Как действуют балконы ложи и скошенные стены на диффузность поля на низких частотах

Обновлено: 17.05.2024

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

1 ПОДГОТОВЛЕН Некоммерческим партнерством "Производители современной минеральной изоляции "Росизол"" на основе выполненного Открытым акционерным обществом "Центр методологии нормирования и стандартизации в строительстве" (ОАО "ЦНС") аутентичного перевода европейского стандарта, указанного в пункте 4

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 19 августа 2009 г. N 296-ст

4 Настоящий стандарт является модифицированным по отношению к европейскому стандарту ЕН ИСО 354:2003 "Акустика - Измерение звукопоглощения в реверберационной камере" (EN ISO 354:2003 "Acoustics - Measurement of sound absorption in a reverberation room") путем изменения отдельных положений указанного стандарта и внесения дополнительных положений, объяснение которых приведено во введении и обозначенных в тексте стандарта курсивом.

Наименование настоящего стандарта изменено по отношению к наименованию европейского стандарта для приведения в соответствие с ГОСТ Р 1.5 (пункт 3.5)

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Из текста европейского стандарта исключен пункт 6.3.1, т.к. сведения, приведенные в данном пункте, носят информационный характер и не содержат конкретных требований.

Из пункта 7.3.3 исключено примечание, так как сведения, приведенные в данном примечании, носят информационный характер и не содержат конкретных требований.

Из приложения В, подраздел В.1, исключено примечание, в котором приведена ссылка на стандарт АСТМ Е 795, т.к. отсутствует его национальный аналог.

В текст настоящего стандарта внесены редакционные изменения и технические уточнения, не требующие специальных пояснений и выделенные в тексте стандарта курсивом.

1 Область применения

Настоящий стандарт устанавливает метод измерения коэффициента звукопоглощения акустических материалов, применяемых для стен или потолков, а также эквивалентной площади звукопоглощения объектов (например, мебели, группы людей или пространственных звукопоглотителей) в реверберационной камере.

Результаты измерений могут быть использованы для сравнения акустических характеристик материалов, разработки методов расчета и проектирования акустики залов и защиты помещений от шума.

Настоящий стандарт не распространяется на метод измерения характеристик звукопоглощения слабо демпфированных резонаторов.

2 Нормативные ссылки

ГОСТ Р 53377 ( ЕН ИСО 11654:1997) Материалы звукопоглощающие, применяемые в зданиях. Оценка звукопоглощения (ЕН ИСО 11654:1997 Акустика - Поглотители звука, применяемые в зданиях - Оценка звукопоглощения, MOD)

ГОСТ 31295.1-2005 (ИСО 9613-1:1993) Шум. Затухание звука при распространении на местности. Часть 1. Расчет поглощения звука атмосферой (ИСО 9613-1:1993 Акустика. Затухание звука при распространении на местности. Часть 1. Расчет поглощения звука атмосферой, MOD)

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

3.1 кривая спада: Графическое изображение зависимости спада уровня звукового давления в помещении от времени после прекращения работы источника звука.

3.2 время реверберации: Время , с, необходимое для спада уровня звукового давления в замкнутых помещениях на 60 дБ после прекращения работы источника звука.

1 Значение , соответствующее спаду уровня звукового давления на 60 дБ, может быть определено методом линейной экстраполяции коротких отрезков частотного диапазона уровня звукового давления.

2 Приведенное выше определение термина "время реверберации" основано на допущении, что в идеальном случае существует линейная зависимость между уровнем звукового давления и временем его спада, при этом уровень фонового шума относительно мал.

3.3 метод прерываемого шума: Метод получения кривых спада уровня звукового давления (далее - кривые спада) непосредственной записью спада уровня звукового давления после возбуждения помещения широкополосным шумом или шумом ограниченной полосы.

3.4 метод интегрирования импульсных откликов: Метод получения кривых спада обратным интегрированием импульсных откликов, возведенных в квадрат.

3.5 импульсный отклик: Временное возрастание уровня звукового давления, наблюдаемое в одной точке помещения в результате излучения звукового импульса Дирака в другой точке этого помещения.

Примечание - На практике не представляется возможным точное воспроизведение импульса Дирака (импульс бесконечно малой длительностью, применяемый при теоретических расчетах), однако кратковременные импульсы звука (например, создаваемые выстрелами) могут быть использованы для практических измерений с достаточной аппроксимацией. Альтернативный метод измерения заключается в применении сигнала с периодом, соответствующим последовательности максимальной длины волны (MLS) или другого детерминистского сигнала, сигнала с плоским спектром, а также в преобразовании измеренного сигнала обратно в импульсный отклик.

3.6 эквивалентная площадь звукопоглощения камеры: Условная площадь поверхности звукопоглощения, на которой отсутствуют дифракционные эффекты и которая, являясь единственным поглощающим элементом в помещении, обеспечивает то же время реверберации, что и рассматриваемое помещение.

Идеально диффузное звуковое поле характеризуется тем, что во всех его точках усредненные во времени уровень звукового давления и поток приходящей по любому направлению звуковой энергии одинаковы. Эти условия не выполняются полностью в реальных помещениях, но для создания хорошей акустики следует, по возможности, приблизиться к ним. Значительные отступления от этих условий приводят к существенным акустическим дефектам залов.

При выборе формы ограждений следует избегать вогнутых поверхностей, способных концентрировать отражаемый звук. Концентрация отражений при малом запаздывании относительно прямого звука приводит к снижению разборчивости речи, а при большом запаздывании – к появлению ощутимого эха.

Для предотвращения концентрации звука радиус кривизны отражающей поверхности (стен и потолка) должен по крайней мере в два раза превышать расстояние от отражающей поверхности до источника.

По той же причине залы, имеющие в плане круглую, овальную, подковооборазную или другую форму с вогнутыми стенами допустимы лишь при специальном расчленении вогнутых поверхностей, предотвращающем концентрацию отраженного звука (рис. 6.3).

Выпуклые поверхности (рис. 6.4), наоборот, создают рассеянное отражение звука и повышают диффузность звукового поля.

Для обеспечения достаточной диффузности звукового поля необходимо, чтобы значительная часть внутренних поверхностей зала создавала рассеянное ненаправленное отражение звука. Это достигается расчленением поверхностей балконами, пилястрами, нишами, секциями и другого типа членениями.

Гладкие большие поверхности не способствуют повышению диффузности. Особенно нежелательны гладкие параллельные друг другу плоскости (например боковые стены), так как в результате многократного отражения звука между ними может возникнуть «порхающее эхо». Расчленение таких поверхностей ослабляет этот эффект. Повышает диффузность и небольшое отклонение стен от параллельности (на 2,5-6º).


а – распределение звуковых отражений: 1,2 – зоны концентрации соответственно первых и вторых отражений; б – эффективное членение стен

Рисунок 6.3 – Зал с круглой формой плана


Рисунок 6.4 – Формы членения стены секциями

Для исключения возможности «театрального эха» необходимо предотвратить прямые интенсивные отражения от задней стены зала в сторону сцены путем придания потолку или стене наклона для направления отражений к слушателям (рис. 6.6), членения стены для рассеивания отражений, или облицовки стены эффективными звукопоглотителями.

При назначении членений потолка или стен не следует использовать поперечные прямоугольные пилястры или ребра (рис. 6.5). Такие элементы вызывают обратные отражения звука к источнику, при этом возникают зоны, лишенные полезных отражений.


Рисунок 6.5 – Отражения от поперечных пилястр или ребер

Сильно рассеивающие детали целесообразно размещать на поверхностях, не дающих малозапаздывающих отражений, направленных к слушателям. Хорошо рассеиваются звуковые волны, длина которых близка к размерам детали. Наиболее эффективны элементы, имеющие криволинейное выпуклое (рис. 6.7) или треугольное сечение, так как они рассеивают также и более короткие волны.

При периодически расположенных пилястрах рассеивание звука зависит не только от формы и размеров их сечений, но и от их шага. Заштрихованная область на рис. 6.8 показывает примерные пределы, в которых лежат размеры пилястр и их шаг, дающие существенное рассеивание отраженного звука в соответствующих областях частот.


а – наклон задней стены; б – наклонный участок потока; в – наклон участка потолка и задней стены; г – острый угол между потолком и задней стеной

Рисунок 6.6 – Рациональные типы примыкания потолка к задней стене


Рисунок 6.7 – Образование диффузных отражений от поверхности

с рельефом полукруглого сечения


а - ширина и глубина элементов; б – шаг членения; в – частотные границы, в пределах которых отраженный звук будет рассеянным

Рисунок 6.8 – Профили элементов членения диффузно отражающей поверхности

Пилястры выпуклого и треугольного сечения, как изложено выше, рассеивают также и более высокие частоты по сравнению с указанными на рисунке. Мелкие элементы размеров 10-20 см рассеивают частоты выше 1000 Гц. Эффективное рассеивание в области частот 200–600 Гц дают пилястры размерами 1–2 м по ширине и 0,5–1 м по глубине при шаге членения 2–4 м. Если поверхности таких пилястр подвергнуть дальнейшему членению мелкими деталями выпуклой формы, то будет достигнуто рассеивание в широком диапазоне звуковых частот. Рассеивающий эффект членений усиливается, если их шаг нерегулярен. Членение с мелким регулярным шагом 5–20 см (например, отделка поверхностей рейками или волнистой асбофанерой) вызывает периодические высокочастотные отражения коротких звуковых импульсов (хлопков, ударов), в результате чего возникает искажение звука.




Балконы, ложи и непараллельные стены повышают диффузность звукового поля зала на таких низких частотах, на которых пилястры не дают достаточного рассеивания.

В залах вместимостью более 600 слушателей целесообразно устройство одного или нескольких балконов, что снижает объем зала, уменьшает его длину и увеличивает диффузность поля.

Отношение выноса балкона a1 к средней высоте подбалконного пространства h1 должно быть не более 1,5 (рис. 6.9). Такое же отношение должно соблюдаться и в ложах. Если над балконом нет выше расположенного балкона, то отношение a2/h2 может быть увеличено до 2 (см. рис. 6.9). При соблюдении указанного условия достигаются хорошая слышимость и разборчивость в глубине пазух над балконом и под ним. Наклон потолка пазух также улучшает слышимость.


Рисунок 6.9 – Целесообразные пропорции балконного пространства

Передняя часть потолка обычно используется для формирования направленных ранних отражений. При плоском горизонтальном очертании потолка бόльшая часть звуковой энергии отражается в расположенные на расстоянии менее 8 м от источника передние ряды слушателей, для которых достаточная слышимость обеспечивается прямым звуком. Если высота передней части зала велика, то запаздывание отраженного от потолка звука превышает допустимые значения (рис. 6.10). Центральная и задняя части такого потолка отражают звук не к слушателям, а на заднюю стену зала, которая дает вторичное запаздывающее обратное отражение звука к источнику.

Для улучшения распределения отраженного звука передней частью потолка предусматривают устройство над эстрадой или авансценой отражателя выпуклой формы (рис. 6.11), что к тому же обеспечивает хорошее распределение отраженного звука при различных положениях источника. Отражатель должен иметь массу не менее 20 кг/м 2 и может быть выполнен из железобетона, штукатурки по сетке или другого материала с коэффициентом отражения порядка 0,1. Линейные размеры отражателя связаны с нижней частотной границей регулируемого отражения. Например, для усиления речи размеры отражателя должны быть не менее 110 см, для музыки – 6 м. При построении точка геометрического отражения берется на расстоянии 0,5 м от края отражателя.


Q1 и Q2 – положения источника звука

Рисунок 6.10 – Формирование отражений от плоского горизонтального потолка

При акустическом проектировании следует сочетать противоречащие друг другу требования: направленность первых звуковых отражений и достаточная диффузность звукового поля.

Для обеспечения достаточной диффузности звукового поля необходимо, чтобы значительная часть внутренних поверхностей зала создавала рассеянное ненаправленное отражение звука. Это достигается расчленением поверхностей балконами, пилястрами, нишами, описанными выше секциями и другого типа членениями.

Гладкие большие поверхности не способствуют хорошей диффузности. Особенно нежелательны гладкие параллельные друг другу плоскости (например боковые стены), т.к. в результате многократного отражения звука между ними может возникнуть “порхающее эхо”. Расчленение таких поверхностей ослабляет этот эффект. Повышает диффузность и небольшое отклонение стен от параллельности (на 2,5–6 о )

На поверхностях, создающих направленные малозапаздывающие по отношению к прямому звуку отражения членение обычно отсутствует. Если же оно имеется, то не должно создавать сильного рассеивания звука. Таковы секции потолка, показанные на рис. 10 б и в. Эти секции дают направленные отражения и несколько рассеивают отраженный звук.

На поверхностях, дающих малозапаздывающие отражения, недопустимо устройство поперечных прямоугольных пилястр или ребер (рис. 14).Такие элементы вызывают обратные отражения звука к источнику, при этом возникают зоны, лишенные геометрических отражений.


Рис. 14. Отражения от поперечных пилястр или ребер.

Сильно рассевающие детали целесообразно размещать на поверхностях, не дающих малозапаздывающих отражений, направленных к слушателям. Хорошо рассеиваются звуковые волны, длина которых близка к размерам детали. Наиболее эффективны элементы, имеющие криволинейное выпуклое (рис. 15) или треугольное сечение, т.к. они рассеивают также и более короткие волны.

При периодически расположенных пилястрах рассеивание звука зависит не только от формы и размеров их сечений, но и от их шага. Заштрихованная область на рис. 16 показывает примерные пределы, в которых лежат размеры пилястр и их шаг, дающие существенное рассеивание отраженного звука в соответствующих областях частот.


Рис. 15. Образование диффузных отражений от поверхности

с рельефом полукруглого сечения.


Рис. 16. Профили элементов членения диффузно отражающей поверхности:

а – ширина и глубина элементов; б – шаг членения; в – частотные границы,

в пределах которых отраженный звук будет рассеянным

Пилястры выпуклого и треугольного сечения, как было сказано выше, рассеивают также и более высокие частоты по сравнению с указанными на рисунке. Мелкие элементы размером 10–20 см рассеивают частоты выше 1000 Гц. Эффективное рассеивание в области частот 200–600 Гц дают пилястры размерами 1–2 м по ширине и 0,5–1 м по глубине при шаге членения 2–4 м. Если поверхности таких пилястр подвергнуть дальнейшему членению мелкими деталями выпуклой формы, то будет достигнуто рассеивание в широком диапазоне звуковых частот. Рассеивающий эффект членений улучшается, если их шаг нерегулярен. Членение с мелким регулярным шагом 5–20 см (например, отделка поверхностей рейками или волнистой асбофанерой) вызывает периодические отражения коротких звуковых импульсов (хлопков, ударов), в результате чего возникает искажение звука.

Балконы, ложи и непараллельные стены повышают диффузность звукового поля зала на таких низких частотах, на которых пилястры не дают достаточного рассеивания.

В залах вместимостью более 600 слушателей целесообразно устройство одного или нескольких балконов, что снижает объем зала, уменьшает его длину и увеличивает диффузность поля.


Рис. 17. Целесообразные пропорции балконного пространства:

Отношение выноса балкона a1 к средней высоте подбалконного пространства h1 должно быть не более 1,5 (рис.17). Такое же отношение должно соблюдаться и в ложах. Если над балконом нет выше расположенного, то отношение a2/h2 может быть увеличено до 2 (см. рис. 17). При соблюдении указанного условия достигаются хорошая слышимость и разборчивость в глубине пазух над балконом и под ним. Наклон потолка пазух также улучшает слышимость.




Итак, основными условиями, обеспечивающими диффузность звукового поля, являются

– отсутствие резких различий в основных размерах зала,

– не параллельность стен,

– членение значительной части внутренних поверхностей.


Рис. 18. Зависимость оптимальных значений времени реверберации

от объема помещения для частоты 500 Гц:

1 – хоровая и органная музыка; 2 – среднее значение для музыки;

3 – легкая музыка; 4 – среднее значение для речи; 5 – звуковые фильмы.

Расчет времени реверберации зала

Процесс затухания звука в помещении при выключении действующего стационарного источника называется реверберацией. Для акустических оценок помещения используют стандартное время реверберации, которое является основной количественной характеристикой, и представляет собой время, в течение которого уровень звукового давления снижается на 60 дБ.

Рекомендуемое время реверберации проектируемого помещения принимается по графикам, предложенным в литературе, в зависимости от объема и назначения зала и обеспечивается путем соответствующей корректировки объема помещения и его внутренней отделки. В качестве примера на рис. 18 приведены рекомендуемые пределы времени реверберации для залов различного назначения для частоты 500 Гц.

Допускается отличие расчетного времени реверберации от рекомендуемого не более чем на 10 % на средних и высоких частотах, на частотах менее 500 Гц возможно некоторое увеличение времени реверберации с тем, чтобы на частоте 125 Гц расхождение не превышало 40 %.

Расчетные зависимости для определения времени реверберации справедливы для диффузного звукового поля. Следовательно, в проектируемых помещениях необходимо обеспечить достаточную степень диффузности звукового поля и сформировать правильное распределение отраженного звука, направляя большую его часть на удаленные от источника зрительные места.

Профессор Гарвардского университета В.Сэбин в начале 20 века экспериментально показал, что время реверберации прямо пропорционально воздушному объему помещения V и обратно пропорционально среднему коэффициенту звукопоглощения и суммарной площади ограждающих поверхностей S, и вывел формулу, удобную для вычисления времени реверберации:

здесь k – коэффициент, зависящий от формы зала, значения которого приведены в табл. 4.

Средний коэффициент звукопоглощения для зала на данной частоте определяется как:

где S – общая площадь внутренних поверхностей, м 2 ; A – общая эквивалентная площадь звукопоглощения зала, м 2 , рассчитываемая по формуле

где – сумма произведений площадей отдельных поверхностей , м 2 на их коэффициенты звукопоглощения для данной частоты; – сумма эквивалентных площадей звукопоглощения, м 2 слушателей и кресел; – добавочное звукопоглощение осветительной арматурой и другим оборудованием и звукопоглощение, вызываемое проникновением звуковых волн в различные щели и отверстия.

Таким образом, средний коэффициент звукопоглощения соответствует единому материалу, которым могли быть обработаны все внутренние поверхности зала, при котором обеспечивается общее звукопоглощение .

Формула Себина (5) позволяет достаточно точно определять время реверберации «живых» помещений, т.е. при небольших значениях среднего коэффициента звукопоглощения . В случае «мертвых» помещений ( ) более точной оказывается формула Эйринга (США, 1930)

здесь обозначения соответствуют принятым в формуле (5).

На частотах выше 1000 Гц существенное значение имеет поглощение звука в воздушном объеме зала и время реверберации рекомендуется определять по формуле

где m – коэффициент, м –1 , учитывающий поглощение звука в воздухе и зависящий от температуры и относительной влажности воздуха; остальные обозначения те же, что в формуле (5).

Расчет времени реверберации проводится для пустого зала и для зала, заполненного на 70 % зрителями.

Чтобы время реверберации менее зависело от процента заполнения мест, целесообразно оборудовать зал мягкими или полумягкими обитыми воздухопроницаемой тканью. В залах с жесткими креслами, обладающими незначительным звукопоглощением, время реверберации пустого или малозаполненного зала сильно возрастет по сравнению с заполненным.

При расчете времени реверберации в залах со сценической коробкой, оборудованной декорациями, кулисами и т.п. и отделенной от зала порталом, объем и площади внутренних поверхностей сцены не учитываются, а вводится площадь проема сцены (в плоскости портала) с соответствующими коэффициентами звукопоглощения.

Время реверберации зала, как правило, рассчитывают для частот 125, 500 и 2000 Гц, округляя до 0,05 с.

Если время реверберации оказывается меньше рекомендуемого, следует увеличить объем зала, если больше – убавить, по возможности объем и увеличить звукопоглощение.

проникающий шум: Шум, возникающий вне данного помещения и проникающий в него через ограждающие конструкции, системы вентиляции, водоснабжения и отопления.

постоянный шум: Шум, уровень звука которого изменяется во времени не более чем на 5 дБА при измерениях на временной характеристике "медленно" шумомера по ГОСТ 17187.

непостоянный шум: Шум, уровень звука которого изменяется во времени более чем на 5 дБА при измерениях на временной характеристике "медленно" шумомера по ГОСТ 17187.

тональный шум: Шум, в спектре которого имеются слышимые дискретные тона. Тональный характер шума устанавливают измерением в третьоктавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.

импульсный шум: Непостоянный шум, состоящий из одного или ряда звуковых сигналов (импульсов), уровни звука которого (которых), измеренные в дБАI и дБА соответственно на временных характеристиках "импульс" и "медленно" шумомера по ГОСТ 17187, различаются между собой на 7 дБА и более.


уровень звукового давления: Десятикратный десятичный логарифм отношения квадрата звукового давления к квадрату порогового звукового давления ( Па) в дБ.

уровень звука: Уровень звукового давления шума в нормируемом диапазоне частот, корректированный по частотной характеристике А шумомера по ГОСТ 17187 в дБА.

эквивалентный (по энергии) уровень звука: Уровень звука постоянного шума, который имеет то же самое среднеквадратическое значение звукового давления, что и исследуемый непостоянный шум в течение определенного интервала времени в дБА.

максимальный уровень звука: Уровень звука непостоянного шума, соответствующий максимальному показанию измерительного, прямопоказывающего прибора (шумомера) при визуальном отсчете, или уровень звука, превышаемый в течение 1% длительности измерительного интервала при регистрации шума автоматическим оценивающим устройством (статистическим анализатором).


, (A.1)


где - уровень звукового давления в помещении с источником звука, дБ;


- уровень звукового давления в защищаемом помещении, дБ;


S - площадь ограждающей конструкции, ;


А - эквивалентная площадь звукопоглощения в защищаемом помещении, .

приведенный уровень ударного шума под перекрытием : Величина, характеризующая изоляцию ударного шума перекрытием (представляет собой уровень звукового давления в помещении под перекрытием при работе на перекрытии стандартной ударной машины), условно приведенная к величине эквивалентной площади звукопоглощения в помещении . Стандартная ударная машина имеет пять молотков весом по 0,5 кг, падающих с высоты 4 см с частотой 10 ударов в секунду.

частотная характеристика изоляции воздушного шума: Величина изоляции воздушного шума R, дБ, в третьоктавных полосах частот в диапазоне 100-3150 Гц (в графической или табличной форме).


частотная характеристика приведенного уровня ударного шума под перекрытием: Величина приведенных уровней ударного шума под перекрытием , дБ, в третьоктавных полосах частот в диапазоне 100-3150 Гц (в графической или табличной форме).


индекс изоляции воздушного шума : Величина, служащая для оценки звукоизолирующей способности ограждения одним числом. Определяется путем сопоставления частотной характеристики изоляции воздушного шума со специальной оценочной кривой в дБ.


индекс приведенного уровня ударного шума : Величина, служащая для оценки изолирующей способности перекрытия относительно ударного шума одним числом. Определяется путем сопоставления частотной характеристики приведенного уровня ударного шума под перекрытием со специальной оценочной кривой в дБ.


звукоизоляция окна : Величина, служащая для оценки изоляции воздушного шума окном. Представляет собой изоляцию внешнего шума, создаваемого потоком городского транспорта в дБА.


уровень звуковой мощности: Десятикратный десятичный логарифм отношения звуковой мощности к пороговой звуковой мощности ( Вт).


коэффициент звукопоглощения : Отношение величины не отраженной от поверхности звуковой энергии к величине падающей энергии.


эквивалентная площадь поглощения (поверхности или предмета): Площадь поверхности с коэффициентом звукопоглощения (полностью поглощающей звук), которая поглощает такое же количество звуковой энергии, как и данная поверхность или предмет.

средний коэффициент звукопоглощения : Отношение суммарной эквивалентной площади поглощения в помещении (включая поглощение всех поверхностей, оборудования и людей) к суммарной площади всех поверхностей помещения


. (А.2)

карты шума улично-дорожной сети, железных дорог, воздушного транспорта, промышленных зон и отдельных промышленных и энергетических объектов: Карты территорий с источниками шума с нанесенными линиями разных уровней звука на местности с интервалом 5 дБА.

шумозащитные здания: Жилые здания со специальным архитектурно-планировочным решением, при котором жилые комнаты одно- и двукомнатных квартир и две комнаты трехкомнатных квартир обращены в сторону, противоположную городской магистрали.

шумозащитные окна: Окна со специальными вентиляционными устройствами, обеспечивающие повышенную звукоизоляцию при одновременном обеспечении нормативного воздухообмена в помещении.

шумозащитные экраны: Сооружения в виде стенки, земляной насыпи, галереи, установленные вдоль автомобильных и железных дорог с целью снижения шума.

реверберация: Явление постепенного спада звуковой энергии в помещении после прекращения работы источника звука.

В залах с относительно большой высотой и шириной наибольшая опасность прихода первых отражений с недопустимым запаздыванием возникает в первых рядах зрительских мест. Для исправления этого явления следует выполнять специальные звукоотражающие конструкции на потолке и стенах в припортальной зоне. Принципиальная схема таких конструкций приведена на рисунке 7.


870 × 474 пикс.   Открыть в новом окне

- лекционный зал; - зал драматического театра; - зал музыкального театра

13.5 После завершения графического анализа чертежей и создания в зале оптимальной структуры ранних отражений не занятые для этой цели поверхности должны быть использованы для формирования диффузного звукового поля путем их эффективного расчленения различной формы звукорассеивающими элементами для создания рассеянного, ненаправленного отражения звука. Это достигается расчленением поверхностей балконами, пилястрами, нишами и тому подобными неровностями.

Гладкие большие поверхности не способствуют достижению хорошей диффузности звукового поля. Особенно нежелательны гладкие, параллельные друг другу плоскости, вызывающие эффект "порхающего эха", получающегося в результате многократного отражения звука между ними. Расчленение таких стен ослабляет этот эффект и увеличивает диффузность. Причем хорошо рассеиваются звуковые волны, длина которых близка к размерам детали. Рассеивающий эффект увеличивается, если шаг членений нерегулярен, т.е. расстояния между смежными членениями не одинаковы по всей расчлененной поверхности.

Балконы, ложи и скошенные стены повышают диффузность поля на низких частотах. Практически применяемые в архитектурной практике пилястры - в основном в области средних и высоких частот.

13.6 После завершения акустического проектирования формы и конструкций интерьера зала следует провести контрольные расчеты локальных акустических критериев для речи (объективные параметры разборчивости речи) и музыки (индекс прозрачности, степень пространственного впечатления, индекс громкости), которые могут быть рассчитаны только путем компьютерного моделирования импульсных характеристик помещений. Моделирование производится известными методами прослеживания лучей или мнимых источников по одной из современных компьютерных программ. Если показания хотя бы одного из критериев будут отличаться от зон оптимумов, то следует провести дополнительную коррекцию проекта зала.

13.7 При примыкании задней стены зала к потолку под углом 90° или меньше может возникнуть так называемое театральное эхо - отражение звука от потолка и стены в направлении к источнику звука, приходящее с большим запаздыванием. Для устранения такого эха следует выполнить наклонной часть потолка у задней стены или наклонной заднюю стену зала (рисунок 8).


310 × 309 пикс.   Открыть в новом окне

и - "театральное эхо"

- - "театральное эхо" отсутствует

13.8 Большие вогнутые поверхности ограждающих конструкций залов (купол, свод, вогнутая в плане задняя стена) создают опасность концентрации отражений, при котором звук фокусируется в одной части зала, создавая сильное эхо, другие же части зала не получают отражений.

На рисунке 9 приведены три варианта проектного решения купола. Вариант иллюстрирует крайне неудачное решение, радиус кривизны купола примерно равен высоте зала, звук фокусируется в центре зала. Вариант - радиус кривизны составляет половину высоты зала, отражения проходят через точку фокуса и далее распределяются по площади пола. Вариант - радиус кривизны составляет примерно две высоты зала. Звук отражается от купола в виде пучка параллельных лучей.


310 × 358 пикс.   Открыть в новом окне

Если форму купола изменить невозможно (например, здание цирка) для избежания фокусирования звука следует применить членение поверхности купола (рисунки 9, и 9, ) или использовать облицовку купола звукопоглощающими материалами.

при архитектурно-планировочном решении здания не располагать смежно с залом помещения с источниками интенсивного шума (вентиляционные камеры, насосные и т.п.);

применять ограждающие конструкции зала с требуемой звукоизоляцией, обращая особое внимание на элементы с относительно небольшой звукоизоляцией (окна, двери);

принимать меры по снижению шума систем вентиляции и кондиционирования воздуха до допустимых (глушители, ограничение скорости воздуха на воздухораспределительных устройствах).

13.10 Разработка электроакустической части проекта зала проводится по специальной программе и базируются на параметрах, полученных ранее при расчете естественной акустики зала.

Приложение А (обязательное).ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

проникающий шум: Шум, возникающий вне данного помещения и проникающий в него через ограждающие конструкции, системы вентиляции, водоснабжения и отопления.

постоянный шум: Шум, уровень звука которого изменяется во времени не более чем на 5 дБА при измерениях на временной характеристике "медленно" шумомера по ГОСТ 17187.

непостоянный шум: Шум, уровень звука которого изменяется во времени более чем на 5 дБА при измерениях на временной характеристике "медленно" шумомера по ГОСТ 17187.

тональный шум: Шум, в спектре которого имеются слышимые дискретные тона. Тональный характер шума устанавливают измерением в третьоктавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.

импульсный шум: Непостоянный шум, состоящий из одного или ряда звуковых сигналов (импульсов), уровни звука которого (которых), измеренные в дБАI и дБА соответственно на временных характеристиках "импульс и "медленно" шумомера по ГОСТ 17187, различаются между собой на 7 дБА и более.

уровень звукового давления: Десятикратный десятичный логарифм отношения квадрата звукового давления к квадрату порогового звукового давления (=2·10 Па) в дБ.


уровень звука: Уровень звукового давления шума в нормируемом диапазоне частот, корректированный по частотной характеристике шумомера по ГОСТ 17187, в дБА.

эквивалентный (по энергии) уровень звука: Уровень звука постоянного шума, который имеет то же самое среднеквадратическое значение звукового давления, что и исследуемый непостоянный шум в течение определенного интервала времени, в дБА.

максимальный уровень звука: Уровень звука непостоянного шума, соответствующий максимальному показанию измерительного, прямопоказывающего прибора (шумомера) при визуальном отсчете, или уровень звука, превышаемый в течение 1% длительности измерительного интервала при регистрации шума автоматическим оценивающим устройством (статистическим анализатором).


изоляция воздушного шума (звукоизоляция) : Способность ограждающей конструкции уменьшать проходящий через нее звук. В общем виде представляет собой десятикратный десятичный логарифм отношения падающей на ограждение звуковой энергии к энергии, проходящей через ограждение. В настоящем документе под звукоизоляцией воздушного шума подразумевается обеспечиваемое разделяющим два помещения ограждением снижение уровней звукового давления в дБ, приведенное к условиям равенства площади ограждающей конструкции и эквивалентной площади звукопоглощения в защищаемом помещении


, (А.1)


где - уровень звукового давления в помещении с источником звука, дБ;


- уровень звукового давления в защищаемом помещении, дБ;

- площадь ограждающей конструкции, м;

- эквивалентная площадь звукопоглощения в защищаемом помещении, м.

приведенный уровень ударного шума под перекрытием : Величина, характеризующая изоляцию ударного шума перекрытием (представляет собой уровень звукового давления в помещении под перекрытием при работе на перекрытии стандартной ударной машины), условно приведенная к величине эквивалентной площади звукопоглощения в помещении =10 м. Стандартная ударная машина имеет пять молотков весом по 0,5 кг, падающих с высоты 4 см с частотой 10 ударов в секунду.


частотная характеристика изоляции воздушного шума: Величина изоляции воздушного шума , дБ, в третьоктавных полосах частот в диапазоне 100-3150 Гц (в графической или табличной форме).


частотная характеристика приведенного уровня ударного шума под перекрытием: Величина приведенных уровней ударного шума под перекрытием , дБ, в третьоктавных полосах частот в диапазоне 100-3150 Гц (в графической или табличной форме).


индекс изоляции воздушного шума : Величина, служащая для оценки звукоизолирующей способности ограждения одним числом. Определяется путем сопоставления частотной характеристики изоляции воздушного шума со специальной оценочной кривой в дБ.


индекс приведенного уровня ударного шума : Величина, служащая для оценки изолирующей способности перекрытия относительно ударного шума одним числом. Определяется путем сопоставления частотной характеристики приведенного уровня ударного шума под перекрытием со специальной оценочной кривой в дБ.

уровень звуковой мощности: Десятикратный десятичный логарифм отношения звуковой мощности к пороговой звуковой мощности (=10 Вт).


коэффициент звукопоглощения : Отношение величины не отраженной от поверхности звуковой энергии к величине падающей энергии.

Читайте также: