные материалы с низкой паропроницаемостью, например, декоративные бетонные камни, клинкерную плитку, облицовочный керамический кирпич и пр. Они «запирают» влагу в стене. Используйте фасадные системы, где предусмотрен вентзазор.
  • В конструкциях с вентиляционным зазором закрывайте утеплитель только паропроницаемыми ветрозащитными мембранами (ни в коем случае не обычными плёнками, у них низкая паропроницаемость).
  • Применяйте только те системы штукатурных фасадов «мокрого» типа, которые рекомендованы для газобетона (то есть обладают высокой паропроницаемостью всех слоёв). В частности, нельзя отделывать фасад высокоплотными цементными штукатурками (более 1600 кг/м3).
  • Монтируйте теплоизоляцию и отделку после того, как из газобетонной стены вышла избыточная начальная влага.

Пенополистирол

В большинстве случаев проблемы, связанные с точкой росы, появляются при утеплении газобетона тонким слоем пенополистирола – обычного или экструдированного. Это обусловлено двумя факторами:

  1. Пенополистирол является паробарьером. Он не даёт влаге выходить из стены.
  2. При утеплении тонким слоем пенополистирола (50 мм) происходит влагонакопление в стене в отопительный период.

Плоскость максимального увлажнения образуется на границе стены и теплоизоляции, зимой здесь накапливается влага, газобетон увлажняется, а это, в свою очередь, оборачивается потерями тепла через стены и снижением срока их службы. Притом потери тепла будут вполне ощутимыми, учитывая, что пенополистиролом обычно закрывают тонкие стены из высокоплотного газобетона. В результате вместо выгоды (экономии на толщине стенового материала) домовладелец получает большие счета за отопление, ведь эффекта от утепления нет.

Более того, увлажнённый газобетон всё равно будет высыхать, но только отдавая влагу обратно в помещение. А значит, неизбежна повышенная влажность в доме.

Что же делать? Если в силу каких-то причин невозможно увеличить толщину слоя утепления (сделать её 100 мм и более), тогда придётся:

  1. Монтировать поверх стен со стороны помещения паробарьер. В качестве него могут выступать, например, паронепроницаемые виниловые обои, высокоплотная цементная штукатурка и пр.
  2. Предусматривать принудительную приточно-вытяжную вентиляцию, чтобы удалять из дома водяной пар. В крайнем случае очень часто проветривать жилые помещения.

Как избежать проблем при утеплении пенополистиролом?

Накопления влаги не будет, если соблюдать главное правило: при наружном утеплении материалами с низкой паропроницаемостью термическое сопротивление (R0) утеплителя должно быть больше половины термического сопротивления стены (0,5хR0). Расчёт с помощью онлайн-калькулятора поможет понять ситуацию с влагонакоплением конкретной конструкции.

В общих чертах можно сказать, что газобетонные стены из блоков D500 толщиной 250 мм и меньше допустимо утеплять пенополистиролом толщиной не менее 100 мм. В такой конструкции точка росы выносится в теплоизоляцию, а вся газобетонная кладка находится в зоне плюсовой температуры – в силу высокой энергоэффективности пенополистирола. Поскольку нет перепадов температуры в толще кладки, движения воздуха в сторону улицы также нет, и накопления влаги в стене не происходит.

Правда, есть нюансы:

  • Водяной пар не «уходит» через стены и потому его нужно принудительно удалять из жилых помещений, чтобы обитателям дома было комфортно. А значит, требуется приточно-вытяжная вентиляция.
  • Монтировать пенополистирол можно только после полного высыхания «свежепостроенных» газобетонных стен (избавления от производственной влажности).

Ещё больше информации о возведении дома из газобетона можно получить на курсе по строительству из YTONG

Газобетонные блоки получают высокий показатель прочности (B2,5) благодаря обработке их в автоклаве насыщенным паром под высоким давлением. Газоблоки из автоклава производятся с учетом содержания в них уровня влаги, который может достигать 1/3 сухой массы газобетона. Затем, пористая структура газобетона остывает и газосиликатные блоки кладут на поддоны. Перед продажей, автоклавный ячеистый бетон упаковывают в термоусадочную пленку для защиты от воздействия атмосферных осадков. Таким образом, газобетон от момента его производства до начала строительных работ сохраняет влажность на одинаковом уровне.



Как влажность влияет на прочность и морозостойкость газоблока.

Минусовая температура способна повредить пористую структуру ячеистого бетона лишь при критической концентрации в нем влаги. Критическая влажность газобетона Д500 равняется 40% от объема и 80% от его массы (для газобетона D400 – 50% и 100%). Перед началом строительства газоблоки АЭРОК содержат примерно 15% влаги по объему, что не превышает норму. На стройплощадке важно принять меры для защиты блоков от дождя или снега, паллеты важно хранить запечатанными в термоусадочной пленке (а лучше под навесом), не допуская контакта их нижней части с водой.

ГОСТ установил нормы морозостойкости пористых бетонов не ниже отметки F35 циклов переменного замораживания и оттаивания. Например, газобетон AEROC Д300-500 гарантирует морозостойкость F100, что значительно превосходит норму и продолжает строки эксплуатации газосиликатных блоков.

Класс прочности газоблоков на сжатие тесно связан с их влажностью (это видно на графике).


Влажность газобетона 10% , которая учитывается при расчете прочности, имеет следующий поправочный коэффициент:


Вывод : прочность газобетона при сильном увлажнении снизится не больше 13%, что абсолютно не есть критично.


Если строительство стен из газобетона осуществлялось без нарушения требований защиты материалов от воздействия влаги, то в течении 2-3 лет (при условии правильного отопления) будет достигнута стабильная эксплуатационная влажность. То есть, произойдет высыхание стен до устойчивого уровня. На скорость процессе высыхания стен влияет паропроницаемость и сорбционная влажность. Чем выше будет их соотношение, тем быстрее будет происходить высушивание стенового материала. Рекомендовано, чтобы облицовка и утеплитель имели высокую паропроницаемость, иначе вся конструкция будет высыхать очень медленно.

Основной характеристикой при выборе материала для дома или гаража, технического строения или бани, является показатель его влагостойкости. Чем больше блок напитывается водой, тем быстрее он теряет свои теплоизоляционные свойства и подвержен деформациям.

Избежать такой участи помогает пористая структура и функция паропроницаемости. Вода не проникает вглубь блока за счёт сферических пор и выводится наружу. Равновесная или же эксплуатационная влажность должна быть равна допустимым 5%. Но этого показателя газобетон достигает только через два года эксплуатации строения.


Поскольку изначально, автоклавный газобетон, уже в готовом виде может содержать в себе до 35% влаги, связано это напрямую с процессом изготовления. Но постепенно уровень влаги падает и достигает своего необходимого значения. Хотя уже давно доказано, что даже если процент влажности будет достигать 40%, этот показатель способен снизить показатель относительной прочности всего на 10-13%.


В наше время проводилось достаточно много исследования на тему влажностного состояния современных конструкций из автоклавного газобетона в условия эксплуатации.


Исследования проводились на протяжении нескольких лет в различных климатических условиях, принимая во внимание такие характеристики газобетона:

1. Марка плотности

2. Класс прочности

6. Влажность готового изделия

7. Влажность газоблока внутри помещения, отапливаемого в зимний период

8. Влажность снаружи в зимний и летний периоды, с учётом количества осадков и солнечных дней

9. Защита наружной стены здания штукатуркой или другими облицовочными материалами с учётом воздушной прослойки.


Все эти показатели и характеристики, согласно ГОСТам, показали, что при правильной транспортировке, хранении в терм усадочной заводской упаковке, использовании до начала холодного зимнего периода. А также отопления помещения в зимний период, хорошо вентилируемых фасадах, и эксплуатации на протяжении 1-3 лет, показатель влажности падает до отметки 4-5% по нормативам. Для примера, возьмём газобетон D500 С2,5, 300х200х600, где в сухом состоянии теплопроводность имеет показатель 0,12 Вт/(м·°С), а послеавтоклавная влажность = 30-35%.


Влажность распространилась равномерно до 20см в глубину стены, но при правильной эксплуатации, за несколько месяцев наблюдалось просыхание стены до 10-12 см в глубину. В теплое время года этот процесс значительно ускорялся как с внутренней, так и наружных сторон стены.


Ещё одно исследование показало на своих результатах, что пренебрежение соблюдением необходимых норм, чревато серьёзными последствиями для автоклавного газобетона. Например, высота фундамента не на том уровне или был выбран ненадлежащий материал, без должной гидроизоляции, или вообще отсутствие цоколя.

Неправильный водоотвод, отсутствие гидроизоляции, откосы на проёмах, пренебрежение паропроницаемыми отделочными материалами. Зачастую, забывают правильно консервировать строение на зимний период, или продолжают строительство или отделку наружную, при минусовой температуре. Все эти ситуации приводят к тому, что происходит переувлажнение стен, а, например, зимой, влага, которая находится в ячейках промерзает и не вся успевает выводится. Потому может произойти не только внешняя, но и внутренняя деформация, теряются теплоизолирующие свойства и, конечно уменьшается количество морозоустойчивости.

Дан анализ методик расчета влажностного режима ограждающих конструкций. Обоснована актуальность проведения исследований эксплуатационной влажности автоклавного газобетона. Проведены экспериментальные исследования по сорбционному увлажнению и паропроницаемости основных марок газобетона. Приведены результаты испытаний и численных расчетов влажностного режима стен из газобетона марки D400 с фасадными теплоизоляционными композиционными системами с наружными штукатурными слоями для условий различных климатических зон строительства, а также значения эксплуатационной влажности материалов исследованных конструкций.


В процессе эксплуатации зданий влажностное состояние материалов ограждающих конструкций изменяется в зависимости от конструктивных особенностей, свойств материалов, температурно-влажностных условий в помещениях, климатических условий района строительства 1. Влажностный режим определяет эксплуатационные свойства ограждающих конструкций здания. Он непосредственно влияет на теплозащитные свойства ограждающих конструкций 9 и энергоэффективность применяемых материалов [10].

Расчеты влажностного режима позволяют решать различные задачи строительной теплофизики. Стационарная методика оценки влажностного режима [11] позволяет проверить конструкцию по условиям недопустимости накопления влаги в ней за годовой период эксплуатации и ограничения влаги за период с отрицательными средними месячными температурами наружного воздуха.

Расчеты по нестационарным методикам 14 позволяют давать не только качественные оценки влажностного состояния ограждающих конструкций, но и конкретные количественные результаты по влагосодержанию в слоях строительных материалов. Основным результатом расчетов влажностного режима ограждающих конструкций по нестационарным методикам является распределение влажности по толщине конструкции в любой момент времени после начала эксплуатации здания. Из этого результата можно получить ответы на частные задачи, в т.ч. определение значения эксплуатационной влажности строительных материалов.

Актуальность работы обусловливается тем, что автоклавный газобетон в настоящее время является самым распространенным материалом в наружных ограждающих конструкциях зданий [15], а последние крупные исследования по тематике влажностного режима проводились для ячеистых бетонов, имевших другие тепловлажностные характеристики. С тех времен был практически полностью заменен парк оборудования для производства, изменились технологии и составы, из-за повышения норм к теплозащите более широкое применение получили марки пониженной плотности D300 и D400.

Эксплуатационная влажность

Эксплуатационная влажность - это равновесное влагосодержание материала в ограждении относительно воздействующих на него влажностных факторов внутренних и наружных сред. Влагосодержание в материале конструкции становится равновесным после нескольких лет эксплуатации здания [14].

Срок выхода влажностного режима конструкции на квазистационарный зависит от начальной (технологической) влажности материала, состава конструкции и климатических условий региона строительства.

Результаты натурных и численных исследований показывают, что для конструкций с применением газобетона срок выхода на устоявшуюся эксплуатационную влажность составляет от 1 до 5 лет [5, 14, 16-19].

Основным способом определения эксплуатационной влажности являются натурные исследования, так как по их результатам можно установить распределение влажности для конкретной конструкции в конкретных условиях эксплуатации. Однако результаты натурных исследований даже для одного типа конструкций в одних и тех же эксплуатационных условиях могут иметь большой разброс [20].

Именно по статистическим данным большого количества натурных исследований, а также по экспертным оценкам были определены значения расчетной влажности в условиях эксплуатации А и Б из приложения С [11]. Эти значения переносятся из редакции в редакцию СНиП "Тепловая защита зданий" лишь с небольшими изменениями и дополнениями, и для некоторых типов материалов их следует признать устаревшими. Это относится, например, к газобетону, где влажности в условиях эксплуатации А и Б приняты равными 8 и 12 % соответственно (пп. 176-179 приложения С [11]).

В настоящее время повторить всеобъемлющие натурные исследования, которые бы легли в основу таблицы расчетных теплотехнических показателей СНиП, не представляется возможным, так как государственное финансирование научно-исследовательской деятельности в строительстве фактически не ведется, а также отсутствует постоянная взаимосвязь между предприятиями строительной отрасли и отраслевыми НИИ. Поэтому использование численных методов расчета влажного режима ограждающих конструкций сейчас является более перспективным [8, 12-14].

Нестационарные методы расчета влажностного режима известны с 1930-х гг., а в 1984г. в НИИ строительной физики было разработано "Руководство по расчету влажностного режима ограждающих конструкций зданий" [21], которое по сей день является наиболее полным пособием по практике проведения нестационарных расчетов. В последние два года проведена актуализация данного метода и выпущен новый стандарт: ГОСТ 32494-2013 "Здания и сооружения. Метод математического моделирования температурно-влажностного режима ограждающих конструкций".

Экспериментальные исследования

Для актуализации данных по тепловлажностным характеристикам автоклавного газобетона был выполнен ряд экспериментальных исследований. Наиболее значимыми следует признать полученные результаты исследований паропроницаемости и сорбции водяного пара, так как впервые за последние годы по методикам ГОСТ и на специальном оборудовании были одновременно испытаны основные марки автоклавного газобетона современного производства.

Также впервые для образцов современного газобетона были апробированы методики и получены результаты исследований капиллярного всасывания и влагопроводности. Усредненные результаты экспериментальных исследований сорбции водяного пара образцами автоклавного газобетона основных марок приведены в табл. 1. Испытания проводились по методике ГОСТ 24816-812.

Табл. 1. Результаты исследований сорбции образцами газобетона

Марка газобетона Сорбционная влажность, %, по массе при температуре 20±2 °С
и относительной влажности воздуха, %
40 60 80 90 97
D300 0,102 0,36 1,9 3,15 6,3
D400 0,063 0,22 1,32 2,48 4,54
D500 0,036 0,16 1,23 2,19 4,25
D600 0,021 0,083 1,1 2,08 4,00

Полученные данные можно обобщить выводом, что чем меньше плотность газобетона, тем больше сорбция. Это объясняется большей пористостью ячеистого бетона при понижении плотности.

Табл. 2. Результаты исследований паропроницаемости газобетона

Марка газобетона Средняя плотность
образцов ρ, кт/м 3
Сопротивление
паропроницанию Rп, м 2 ⋅ч⋅Па/мг
Паропроницаемость μ, мг/(м⋅ч⋅Па)
D300 330 0,198 0,126
D400 410 0,215 0,120
D500 504 0,240 0,105
D600 634 0,268 0,095

Вывод по данным исследованиям заключается в том, что чем выше плотность газобетона, тем больше сопротивление паропроницанию и, соответственно, ниже коэффициент паропроницаемости.

Численные расчеты

С использованием полученных актуальных тепловлажностных характеристик газобетона были проведены пробные расчеты нестационарного влажностного режима многослойных ограждающих конструкций в климатических условиях различных городов строительства.

Исследованы стены из газобетона марки D400 с фасадной системой со скрепленной теплоизоляцией (СФТК) с использованием основных типов эффективных утеплителей:

  • минеральной ваты;
  • формованного пенополистирола (пенопласта);
  • экструдированного пенополистирола (XPS)

с наружным тонким штукатурным слоем.

При расчетах принималось, что температура и влажность в помещении остаются постоянными в течение года - +20 °С и 55 % соответственно. Температура и относительная влажность воздуха снаружи конструкции изменяется. Данные для расчетов брались из СП 131.13330.2012 "Строительная климатология. Актуализированная редакция СНиП 23-01-99".

На рис. 2-4 приведены графики распределения влажности по толщине конструкций в различных городах строительства, полученные в результате расчетов по разработанной программе для ЭВМ, согласно [21], реализующей математическую модель температурно-влажностного режима ограждающих конструкций из ГОСТ 32494-2013.

Результаты приведены на третий год эксплуатации здания. Данный период выбран по тем соображения, что по проведенным расчетам за два года все рассмотренные варианты конструкций теряют начальную (технологическую) влажность и выходят на квазистационарный влажностный режим.

Для каждого варианта приведено два графика - это распределения влажности на начало месяцев, следующих за месяцами наибольшего и наименьшего влагонакопления в конструкции (соответственно на начало февраля и августа).

Рис. 2. Распределение влажности внутри конструкции с минеральной ватой: слева - начало февраля; справа - начало августа


Рис. 3. Распределение влажности внутри конструкции с пенополистиролом: слева - начало февраля; справа - начало августа


Рис. 4. Распределение влажности внутри конструкции с экструдированным пенополистиролом: слева - начало февраля; справа - начало августа


По результатам расчетов влажностного режима рассмотренных вариантов конструкций были вычислены значения эксплуатационной влажности материалов для климатических условий выбранных городов строительства.

В табл. 3 приведены значения эксплуатационной влажности газобетона марки D400 и эффективных утеплителей после месяца наибольшего влагонакопления. Значения для газобетона приведены для конструкции с экструдированным пенополистиролом.

Табл. 3. Эксплуатационная влажность (wэ, %) после месяца наибольшего влагонакопления

Газобетон D400 Минеральная вата Пенопласт XPS
Москва 3,18 0,79 2,59 0,32
Санкт-Петербург 3,13 0,87 2,62 0,35
Екатеринбург 3,47 0,80 3,58 0,24
Новосибирск 3,56 1,11 4,49 0,28
Владивосток 2,93 0,53 2,30 0,23
Краснодар 2,18 0,75 1,82 0,38

Заключение

Полученные экспериментальные данные позволяют проводить дальнейшие расчеты нестационарного влажностного режима ограждающих конструкций с использованием автоклавного газобетона. Результаты численных расчетов представляют, отдельный интерес и могут быть использованы для вычисления эффективной теплопроводности кладок из газобетонных блоков [22, 23], а также показателей энергоэффективности теплоизоляционных материалов [10].

Вестник МГСУ. 2015. № 2. С. 60-69 "Расчетное определение эксплуатационной влажности автоклавного газобетона в различных климатических зонах строительства".

Пастушков П.П., Гринфельд Г.И., Павленко Н.В., Беспалов А.Е., Коркина Е.В.


Газобетон и щелевая керамика - это лучшие материалы по моему мнению. Преимущества газобетона, сравнение автоклавного и неавтоклавного газоблока. Что лучше - решать вам.

Влажность газобетона

Людей, которые хотят построить дом из газобетона, в интернете пугают влажностью. Говорят, что газобетон боится влаги и притом хорошо впитывает её, из-за чего срок службы кладки уменьшается, возникают проблемы с наружной отделкой. Так ли это на самом деле? Давайте разберёмся.

Газобетон боится влаги?

«Хейтеры» ошибаются: в стандартных условиях эксплуатации влага не опасна для газобетона. У материала пористая структура, поэтому при намокании блоки быстро отдают влагу. К тому же поры – закрытые, что минимизирует капиллярный подсос.

Когда в доме с незавершёнными фасадными работами кладка из газобетона находится под сильным косым дождём, намокает только внешняя часть блоков – на глубину 15-30 мм.

Влажность замеры

После того, как дождь заканчивается, кладка быстро высыхает без каких-либо негативных последствий.

Влажность замеры 2

При желании дом из газобетона можно вообще не отделывать снаружи. Нужно лишь не допускать постоянного намокания горизонтальных поверхностей – оконных проёмов, примыканий к отмостке или козырькам и пр. А также защитить от влаги цокольную часть кладки снаружи, разделить гидроизоляцией стены и фундамент, сопряжения газобетона с другими материалами, такими как бетон, металл, древесина.

  • Российский стандарт по газобетону разрешает эксплуатировать неотделанные дома из этого материала*.
  • По сей день прекрасно чувствуют себя здания из «голого» газобетона, построенные много лет назад. Известный пример – жилой дом в Риге на ул. Эльвирас, возраст которого – 80 лет. Его неотделанные стены со временем слегка потемнели, но не потеряли своих механических свойств.

дом и влажность

По сути наружная отделка газобетонной кладки нужна не для того, чтобы обезопасить от осадков. Её задача – украсить фасад и защитить дом от продувания.

Сорбционная влажность

В газобетоне всегда есть небольшой процент влаги, и это совершенно нормально. Речь идёт о сорбционной (равновесной) влажности, к которой материал стремится в процессе эксплуатации. По ГОСТу** она должна составлять всего 4-5% в зависимости от относительной влажности в регионе, где построен дом. Блоки YTONG (производства Xella Россия) полностью соответствуют этому требованию. Стремление к равновесной влажности как раз и означает, что, впитав небольшое количество влаги, материал затем отдаёт её, возвращаясь к естественному для него состоянию.

Увлажнение негативно влияет на эксплуатационные свойства и срок службы газобетона. Однако у материала низкая гигроскопичность и пористая структура, что обусловливает низкий показатель сорбционной (эксплуатационной) влажности. Благодаря этому газобетон обладает высокой морозостойкостью. Согласно сертификату соответствия, выданному на основании независимых лабораторных испытаний, блоки YTONG плотностью D400 и D500 имеют морозостойкость F100. То есть способны выдержать не менее 100 циклов попеременного замораживания и оттаивания без потери свойств. Согласно СП, это означает срок службы 100 лет***.

Если блоки по каким-то причинам переувлажнены, этого не стоит бояться. Не закрытая отделкой газобетонная кладка очень быстро высыхает, достигая эксплуатационной влажности.

строительство дома

Газобетонные блоки не применяют для обустройства мокрых помещений, наружных стен подвальных помещений. Кроме того, нужно закрывать влагостойкими материалами горизонтальные поверхности кладки и стены влажных помещений (санузлов, душевых, парилок и пр.).

Производственная влажность

На выходе из автоклава у газобетона довольно высокая влажность – около 30-40%.

производство бетона

При этом блоки сразу упаковывают в термоусадочную пленку, которая будет защищать их от внешних воздействий при хранении и транспортировке. Пленка «запирает» влагу, но это никак не влияет на материал: блоки готовы к тому, чтобы из них сразу же после распаковки палеты возводили стены.

блоки

Подробнее о процессе изготовления газобетонных блоков YTONG читайте тут

Но эта особенность технологии производства накладывает ограничения на отделку кладки:

  • Блоки должны высохнуть до влажности не более 8%, прежде чем их можно отделывать****. Время высыхания колеблется от 2 до 6 месяцев в зависимости от величины производственной влажности материала, климатической зоны строительства, времени года, плотности блоков, толщины кладки и пр. Проверить параметры влажности можно только с помощью специального инструмента.
  • Если нет времени ждать, и кладку нужно отделывать сразу после возведения, то допустимо штукатурить её, но только составами, паропроницаемость которых выше, чем паропроницаемость газобетона. При этом лучше сначала закончить все общестроительные работы (смонтировать кровлю, окна, двери и пр.), тем самым давая кладке время хотя бы немного просохнуть. Также можно провести «мокрые» отделочные работы внутри здания до отделки фасада.
  • Сразу после возведения коробки фасад можно отделывать материалами паронепроницаемыми или с меньшей, чем у газобетона, паропроницаемостью при условии, что есть вентилируемый зазор между кладкой и отделкой. Величина вентзазора – не менее 40 мм. Должен быть приток и вытяжка воздуха из него. По такой технологии можно сделать кладку на относе, например, из керамического кирпича. Если же стены облицовывают клинкерной плиткой или декоративным бетонным камнем, то предусматривают систему вентфасада (при условии, что подобная облицовка закрывает более 25% площади фасада).

Влажность

  1. Со стороны помещения стены должны быть закрыты паронепроницаемыми материалами. То есть должен быть паробарьер.
  2. В здании должна быть приточно-вытяжная вентиляция.

Если эти правила не соблюдены, и блоки сильно переувлажнены, притом у влаги нет возможности выйти из кладки, то стена может терять механические свойства, могут разрушаться отделка, поверхностный слой газобетона и клеевой шов.

Точка росы

Это температура, при которой водяной пар, содержащийся в воздухе, превращается в конденсат. При определённых условиях конденсат может образовываться в толще однослойной наружной стены из газобетона. Это опасно? Нет, влага вполне может накапливаться в материале. И она не представляет никакой опасности (в частности, не снижает морозостойкость блоков), если не превышает пределов, допустимых российскими нормами*****. В этих же нормах представлен расчёт влагонакопления в отопительный период.

Суть в том, что зимой в однослойной стене из газобетона должно накопиться столько воды, сколько сможет испариться за лето. В современных однослойных домах, построенных на европейской части России, это условие выполняется всегда.

мокрый блок

Ситуация может осложниться только тогда, когда стена закрыта отделкой с низкой паропроницаемостью. В этом случае надо проверить степень влагонакопления. Самая неприятная ситуация, когда паронепроницаемой наружной отделкой закрыты блоки с высокой производственной влажностью (доступ в кладку водяного пара не так критичен, поскольку в значительной степени ограничен внутренней отделкой и выводится за счёт вентиляции).

Подробную информацию о возведении дома из газобетона можно получить на курсе по строительству из YTONG

* П. 11.1 СТО НААГ 3.1-2013 «Конструкции с применением автоклавного газобетона в строительстве зданий и сооружений»

** ГОСТ 31359-2007 «Бетоны ячеистые автоклавного твердения. Технические условия»

*** Согласно СП 15.13330.2012 «Каменные и армокаменные конструкции», таблица 1

**** Согласно СТО НААГ 3.1-2013 «Конструкции с применением автоклавного газобетона в строительстве зданий и сооружений»

Читайте также: