Фундаменты мелкого и глубокого заложения опор мостов

Обновлено: 05.05.2024

ПРОЕКТИРОВАНИЕ И УСТРОЙСТВО ФУНДАМЕНТОВ ОПОР МОСТОВ В РАЙОНАХ РАСПРОСТРАНЕНИЯ ВЕЧНОМЕРЗЛЫХ ГРУНТОВ

CODE OF PRACTICE IN PROJECTING AND BUILDING THE FOUNDATIONS OF THE PIERS OF BRIDJES IN THE AREA OF PERMAFROST GROUNDS

Дата введения 1996-04-01

1 РАЗРАБОТАН Научно-исследовательским институтом транспортного строительства (АО "ЦНИИС")

ВНЕСЕН Корпорацией "Трансстрой"

2 СОГЛАСОВАН Федеральным дорожным департаментом Минтранса РФ (N НТО-8/151 от 14.11.94 г.) и МПС РФ (N ЦПИ от 30.11.94 г.)

3 ОДОБРЕН Минстроем России (письмо N 13-238 от 05.06.95 г.)

4 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Корпорацией "Трансстрой" (N МО-299 от 22.12.95)

5 ВВЕДЕН ВПЕРВЫЕ

ВНЕСЕНЫ правки на основании информации об опечатках, приведенной в настоящем издании

Правки внесены изготовителем базы данных

Введение

Разработанный Свод правил позволяет обеспечить современный уровень проектирования и устройства фундаментов опор мостов на вечномерзлых грунтах в традиционных и вновь осваиваемых регионах.

При разработке настоящих правил использован опыт проектирования, строительства и эксплуатации мостов, построенных на железных и автомобильных дорогах севера Западной Сибири, полуострова Ямал, на БАМе и в других регионах страны, а также результаты научно-исследовательских работ, проведенных АО "ЦНИИС", его филиалом (СибЦНИИС) и Тындинской мерзлотной станцией (ТМС).

Свод правил разработан в лаборатории оснований и фундаментов АО "ЦНИИС" (канд. техн. наук В.П.Рыбчинский - ответственный исполнитель). Приложения А.1, Б и Г разработаны лабораторией инженерного мерзлотоведения АО "ЦНИИС" (соответственно кандидаты техн. наук В.В.Пассек, Л.Н.Слоев, инж. В.И.Петров); приложения А.2 и В - лабораторией оснований и фундаментов ТМС (канд. техн. наук А.А.Опарин); приложение Д - лабораториями теории и методов расчета мостов (д-р техн. наук А.А.Потапкин) и оснований и фундаментов АО "ЦНИИС"; приложение Е - c использованием материалов СибЦНИИСа (канд. техн. наук Э.А.Аблогин); приложение Ж - с использованием материалов лаборатории земляного полотна АО "ЦНИИС"; приложение И - по материалам лаборатории долговечности бетона АО "ЦНИИС" (канд. техн. наук В.С.Гладков).

При разработке отдельных положений правил использованы предложения проектных организаций, в том числе АО "Ленгипротранс", АО "Мосгипротранс", Союздорпроекта, АО "Гипростроймост", АО "Ленметрогипротранс", Сибгипротранса.

1 Область применения

Настоящий свод правил распространяется на проектирование и устройство фундаментов опор постоянных мостов, путепроводов и эстакад на железных и автомобильных дорогах, сооружаемых в районах распространения вечномерзлых грунтов, включая север Западной Сибири и полуостров Ямал.

Положения настоящего документа обязательны для предприятий, организаций и объединений независимо от форм собственности и принадлежности, осуществляющих проектирование и строительство указанных сооружений в районах распространения вечномерзлых грунтов.

2 Нормативные ссылки

В настоящем своде правил использованы ссылки на следующие документы:

СНиП 2.01.01-82 Строительные климатология и геофизика.

СНиП 2.02.01-83 Основания зданий и сооружений.

СНиП 2.02.03-85 Свайные фундаменты.

СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах.

СНиП 2.02.07-87 Инженерные изыскания для строительства.

Вероятно, ошибка оригинала. Следует читать: СНиП 1.02.07-87. - Примечания изготовителя базы данных.

СНиП 2.03.01-84* Бетонные и железобетонные конструкции.

СНиП 2.03.11-85 Защита строительных конструкций от коррозии.

СНиП 2.05.03-84* Мосты и трубы.

СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты.

СНиП 3.03.01-87 Несущие и ограждающие конструкции.

СНиП 3.06.04-91 Мосты и трубы.

СНиП II-23-81* Стальные конструкции.

СНиП III-4-80* Техника безопасности в строительстве.

ГОСТ 22266-76* Цементы сульфатостойкие. Технические условия.

ГОСТ 25100-95 Грунты. Классификация.

ВСН 165-85 Устройство свайных фундаментов мостов (из буровых свай).

ВСН 156-88 Инженерно-геологические изыскания железнодорожных, автодорожных и городских мостовых переходов.

ВСН 203-89 Нормы и технические условия на проектирование и строительство железных дорог на полуострове Ямал.

ВСН 83-92 Технические указания по проектированию бетонов и цементно-песчаных растворов, твердеющих на морозе, при устройстве искусственных сооружений.

3 Определения

4 Общие положения

4.1 Указания настоящего свода правил предназначены для использования при проектировании и устройстве фундаментов опор мостов (путепроводов, эстакад), возводимых на вечномерзлых грунтах, используемых по принципу I и II.

4.2 В своде правил приведены только дополнительные к содержащимся в действующих нормативных документах указания в объеме, необходимом для учета характерных особенностей проектирования и сооружения на вечномерзлых грунтах безростверковых опор, свайных и мелкого заложения фундаментов с использованием типовых или апробированных на практике и рекомендованных для широкого применения проектов, а также для разработки индивидуальных конструктивно-технологических решений опор.

Общие указания, относящиеся к вопросам проектирования и устройства фундаментов опор мостов как на используемых в мерзлом или талом состоянии вечномерзлых грунтов, так и на немерзлых грунтах в части проектирования и сооружения фундаментов и надфундаментной части опор, отсыпки и укрепления конусов, укрепления русел и т.п., следует принимать в соответствии с действующими нормативными документами.

4.3 Проектирование и сооружение фундаментов опор мостов должно осуществляться с учетом требований к охране окружающей среды.

5 Проектирование фундаментов опор мостов

5.1 Основные положения

5.1.1 При выборе оптимального конструктивно-технологического решения фундаментов опор мостов, проектируемых на разных вечномерзлых грунтах, следует ориентироваться, как правило, на применение безростверковых конструкций устоев и промежуточных опор или опор с ростверком, расположенным выше поверхности грунта, а в пределах водотоков - выше или ниже уровня первой подвижки льда. Опоры с фундаментами мелкого заложения допускается применять в тех случаях, когда оттаивание мерзлых грунтов не приведет к появлению недопустимых по условиям нормальной эксплуатации мостов деформаций опор, нормированных СНиП 2.05.03-84.

5.1.2 При проектировании фундаментов опор на мерзлых грунтах, используемых по принципу I, необходимо предусматривать мероприятия, направленные на поддержание в течение всего периода эксплуатации мостового перехода расчетной отрицательной температуры основания. С этой целью следует свести до минимума нарушения мохорастительного покрова, природного режима течения поверхностных и подземных вод на переходе, а при недостаточности этих мер - предусмотреть мероприятия по искусственному поддержанию расчетных температур путем использования специальных конструктивно-технологических решений опор и применения охлаждающих устройств.

Выбор вышеуказанных мероприятий должен производиться на основании теплотехнического расчета.

5.1.3 Для сохранения естественных водных режимов на мостовом переходе, грунты основания фундаментов опор которого используются по принципу I, необходимо по возможности исключить или свести к минимуму:

- пропуск воды под один мост нескольких соседних постоянных или периодических водотоков (за исключением протоков одного водотока);

- застои воды в пересыпанных протоках;

- длительную аккумуляцию воды под мостами и на подходах;

- срезки дна водотоков без укрепления его против размыва;

- срезку русла со вскрытием сильнольдистых грунтов или подземных льдов;

- завалы грунта, приводящие к застою воды под мостом;

- погружение свай с использованием метода протаивания грунтов основания;

- применение фундаментов мелкого заложения или заглубление в грунт сооружаемых в котлованах ростверков свайных фундаментов.

5.1.4 На участках залегания большой толщи (свыше 15 м) сильнольдистых грунтов (с относительной осадкой при оттаивании более 0,03) или подземных льдов, в местах наличия криопегов, в пределах водотоков с наледями, на неустойчивых косогорах и в других сложных условиях решение о месте расположения, типе и конструкции опор безростверковых или с ростверком следует принимать индивидуально для каждого проектируемого мостового перехода исходя из особенностей природных условий и результатов технико-экономического сравнения целесообразных вариантов конструкции моста в целом и подходов к нему, а также мер по предотвращению появления недопустимых деформаций опор в течение всего периода эксплуатации дороги. При этом рекомендуется обследовать целесообразность переноса места расположения мостового перехода, увеличения глубины заложения фундаментов, обеспечения сохранности мерзлого состояния грунтов основания опор с помощью охлаждающих устройств или других мер.

ТРЕБОВАНИЯ К МАТЕРИАЛАМ ИНЖЕНЕРНЫХ ИЗЫСКАНИЙ

5.1.5 Основания и фундаменты опор следует проектировать с использованием материалов инженерных изысканий, включающих результаты инженерно-геологических, мерзлотных, гидрогеологических, гидрологических и геодезических изысканий, выполненных в соответствии с требованиями СНиП 1.02.07-87 и ВСН 156-88.

5.1.6 Материалы инженерно-геокриологических изысканий должны содержать:

- данные о характере мерзлотно-грунтовых условий строительной площадки, в том числе об особенностях распространения по площади и глубине залегания вечномерзлых грунтов, их генезиса, литологическом и гранулометрическом составах, криогенном строении, особенностях напластования, температуре, толщине слоя сезонного промерзания и оттаивания, средней годовой температуре, о мерзлотных процессах (наледях, буграх пучения, термокарсте, солифлюкционно-оползневых образованиях и др.), степени засоленности грунтов, наличии включений концентрированных солевых растворов (криопегов) и их напоре;

- результаты полевых и лабораторных исследований и испытаний грунтов, отражающие литологические типы, криогенное строение, физические и механические свойства в талом и мерзлом состояниях для нескальных грунтов - плотность, влажность, льдистость, просадочность при оттаивании, угол внутреннего трения, сцепление, теплоемкость, коэффициент теплопроводности; для скальных грунтов - степень выветрелости и трещиноватости, временное сопротивление на одноосное сжатие, коэффициент размягчаемости в воде и др.;

- дополнительные данные, необходимые для прогнозирования возможных изменений геокриологических условий строительной площадки, в том числе данные о продолжительности периодов и значениях положительных и отрицательных температур воздуха, толщине снежного покрова, мохорастительном покрове, а также о характерных особенностях проектируемого мостового перехода и производства работ по возведению опор моста и т.п.;

- исходные данные и требования, необходимые для разработки мероприятий по охране окружающей среды, подлежащие включению в проект опор моста, а также в проект организации и производства строительных работ (с целью обеспечения максимальной сохранности мохорастительного покрова, минимальных нарушений естественных условий напластования грунтов и протекания водотоков).

5.1.7 Материалы гидрогеологических и гидрологических изысканий должны содержать данные: об уровнях появления и установления подземных вод; химическом составе подземных вод с целью определения основных показателей их агрессивности по отношению к бетону или стальным оболочкам фундаментов; характере гидравлической связи подземных вод с водами открытых водоемов (рек, водохранилищ или озер).

Кроме сведений о подземных водах должны быть получены: характерные данные о наземных (поверхностных) водах, включающие расчетные уровень и расход воды; рабочие уровни для каждого месяца в году; уровни высокой и низкой межени; графики среднемноголетней продолжительности стояния характерных уровней воды; сведения о датах начала и конца ледостава и ледохода, толщине льда, уровнях ледостава и ледохода, возможных заторах льда; сведения о характере и степени агрессивности воды.

В дополнение к перечисленным сведениям необходимо собрать данные о специфических особенностях водотоков, характеризующие:

- прохождение паводков поверх ледяного покрова, обычно образующегося на перекатах при промерзании водотоков до дна, а также в местах появления наледей или ледяных заторов, возникающие при таких паводках подпоры воды и связанное с ними повышение ее уровней;

По общепринятой классификации в зависимости от характера деформации грунта в основании фундаменты подразделяются на фундаменты мелкого и глубокого заложения. Подобная классификация основана на характере развития зон предельного равновесия в массиве грунта, окружающего фундамент.

Характер деформации грунта в предельном состоянии зависит от относительной глубины заложения d/b. На рис.Ф.5.1 показано очертание зон предельного равновесия для фундаментов с различной относительной глубиной заложения.

Рис.Ф.5.1. Зоны с предельным состоянием при различных значениях d/b: а - d/b £ 1/2; б - ; в - d/b=2-4

При d/b £ 1/2 фундаменты относятся к категории мелкого заложения. Предельное состояние основания характеризуется выпором грунта на поверхность основания. В большинстве случаев реальные фундаменты имеют глубину заложения не более 3,5 м.

При глубине заложения от 2 до 5 м и относительной глубине заложения фундаменты относятся к категории средней глубины заложения. В предельном состоянии наблюдается не только выпирание грунта на поверхность, но и развитие зон предельного равновесия по направлению вглубь основания.

Фундаментами глубокого заложения называются такие, у которых не наблюдается выпора грунта на поверхность. Предельное состояние основания характеризуется развитием зон предельного равновесия вглубь него. Подобное состояние может возникнуть в основании свайных фундаментов, фундаментов-оболочек и буровых опор. Существует также определение, что фундаменты мелкого заложения - это фундаменты, сооружаемые в открытых котлованах, а фундаменты глубокого заложения не требуют вскрытия котлованов.

Ф.5.2. Что понимается под "проектированием оснований и фундаментов"?

Проектирование оснований включает обоснованный расчетом выбор типа основания (естественное или искусственное), а также типа, конструкции, материала и размеров фундаментов (мелкого или глубокого заложения; ленточных, столбчатых, железобетонных, бетонных, бутобетонных) с применением в случае необходимости строительных или конструктивных мероприятий для уменьшения влияния деформаций оснований на эксплуатационную пригодность зданий или сооружений.

В большинстве случаев проектирование оснований производится без учета совместной работы основания и надземных конструкций. Это объясняется сложностью и трудоемкостью подобных расчетов. Однако применение современных вычислительных машин и численных методов расчета позволяет эффективно выполнять соответствующие расчеты. Эти расчеты показывают, что учет совместной работы может привести к снижению затрат на устройство фундаментов.

Всякое сооружение опирается на грунт и передает ему давление от собственного веса и действующих на сооружение нагрузок. Для восприятия этих нагрузок и передачи их на грунт (основание) устраивается фундамент. Наиболее надежным и экономичным является устройство опор на скальных грунтах.

В мостах фундаменты опор и их основания — ответственные элементы сооружения, от качества и надежности которых зависит долговечность моста и безопасность его эксплуатации. Основания подразделяются на естественные и искусственные. Естественным основанием является грунт, залегающий под фундаментом и способный воспринять все нагрузки, передаваемые через фундамент. Если грунт, залегающий под фундаментом, не может выдержать передаваемых на него нагрузок, устраиваются искусственные основания. Фундаменты на естественным основании могут быть мелкого заложения (до 6 м в отрытых котлованах) и глубокого.


Фундаменты мелкого заложения.Когда грунты, залегающие в основании, по своим физико-техническим свойствам и расчетным характеристикам позволяют устроить фундамент сооружения на небольшой глубине, сооружаются фундаменты мелкого заложения, обычно в открытых котлованах (рис. 2.1).

Рис. 2.1. Фундаменты мелкого заложения:

1 — фундамент опоры в русле реки; 2 — фундамент опоры на сухом месте;h0 — глубина заложения фундамента от подошвы до поверхности грунта;

а — ширина подошвы фундамента по фасаду; b — ширина подошвы фундамента в направлении, перпендикулярном оси моста.

Так как фундамент служит для передачи давления от сооружения на грунт, подошва его должна иметь достаточную площадь, определяемую расчетом. Требующееся расширение фундамента книзу делается уступами или в виде усеченной пирамиды. При ступенчатом фундаменте линия его расширения не должна составлять с вертикалью угол более 30°. Верх фундамента опоры, называемый обрезом, должен располагаться на 0,5 м ниже уровня меженных вод для того, чтобы фундамент не обнажался при пониженных уровнях. На сухом месте обрез располагается на 0,1—0,2 м ниже поверхности грунта. В уровне обреза фундамент делается шире устанавливаемого на него тела опоры для того, чтобы в случае неточности реального положения возведенных фундаментов установка на них тела опоры не вызывала трудностей. Ширина уступов ступенчатого фундамента принимается 0,5—1,0 м. Фундаменты устраивают из бетона, реже из железобетона. Они могут быть монолитными и сборными из бетонных или железобетонных блоков, изготовленных на заводе или полигоне и устанавливаемых на место краном.

Подошва фундамента располагается в зависимости от характера грунтов, но, как правило, не менее чем на 1 м ниже поверхности грунта или дна реки, а для грунтов, увеличивающихся в объеме при намокании, на глубину не менее 0,25 м ниже уровня промерзания.

Фундаменты мелкого заложения, как правило, имеют прямоугольные очертания в плане. В слабых грунтах фундаментам придается ступенчатая форма для получения наибольшей площади подошвы фундамента.

Грунты по прочности, устойчивости и размываемости делятся на 2группы: сцементированные (скальные) и несцементированные (рыхлые).

Несцементированные грунты делятся на связные (глинистые) и сыпучие (песок, гравий, галька).

Глина в сухом состоянии представляет собой плотную породу, способную выдержать большие нагрузки, но при насыщении водой является слабым грунтом, становится пластичной, изменяет свою форму.

Песок в естественных условиях находится как в рыхлом, так и в плотном состоянии. В сухом состоянии песок сыпуч, а при насыщении водой при-обретает текучесть (плывун). Плотный песок без примеси глины, пылии ила является надежным основанием. Слабые грунты в основаниях могут быть упрочнены (искусственные основания).

Применяются следующие способы упрочнения грунтов:

• уплотнение грунта путем укатки, трамбования;

• цементация грунтов (нагнетание в грунт цементного молока);

• силикатизация (пропитка грунта жидким стеклом);

• битумизация (нагнетание в грунт битумных эмульсий).

Свайные фундаменты.Свайные фундаменты применяют при слабых грунтах основания, при достаточно глубоком залегании прочных грунтов, а также на местности, покрытой водой. По характеру работы сваи делятся на два вида: сваи-стойки, работающие на сжатие, и висячие сваи (сваи трения), передающие нагрузку за счет трения боковых поверхностей свай о грунт (рис. 2.2).


Рис. 2.2. Виды сваи по характеру работы:

а — сваи-стойки; б — висячие сваи; 1 — тело опоры; 2 — ростверк; 3-сваи; 4 — слабые грунты; 5 — прочные грунты.

По виду материала сваи бывают: деревянные, железобетонные, стальные, фунтовые, комбинированные и др. По способу погружения различают сваи: забивные, камуфлетные, буровые, винтовые, набивные. По расположению относительно горизонта сваи подразделяются на вертикальные и наклонные.

Свайный фундамент состоит из отдельных свай и объединяющей их поверху монолитной бетонной или железобетонной плиты — ростверка. Ростверком называется плита, служащая для равномерного распределения давления на сваи. По расположению относительно поверхности грунта свайные ростверки бывают низкие и высокие (рис. 2.3).


Рис. 2.3. Свайный ростверк:

а —низкий; б — высокий в воде; в — высокий в насыпи

Если подошва плиты заглублена в грунт, свайный ростверк называется низким. Если подошва плиты расположена выше поверхности грунта, ростверк называется высоким. Размеры плиты (ростверка) определяются условиями размещения необходимого числа свай, способных воспринять нагрузку на опоры. Сваи размещаются в ряд или в шахматном порядке. Наибольшее распространение получили бетонные ростверки, вкоторые заделываются головы свай (железобетонные или деревянные).

Толщина плиты ростверка определяется расчетом, но не менее 0,5м. Высокие свайные ростверки применяются при глубине воды в реке не менее 3 м, когда работы по устройству открытого котлована осложнены условиями водоотлива или когда вес кладки фундамента, приходящийся на

единицу площади основания, превосходит допускаемое напряжение на грунт. Бетонирование ростверка осуществляется в опалубке, подвешенной в насыпи к головкам свай.

Фундаменты глубокого заложения.Если плотные слои грунта, годные для надежного опирания фундамента, залегают глубоко, устраиваются фундаменты глубокого заложения. К ним относятся сборные железобетонные оболочки, опускные колодцы, кессоны.

Сборные железобетонные оболочки представляют собой тонкостенный железобетонный цилиндр, погружаемый в грунт вибропогружателем на глубину 30—50 м и более.


Рис. 2.4. Погружение оболочки:

1 — вибропогружатель;2 — наголовник; 3 — оболочка

Применение сборных оболочек позволяет полностью механизировать работы, сократить сроки постройки фундаментов, снизить расход бетона по сравнению с кессонными фундаментами. Оболочки диаметром до 2 м полностью заполняются бетоном. В оболочках большого диаметра стенки делаются утолщенными до 0,8—0,9 м. Как правило, толщина стенок оболочек составляет12—16 см, длина звеньев 6—10 м. Стенки оболочек армируются продольной и поперечной арматурой. В качестве продольной арматуры используются стержни гладкого или периодического профиля. Секции оболочек стыкуются фланцевыми болтами или сваркой соответствующих выпусков продольной арматуры. При опирании оболочки на скальный грунт в основании оболочки пробуривается скважина, в которую вставляется арматурный каркас, после чегополость скважины и оболочки заполняется бетоном.

Опускной колодец (рис. 2.5) представляет собой полый бетонный ящик, имеющий только ограждающие стенки.


Рис. 2.5. Опускной колодец:

а — конструкция; б — разработка грунта грейфером; в — разработка грунта гидроэлеватором; 1 — стенка; 2 — нож; 3 — заполнение; 4 — железобетонная плита; 5 — грейфер; 6 — гидроэлеватор; 7 — подмывная труба; 8 — труба дляпульпы.

Он устанавливается на грунт с таким расчетом, чтобы верхний обрез его возвышался над уровнем воды. Внутри колодца производится разработка грунта либо грейфером, либо гидромеханизированным способом. По мере удаления грунта из колодца он под действием собственного веса опускается, а стенки его наращиваются. Опускные колодцы бывают бетонные или железобетонные прямоугольного или кольцевого очертания в плане. При значительных размерах в плане колодцы разделяются внутренними перегородками на отдельные шахты, что уменьшает свободный пролет наружной стенки, работающей на изгиб. Для лучшего проникновения в грунт нижняя часть стенок колодца выполняется вформе ножа и армируется. Глубина заложения колодцев весьма значительна — до 70 м.

После опускания колодца на требуемуюглубину производится подводное бетонирование нижней части, после чего производитсяоткачка воды и заполнение шахт на всю высоту бетонной или каменной кладкой. Сверхушахты колодца перекрываются мощной железобетонной плитой, на которой возводится опора.

Кессоны представляют собой прочную водонепроницаемую камеру, образованную боковыми стенками и потолком.


Рис. 2.6. Кессонная установка: 1-кессон; 2-рабочая камера; 3-шахта; 4-надкессонная кладка; 5-шлюзовой аппарат; 6-воздухопровод.


Кессонные работы вредны для здоровья людей, так как они вызывают кессонную болезнь. Применение гидромеханизации для разработки грунта в кессонах гидромониторами и удаление пульпы землесосами или гидроэлеваторами, минуя шлюзовые аппараты, позволяет обходиться без людей в кессоне. Кессоны и опускные колодцы до недавнего времени применяли при необходимости заложения глубокого фундамента, в сложных геологических условиях, загрязняющих устройство открытого котлована, или при нецелесообразности применения свайного основания или оболочек. На сухих местах колодцы опускали непосредственно с поверхности грунта, а в речной части — со специальных отсыпанных островков.

Виды опор.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).



Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.


© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

ФУНДАМЕНТЫ ОПОР МОСТОВ В РАЙОНАХ РАСПРОСТРАНЕНИЯ МНОГОЛЕТНЕМЕРЗЛЫХ ГРУНТОВ

Правила проектирования и строительства

Foundations of bridge supports in areas of permafrost soils. Design and construction rules

Предисловие

Сведения о своде правил

1 ИСПОЛНИТЕЛЬ - ООО "Лаборатория инженерной теплофизики" (ООО "ЦЛИТ")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)

6 ВВЕДЕН ВПЕРВЫЕ

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минстрой России) в сети Интернет

Введение

Настоящий свод правил подготовлен авторским коллективом АО ЦНИИС (руководитель - д-р техн. наук А.А.Цернант, канд. техн. наук В.П.Рыбчинский, канд. техн. наук И.А.Бегун), ООО "Лаборатория инженерной теплофизики" (ответственный исполнитель - д-р техн. наук В.В.Пассек, канд. техн. наук Н.А.Цуканов, канд. техн. наук В.П.Величко, канд. техн. наук Вяч.В.Пассек, канд. техн. наук В.Г.Дубинин).

1 Область применения

Настоящий свод правил распространяется на проектирование и устройство фундаментов опор постоянных мостов, путепроводов и эстакад на железных и автомобильных дорогах, сооружаемых в районах распространения многолетнемерзлых грунтов.

2 Нормативные ссылки

В настоящем своде правил использованы нормативные ссылки на следующие документы:

ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями

СП 14.13330.2014 "СНиП II-7-81* Строительство в сейсмических районах" (с изменением N 1)

СП 22.13330.2016 "СНиП 2.02.01-83* Основания зданий и сооружений"

СП 25.13330.2012 "СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах" (с изменением N 1)

СП 28.13330.2017 "СНиП 2.03.11-85 Защита строительных конструкций от коррозии"

СП 45.13330.2017 "СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты"

СП 47.13330.2016 "СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения"

СП 48.13330.2011 "СНиП 12-01-2004 Организация строительства" (с изменением N 1)

СП 63.13330.2012 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения" (с изменениями N 1, N 2, N 3)

СП 70.13330.2012 "СНиП 3.03.01-87 Несущие и ограждающие конструкции" (с изменениями N 1, N 3)

Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования - на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

3 Термины и определения

В настоящем своде правил применены следующие термины с соответствующими определениями:

3.1 глубина нулевых годовых амплитуд температур в грунте: Глубина, на которой температура грунта остается неизменной в течение всего годового периода независимо от сезонных колебаний температуры воздуха на поверхности.

3.2 грунт засоленный: Грунт, содержащий водорастворимые соли.

грунт мерзлый: Грунт, имеющий отрицательную или нулевую температуру, содержащий в своем составе видимые ледяные включения и (или) лед-цемент и характеризующийся криогенными структурными связями.

грунт многолетнемерзлый: Грунт, находящийся в мерзлом состоянии постоянно в течение трех и более лет.

3.5 грунт пластично-мерзлый: Грунт с большим содержанием незамерзшей воды, находящийся при температуре ниже 0°С, но выше температуры замерзания; обладает пластическими свойствами и может деформироваться под нагрузкой.

3.6 грунт сухомерзлый: Песчаный грунт с суммарной влажностью до 6%, гравийно-песчаный грунт с влажностью заполнителя до 6%.

3.7 грунт сыпучемерзлый: Крупнообломочный и песчаный грунт, имеющий отрицательную температуру, но не сцементированный льдом и не обладающий силами сцепления.

3.8 грунт твердомерзлый: Прочно смерзшийся, практически несжимаемый грунт, находящийся при температуре ниже границы замерзания.

3.9 деградация мерзлоты: Многолетний процесс постепенного повышения среднегодовой температуры многолетнемерзлого грунта, приводящий со временем к понижению верхней поверхности мерзлоты, разобщению ее от слоя сезонного промерзания и росту зоны постоянно талого грунта между ними.

мостовое сооружение (мост): Искусственное сооружение над различными препятствиями для пропуска различных видов транспорта и пешеходов, а также водотоков, селей, скота, коммуникаций различного назначения - порознь или в различных комбинациях.

мостовой переход: Комплекс сооружений, включающий мост, участки подходов в пойме реки, регуляционные и другие укрепления.

3.12 приведенная температура воздуха: Температура наружного воздуха, полученная на метеостанции и откорректированная с учетом солнечной радиации и испарения с поверхности.

3.13 растепление мерзлоты: Повышение температуры многолетнемерзлого грунтового массива.

3.14 сезоннодействующие охлаждающие установки; СОУ: Замкнутые теплообменные устройства различного типа с газообразным, жидким или парожидкостным теплоносителем, применяемые для охлаждения и замораживания грунта за счет действия естественной разности температур грунта и окружающего воздуха.

3.15 слой сезонного оттаивания: Поверхностный слой грунта, оттаивающий в летний период.

3.16 среднегодовая температура многолетнемерзлых грунтов: Температура грунта на глубине нулевых годовых амплитуд (10-15 м).

3.17 талик: Толща талых и немерзлых пород в зоне вечной мерзлоты, распространенная с поверхности или ниже слоя сезонного промерзания и существующая более одного года.

3.18 температура замерзания: Температура, при которой в грунте замерзает более 90% воды.

3.19 температура начала замерзания (оттаивания): Температура, при которой в порах грунта появляется (исчезает) лед.

3.20 температурное поле: Совокупность температур в каждой точке расчетной области грунта на рассматриваемый момент времени.

3.21 термокарст: Образование просадочных и провальных форм рельефа и подземных пустот вследствие вытаивания подземного льда или оттаивания мерзлого грунта.

3.22 температурный режим грунтов; ТР: Изменение температурных полей во времени.

3.23 уширенная площадка: Насыпь с горизонтальной поверхностью, размеры которой в плане существенно превосходят ее высоту, устраиваемая около какого-либо сооружения (опора моста, насыпь железной или автомобильной дороги) с целью понижения температуры грунтового основания основного сооружения.

4 Общие положения

4.1 Настоящий свод правил предназначен для применения при проектировании, устройстве и контроле по сооружению фундаментов опор мостов (путепроводов, эстакад), возводимых на многолетнемерзлых грунтах.

4.2 При проектировании фундаментов опор на многолетнемерзлых грунтах в зависимости от их конструктивных и технологических особенностей и мерзлотно-грунтовых условий применяется один из следующих принципов использования грунтов в качестве основания:

- принцип I - грунты основания используют в мерзлом состоянии, сохраняемом в течение всего периода эксплуатации сооружения. При этом грунты могут быть мерзлыми до строительства или замораживаемыми в процессе строительства;

- принцип II - грунты основания используют в талом или оттаивающем состоянии.

Рекомендуется применять принцип I. Применение принципа II связано с более значительными неопределенностями с нарушением равновесия среды, в частности, с протаиванием смежных массивов, расположенных рядом или внизу, что может привести к линейной деформации или сдвигу больших массивов.

4.3 В своде правил приведены требования, необходимые для учета характерных особенностей проектирования и сооружения на многолетнемерзлых грунтах безростверковых опор, свайных и мелкого заложения фундаментов с использованием типовых или апробированных на практике и рекомендованных для широкого применения проектов, а также для разработки индивидуальных конструктивно-технологических решений опор.

Общие положения, относящиеся к вопросам проектирования и устройства фундаментов опор мостов как на используемых в мерзлом или талом состоянии многолетнемерзлых грунтах, так и на немерзлых грунтах в части проектирования и сооружения фундаментов и надфундаментной части опор, отсыпки и укрепления конусов, укрепления русел и т.п. следует принимать в соответствии с действующими нормативными документами.

4.4 Проектирование и сооружение фундаментов опор мостов должно осуществляться с учетом требований к охране окружающей среды и защиты от опасных природных процессов.

4.5 При прогнозировании температурного режима грунтов оснований следует учитывать, что зона теплового влияния на грунт, находящийся непосредственно у каждой опоры, распространяется на расстояние в плане радиусом 50 м и более, поэтому необходимо проводить расчеты для всего мостового перехода, включая участки подходного земляного полотна и формировать территорию всего мостового перехода с учетом ее теплового влияния на зону непосредственно у опор.

Строительство опор

Фундаменты мелкого заложения в сухих и маловлажных грунтах возводят в открытых котлованах. В подготовительный период завозят необходимое оборудование, проводят геодезические работы и планировку площадки.

Свайные фундаменты на забивных железобетонных сваях

В строительстве мостов свайные фундаменты на забивных железобетонных сваях, как правило, применяют железобетонные призматические сваи сечением 35х35 см и 40х40 см, длиной 6…18 м.

Свайные фундаменты на забивных железобетонных сваях

Свайные фундаменты на забивных железобетонных сваях

Фундаменты на забивных железобетонных сваях

Фундаменты на забивных железобетонных сваях

Фундаменты опор мостов на буронабивных сваях (БНС)

Фундаменты опор мостов на буронабивных сваях (БНС) сооружают путем устройства в грунте скважин с последующим заполнением их армированным бетоном. В мировой практике строительства БНС нашли широкое применение при больших нагрузках и большой глубине залегания прочных грунтов (до 120 м).



Свайные фундаменты опор на вибропогружаемых железобетонных оболочках

Свайные фундаменты опор на вибропогружаемых железобетонных оболочках диаметром 1 м и более применяют для опор с плитой свайного ростверка и для безростверковых опор.

Глубина погружения оболочек может доходить до 70 м, а несущая способность до 200 тс и более. Сборные железобетонные оболочки заполняют монолитным бетоном или железобетоном.

Фундаменты опор на опускных колодцах

Фундаменты опор на опускных колодцах рименяют, если прочный грунт залегает на относительно небольшой глубине, но фундаменты мелкого заложения при этом будут слишком дорогостоящими, а свайные фундаменты нецелесообразны из-за недостаточной глубины забивки свай.

Строительство устоев и промежуточных опор

Возведение устоев

Устои могут иметь обсыпную (свайные, козловые, безростверковые) или необсыпную (с обратными стенками, с откосными крыльями) конструкцию. Под железобетонные пролетные строения длиной до 33 м и более обычно используют обсыпную козловую конструкцию устоев с фундаментами на забивных и буронабивных сваях.

Опалубка устоев

Щитовая опалубка устоя

Щитовая опалубка устоя

Возведение пойменных опор

При отсутствии воды на пойме и маловлажных грунтах сваи забивают с поверхности грунта. Котлован разрабатывают экскаватором с узким ковшом для возможности выемки грунта между сваями. Головы свай срубают и арматуру заводят в тело ростверка.

Возведение русловых опор

Строительство русловых опор является наиболее сложной частью всего процесса возведения моста. Технология возведения русловых опор зависит от множества факторов, таких как природные условия строительной площадки, геологическое строение в русловой части, принятая конструкция фундамента, интенсивность ледохода.

Возведение пролетных строений

Монтаж сборных железобетонных пролетных строений

Балки пролетного строения

Монтаж ребристого пролетного строения

Монтаж ребристого пролетного строения

Конструкция сборных балочных пролетных строений

Сборные балочные пролетные строения можно подразделить на ребристые и плитные. Пролетные строения формируются из отдельных монтажных блоков — балок или плит.

Наибольшее распространение в последние годы находят ребристые пролетные строения (ПС) из цельноперевозимых тавровых балок полной длиной до 33 м с монолитными продольными стыками по плитам балок.

Изготовление цельноперевозимых балок и их транспортировка

Изготовление предварительно напряженных цельноперевозимых балок с натяжением арматуры на упоры до бетонирования на заводах МЖБК осуществляется по поточно-агрегатной технологии в специализированных цехах

Особенности изготовления тавровых типовых балок с каркасной арматурой

В настоящее время каркасные балки часто изготавливают стендовым методом на базах мостостроительных организаций, занимающихся строительством и ремонтом мостов. Для формования балок используют металлическую раскрывающуюся опалубку.

Краны, применяемые для монтажа балок

В мостостроении применяют общестроительные и специальные краны для строительства мостов. Общестроительные краны предпочтительнее специальных из-за дефицитности последних и необходимости их перевозки, сборки и разборки, что увеличивает временные затраты и стоимость монтажа.

Схемы и правила строповки балок

При погрузке-разгрузке балок и их монтаже необходимо строго соблюдать правила строповки (захвата) балок. Для строповки балок крюками и стропами при длине – до 15 м в их конструкциях предусматриваются петли.

Разновидности технологических схем монтажа

Для выбора оптимальных схем сооружения пойменных и русловых пролетных строений разрабатываются варианты технологических схем и проводится их сравнение по технико-экономическим показателям.

Укрупнительная сборка разрезных составных железобетонных балок

При длине балки 42 м и весе 90 тс укрупненные таким образом балки устанавливают в проектное положение с помощью шлюзового крана грузоподъемностью 100 т или двух козловых кранов.

Монтаж сборных неразрезных пролетных строений

Неразрезные пролетные строения из ребристых балок широко использовали в мостах и путепроводах. В основу конструкции легло использование типовых преднапряженных балок длиной 33 и 24 м.

Монтаж железобетонных предварительно напряженных составных пролетных строений

Конструкция сборных балочно-неразрезных предварительно напряженных пролетных строений

Пролетные строения с пролетами до 150 м собирают из отдельных блоков длиной до 4 м и массой до 60 т. Блоки изготавливаются на заводах МЖБК или полигонах. Составные по длине железобетонные пролетные строения успешно применяются как для балочных, так и для рамных систем.

Монтаж железобетонных предварительно напряженных пролетных строений

Для возведения неразрезных балочных пролетных строений применяются следующие методы монтажа:

Возведение монолитных балочных предварительно напряженных пролетных строений

Конструкция балочных пролетных строений

Монолитные балочные предварительно напряженные пролетные строения могут быть неразрезными, в том числе криволинейными в плане, при этом количество деформационных швов значительно сокращается, что важно для нормальной эксплуатации сооружений.

Варианты технологических схем

Бетонирование балочных неразрезных предварительно напряженных пролетных строений на сплошных подмостях

В настоящее время бетонирование пролетных строений секциями на сплошных подмостях широко применяется. Длина секций, как правило, включает 2-3 пролета.

Навесное бетонирование

Пролетные строения, бетонируемые навесным способом, имеют обычно коробчатое поперечное сечение с вертикальными стенками, с постоянной или переменной по длине высотой

Циклическая продольная надвижка

Суть метода циклической продольной надвижки или, точнее, конвейерно-тылового бетонирования с продольной надвижкой, заключается в том, что секции пролетного строения длиной 20 и более метров бетонируют на стапеле, и после натяжения арматуры конструкция надвигается в пролет

Сооружение сталежелезобетонных балочных пролетных строений

Конструкция сталежелезобетонных пролетных строений

Строительство сталежелезобетонных пролетных строений за рубежом началось в конце 1940-х годов. Применяют сталежелезобетонные мосты разных систем: балочные, рамные, комбинированные. Сталежелезобетонные балки жесткости используют в вантовых и висячих мостах малых пролетов.

Монтаж типовых сталежелезобетонных пролетных строений со сборной железобетонной плитой

Возведение сталежелезобетонных пролетных строений производится в два этапа. На первом устанавливают в проектное положение стальные конструкции, на втором монтируют железобетонную плиту.

Основные схемы установки стальных балочных конструкций в проектное положение

Возведение сталежелезобетонных пролетных строений с монолитной плитой

При бетонировании плиты необходимо стремиться к максимальному устранению вредного влияния на продольный профиль прогибов стальных балок от веса укладываемого бетона. Для этого плиту бетонируют в несколько стадий и устанавливают временные опоры в серединах пролетов

Монтаж балочных неразрезных коробчатых стальных пролетных строений с ортотропной плитой проезжей части

Конструкция коробчатых пролетных строений

Коробчатые пролетные строения с ортотропной плитой проезжей части значительно легче сталежелезобетонных. При этом они обладают достаточной жесткостью на кручение, а также имеют существенные технологические преимущества

Конвейерно-тыловая сборка с циклической продольной надвижкой с аванбеком

Продольная надвижка с аванбеком применяется наиболее часто для мостов и путепроводов с коробчатой ортотропной конструкцией. Сборка пролетного строения осуществляется на насыпи подхода, на специальном стапеле, который располагается по оси надвигаемого пролетного строения.

Монтаж стальных пролетных строений сквозной системы

Конструкция сквозных пролетных строений

Для пролетов до 84 м возможно устраивать классическую конструкцию проезжей части с балочной клеткой из поперечных и продольных балок и железобетонной плитой проезжей части. Для больших пролетов целесообразно облегчать проезжую часть за счет применения ортотропной плиты проезжей части

Сборка сквозных пролетных строений разрезной системы с гибкими поясами на сплошных подмостях

Сборка пролетных строений на сплошных подмостях отличается от других способов простотой и безопасностью производства работ, а также высокой точностью.

Полунавесная сборка балочных сквозных пролетных строений

При полунавесной сборке пролетных строений подмости устраивают не сплошными, а в виде отдельных опор (рам), расположенных под узлами ферм с гибкими поясами

Навесная сборка сквозных пролетных строений

Навесной монтаж металлического пролетного строения способом навесной сборки основан на принципе постепенного наращивания пролетного строения в пределах между постоянными опорами без подмостей или временных промежуточных опор.

Продольная надвижка сквозных пролетных строений

Общая схема организации работ аналогична применяемой для сплошностенчатых пролетных строений. Сначала пролетное строение возводится на берегу поэтажным, секционным или комбинированным методом. Затем производится его продольная надвижка.

Установка сквозных пролетных строений на опоры с помощью плавучих средств

Установка сквозных пролетных строений с помощью плавучих средств применяется довольно часто на больших реках для многопролетных мостов при наличии парка понтонов или барж.

Строительство арочных, висячих и вантовых мостов

Постройка арочных мостов

Монолитные арки бетонируют при пролетах до 20…30 м без деления на секции с интенсивной укладкой смеси слоями с обеих сторон от пят к замку. Кроме бетонирования на подмостях и кружалах, возможно использование метода навесного бетонирования и навесной сборки.

Строительство вантовых мостов

Основные схемы сборки вантовых пролетных строений со стальными балками жесткости:

Строительство висячих мостов

Устройство мостового полотна

Мостовое полотно является наиболее нагруженным в процессе эксплуатации элементом моста. Оно находится под воздействием силовых и природных факторов (динамическое воздействие транспорта, дождевая вода и снег, противогололедные реагенты, нагрузки от механизмов, используемых при эксплуатации мостов и дорог, температурные воздействия и проч.).

Устройство дорожной одежды, гидроизоляции, дренажа, ограждений проезжей части

Дорожная одежда включает в общем случае при железобетонной плите проезжей части: выравнивающий бетонный слой толщиной не менее 30 мм из бетона (при монолитной плите отсутствует), гидроизоляцию, защитный слой толщиной не менее 60 мм, асфальтобетонное покрытие.

Читайте также: