Фундамент свойства магнитного поля

Обновлено: 13.05.2024

Чтобы правильно понимать параметры и особенности магнитного поля, требуется дать соответствующие определения тех или иных физических явлений. Не будет лишним напомнить и про то, что такое – магнитное поле, какие величины его характеризуют.

Также очень важен для понимания такой момент, что магнитное поле существует далеко не только у магнитов.

Определение магнитного поля

Итак, под магнитным полем принято подразумевать некую материальную среду, через которое проводники с током или заряженные частицы взаимодействуют друг с другом.

Однако эта среда никак не ощущается человеком. Хотя еще в древности люди начинали подозревать о ее существовании, теоретически и экспериментально доказать существование магнитного поля удалось лишь сравнительно недавно.

Сегодня физиками установлено, что магнитное поле имеется вокруг любых проводников под током. Оно оказывает воздействие на проводник, в результате чего тот движется в сторону действия силы магнитного поля. Если же речь идет о кольцевом проводнике, то он будет совершать обороты вокруг своей оси.

Важное замечание: само по себе это поле не обладает очерченными границами, однако с расстоянием оно начинает стремительно ослабевать. Поэтому на очень большом расстоянии от проводника его или вовсе невозможно зафиксировать, или для этого потребуется использование достаточно мощных приборов.

Токи внутри магнитного поля взаимодействуют между собой с конечной скоростью.

Возникновение магнитного поля

Чтобы лучше понимать свойства и принципы работы магнитного поля, сначала необходимо описать, как оно возникает. А возникает оно при трансформации заряженных элементарных частиц, при этом воздействуя на подвижные электрозаряды. Например, на проводники тока.

Проводники и перемещающиеся внутри поля заряды взаимодействуют за счет так называемых электромагнитных сил. Силовые показатели магнитного поля в конкретном месте пространства определяются постоянной индукцией. Графически можно представить индукцию в виде линий – чтобы лучше и нагляднее понимать особенности и параметры данного явления. Принято считать, что, чем гуще расположение графических линий – тем интенсивнее действие магнитной индукции. По линиям можно также определять направление индукции поля. Однако следует понимать, что в природе никаких линий не существует, они были введены физиками лишь для большей наглядности явления.

Магнитные линии

Прямолинейные проводники, обладающие высокими показателями токопроводимости, имеют более плотные магнитные линии. Они распределяются по концентрическим окружностям, в центре которых располагается данный прямолинейный проводник.

Важно замечание. Чтобы определить направление линий магнитного поля, пользуются так называемым правилом буравчика. Оно гласит: если воображаемый буравчик расположить таким образом, что он будет ввинчиваться вдоль прямолинейного проводника под током, то траектория вращения рукояти буравчика совпадает с направлением магнитных линий.

Еще одной неотъемлемой характеристикой магнитного поля является однородность (неоднородность) распределения магнитных линий и самого поля. Эти составляющие, создаваемые одним и тем же током и при прочих равных условиях, обладают неоднозначной интенсивностью и направленностью в том или ином пространстве. Такая неоднородность зависит от движущихся магнитных свойств внутри вещества, где поле распространяется.

Магнитная специфика окружающего пространства характеризуются стабильной проницаемостью магнита. Ее принято измерять в генри на метр (г/м).

Таким образом, в числе свойств поля следует перечислить и такой показатель, как абсолютная магнитная проницаемость пустоты. Это – магнитная постоянная.

Под магнитной проницаемостью подразумевают определенное значение, показывающее, насколько часто показатель абсолютной магнитной проницаемости данного пространства или среды отличается от показателя постоянной, относительной проницаемости магнита.

Магнитным полем оказывается прямое воздействие на такие параметры, как:

  • Изменяющиеся электрические заряды;
  • Вещества, которые определяют показатели проницаемости магнитного поля;
  • Постоянные магниты – подразумевающие наличие общего магнитного момента у всех заряженных частиц.

Внутри магнитного поля линии возникают, например, во время приближения постоянного или непостоянного магнита к рассыпанным на картонном листе железным опилкам. Этот опыт является классическим и позволяет наглядно продемонстрировать возникновение линий магнитной индукции внутри поля.

Изменения магнитных свойств материалов

Во время усиления постоянства силы тока до полноценного насыщения в катушке с ферромагнитными элементами и последующим исчезновением силы, кривые намагничивания не могут совпадать с линиями размагничивания. Индукция, обладающая в данном случае нулевыми показателями напряженности, не имеет значения, но получает некий параметр, который физики назвали – остаточная магнитная индукция.

Явление ослабевания индукции внутри магнитного поля от намагничивающей интенсивности принято называть гистерезисом.

Чтобы полностью размагнитить проводник, внутри элементов сердечников требуется наличие тока с обратным направлением. В этом случае и возникнет элемент напряженности.

В случае с разными ферромагнитными частицами имеют значение отрезки с разной длиной. То значение, при котором наблюдается окончательное размагничивание того или иного материала, называется коэрцитивная сила.

Если продолжать увеличивать интенсивность действия тока внутри катушки, то и магнитная индукция будет увеличиваться – вплоть до уровня своего насыщения. Но – с совершенно иными направлениями линий магнитной индукции.

Во время полного размагничивания в противоположном направлении можно получить явление остаточной индукции, которое и используется для разработки постоянных магнитов из веществ, обладающих высокими коэффициентами так называемого остаточного магнетизма.

С помощью веществ, имеющих свойство перемагничивания, учеными создаются сердечники для электроприборов, машин и механизмов.

Свойства магнитного поля

Свойствами магнитного поля в настоящее время принято считать:

  • Его появление обусловлено только движением заряженных тел или частиц;
  • Способность его обнаружения по воздействию на заряженные тела и частицы;
  • Материальность магнитного поля (пусть человек его и не ощущает);
  • Способность обнаружения поля через его действие на магнитную стрелку.

Ключевое преимущество и важное свойство магнитного поля – его относительность. Так если этот критерий оставить в заряженном теле неподалеку от принятой заранее системы отсчета и рядом поместить магнитную стрелку компаса, то та станет указывать в северном направлении. При этом стрелка не «видит» других полей, кроме магнитного поля Земли.

При приведении заряженного тела в движение вокруг него появляется магнитное поле, на которое стрелка обязательно отреагирует поворотом.

Все источники магнитного поля принято делить на следующие составляющие:

  • Электрическое пространство, которое со временем изменяется;
  • Подвижные и постоянные заряды;
  • А также заряженные током магниты – электромагниты.

Стоит заметить, что движущийся электрический заряд обладает куда большей магнитной энергией, нежели постоянный магнит.

Учеными были установлены причины, по которым физическое тело получает те или иные магнитные свойства. Как гласит современная теория, любое вещество внутри себя имеет микроскопические электротоки. Они возникают из-за постоянного движения заряженных электронов по своим квантовым орбитам вокруг ядра атома.

Человек не может своими органами чувств зафиксировать наличие или отсутствие магнитного поля вокруг вещества. Это сделать можно лишь специальными приборами.

Магнитное поле принято делить на постоянное и переменное. Первый вид поля наблюдается лишь в случае наличия неизменного электрического поля. Коэффициент данной пропорциональности принято называть индуктивностью основного проводника. Что показывает потенциал элемента формировать потокосцепление во время трансформации электричества в силу тока внутри контура магнитного потока.

Все выше сказанное и помогает нам понять, что же собой представляет и чем характеризуется такое физическое явление, как магнитное поле.

Магнитное поле – это особая форма материи, которая создается магнитами, проводниками с током (движущимися заряженными частицами) и которую можно обнаружить по взаимодействию магнитов, проводников с током (движущихся заряженных частиц).


Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х. Эрстеда.

Магнитная стрелка, расположенная вблизи проводника, поворачивается на некоторый угол при включении тока в проводнике. При размыкании цепи стрелка возвращается в исходное положение.

Из опыта Г. Эрстеда следует, что вокруг этого проводника существует магнитное поле.


Опыт Ампера
Два параллельных проводника, по которым протекает электрический ток, взаимодействуют между собой: притягиваются, если токи сонаправлены, и отталкиваются, если токи направлены противоположно. Это происходит из-за взаимодействия возникающих вокруг проводников магнитных полей.

Свойства магнитного поля

1. Материально, т.е. существует независимо от нас и наших знаний о нём.

2. Создаётся магнитами, проводниками с током (движущимися заряженными частицами)

3. Обнаруживается по взаимодействию магнитов, проводников с током (движущихся заряженных частиц)

4. Действует на магниты, проводники с током (движущиеся заряженные частицы) с некоторой силой

5. Никаких магнитных зарядов в природе не существует. Нельзя разделить северный и южный полюсы и получить тело с одним полюсом.

6. Причина, вследствие которой тела обладают магнитными свойствами, была найдена французским учёным Ампером. Ампер выдвинул заключение - магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него.

Эти токи представляют собой движение электронов по орбитам в атоме.

Если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу вследствие теплового движения молекул, составляющих тело, то их взаимодействия взаимно компенсируются и никаких магнитных свойств тело не обнаруживает.

И наоборот: если плоскости, в которых вращаются электроны, параллельны друг другу и направления нормалей к этим плоскостям совпадают, то такие вещества усиливают внешнее магнитное поле.

7. Магнитные силы действуют в магнитном поле по определенным направлениям, которые называют магнитными силовыми линиями. С их помощью можно удобно и наглядно показывать магнитное поле в том или ином случае.


Чтобы более точно изобразить магнитное поле, условились в тех местах, где поле сильнее, показывать силовые линии расположенными гуще, т.е. ближе друг к другу. И наоборот, в местах, где поле слабее, показывают силовые линии в меньшем количестве, т.е. расположенными реже.

8. Магнитное поле характеризует вектор магнитной индукции.

Вектор магнитной индукции — векторная величина, характеризующая магнитное поле.

Направление вектора магнитной индукции совпадает с направлением северного полюса свободной магнитной стрелки в данной точке.

Направление вектора индукции поля и силы тока I связаны «правилом правого винта (буравчика)»:


если ввинчивать буравчик по направлению тока в проводнике, то направление скорости движения конца его рукоятки в данной точке совпадет с направлением вектора магнитной индукции в этой точке.

Магнитное поле – одна из двух сторон электромагнитного поля, характеризующаяся воздействием на электрически заряженную частицу с силой, пропорциональной заряду частицы и ее скорости.

Магнитное поле изображается силовыми линиями, касательные к которым совпадают с ориентацией магнитных стрелок, внесенных в поле (рис. 3.1). Таким образом, магнитные стрелки как бы являются пробными элементами для магнитного поля.

За положительное направление магнитного поля условно принимают направление северного полюса магнитной стрелки.

Можно утверждать, что магнитное поле и электрический ток — взаимосвязанные явления.

Вокруг проводника, в котором существует ток, всегда имеется магнитное поле, и, наоборот, в замкнутом проводнике, движущемся в магнитном поле, возникает ток.

Рассмотрим количественные характеристики магнитного поля.

Магнитная индукция В — векторная величина, характеризующая магнитное поле и определяющая силу, действующую на движущуюся заряженную частицу со стороны магнитного поля. Эта характеристика является основной характеристикой магнитного поля, так как определяет электромагнитную силу, а также ЭДС индукции в проводнике, перемещающемся в магнитном поле.

Единицей магнитной индукции является вебер, деленный на квадратный метр, или тесла (Тл):

[В] =1Вб/1 м 2 = 1 Тл.

Абсолютная магнитная проницаемость среды μa — величина, являющаяся коэффициентом, отражающим магнитные свойства среды:

где μ0 = 4π*10 -7 (Ом*с)/м — магнитная постоянная, характеризующая магнитные свойства вакуума.

Единицу Ом*секунда (Ом*с) называют генри (Гн) Таким образом, [μ0] = Гн/м.

Величину μr, называют относительной магнитной проницаемостью среды. Она показывает, во сколько раз индукция поля, созданного током в данной среде, больше или меньше, чем в вакууме, и является безразмерной величиной.

Для большинства материалов проницаемость μr постоянна и близка к единице. Для ферромагнитных материалов μr является функцией тока, создающего магнитное поле, и достигает больших значений (10 2 -10 5 ).

Напряженность магнитного поля Н — векторная величина, которая не зависит от свойств среды и определяется только токами в проводниках, создающими магнитное поле.

Направление вектора Н (рисунок 3.1) для изотропных сред совпадает с вектором В и определяется касательной проведенной в данной точке поля (точка А) к силовой линии. Напряженность связана с магнитной индукцией соотношением

Единица напряженности магнитного поля — ампер на метр:

[Н] =1А / 1 м

Приведенные характеристики магнитного поля

Теперь рассмотрим производные характеристики.

Магнитный поток Ф — поток магнитной индукции.

На рисунке 3.2 показано однородное магнитноеполе, пересекающее площадку S. Магнитный поток Ф через площадку S в однородном магнитном поле равен произведению нормальной составляющей вектора индукции Вn на площадь S площадки:

Ф = ВnS = BS cos β

Магнитное напряжение (рисунок 3.3, а) в однородном магнитном поле определяется как произведение проекции Hl вектора Н на отрезок АВ и длину этого отрезка l:

В случае, когда поле неоднородно или участок, вдоль которого определяется Um не прямолинейный, участок разбивается на элементарные участки Δl. Тогда в пределах малого участка Δl поле можно считать однородным, а участок прямолинейным.

магнитное поле и его свойства

Магнитное поле это материя, которая возникает вокруг источников электрического тока, а также вокруг постоянных магнитов. В пространстве магнитное поле отображается как совокупление сил, которые способны оказать воздействие на намагниченные тела. Это действие объясняется наличием движущих разрядов на молекулярном уровне.

Магнитное поле формируется только вокруг электрических зарядов, которые находятся в движении. Именно поэтому магнитное и электрическое поле являются, неотъемлемыми и вместе формируют электромагнитное поле. Компоненты магнитного поля взаимосвязаны и воздействуют друг на друга, изменяя свои свойства.

Свойства магнитного поля:
1. Магнитное поле возникает под воздействие движущих зарядов электрического тока.
2. В любой своей точке магнитное поле характеризуется вектором физической величины под названием магнитная индукция, которая является силовой характеристикой магнитного поля.
3. Магнитное поле может воздействовать только на магниты, на токопроводящие проводники и движущиеся заряды.
4. Магнитное поле может быть постоянного и переменного типа
5. Магнитное поле измеряется только специальными приборами и не может быть воспринятым органами чувств человека.
6. Магнитное поля является электродинамическим, так как порождается только при движении заряженных частиц и оказывает влияние только на заряды, которые находятся в движении.

Размер магнитного поля зависит от скорости изменения магнитного поля. Соответственно этому признаку существуют два вида магнитного поля: динамичное магнитное поле и гравитационное магнитное поле. Гравитационное магнитное поле возникает только вблизи элементарных частиц и формируется в зависимости от особенностей строения этих частиц.

Магнитный момент возникает в том случае, когда магнитное поле воздействует на токопроводящую раму. Другими словами, магнитный момент это вектор, который расположен на ту линию, которая идет перпендикулярно раме.

Магнитное поле можно изобразить графически с помощью магнитных силовых линий. Эти линии проводятся в таком направлении, так чтобы направление сил поля совпало с направлением самой силовой линии. Магнитные силовые линии являются непрерывными и замкнутыми одновременно.

Направление магнитного поля определяется с помощью магнитной стрелки. Силовые линии определяют также полярность магнита, конец с выходом силовых линий это северный полюс, а конец, с входом этих линий, это южный полюс.

Очень удобно наглядно оценить магнитное поле с помощью обычных железных опилок и листка бумаги.
Если мы на постоянный магнит положим лист бумаги, а сверху насыпим опилок, то частички железа выстроятся соответственно силовым линиям магнитного поля.

Направление силовых линий для проводника удобно определять по знаменитому правилу буравчика или правилу правой руки. Если мы обхватим проводник рукой так, чтобы большой палец смотрел по направлению тока(от плюса к минусу), то 4 оставшиеся пальцы покажут нам направление силовых линий магнитного поля.

А направление силы Лоренца - силы, с которой действует магнитное поле на заряженную частицу или проводник с током, по правилу левой руки.
Если мы расположим левую руку в магнитном поле так, что 4 пальца смотрели по направлению тока в проводнике , а силовые линии входили в ладонь, то большой палец укажет направление силы Лоренца, силы действующей на проводник помещенный в магнитное поле.

На этом собственно всё. Появившиеся вопросы обязательно задавайте в комментариях.

Электромагнитное поле - история открытия и физические свойства

Электрические и магнитные явления известны человечеству с античных времен, ведь все же видели молнию, и многие древние знали о магнитах, притягивающих некоторые металлы. Багдадская батарейка, изобретенная 4000 лет назад — одно из свидетельств того, что задолго до наших дней человечество электричеством пользовалось, и судя по всему знало как оно работает. Тем не менее, считается, что до начала 19 века электричество и магнетизм рассматривались всегда отдельно друг от друга, принимались как несвязанные между собой явления, и относились к различным разделам физики.

Багдадская батарейка

Изучение магнитного поля началось в 1269 году, когда французский учёный Пётр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами» по аналогии с полюсами Земли.

Эксперимент Эрстеда

Эрстед в своих экспериментах только в 1819 году обнаружил отклонение стрелки компаса, расположенного вблизи проводника с током, и тогда ученым был сделан вывод о том, что существует некая взаимосвязь между электрическими и магнитными явлениями.

Отклонение стрелки компаса

Спустя 5 лет, в 1824 году, Ампер сумел математически описать взаимодействие токонесущего проводника с магнитом, а также взаимодействие проводников между собой, так появился Закон Ампера: «сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником».

Относительно действия магнита на ток, Ампер предположил, что внутри постоянного магнита присутствуют микроскопические замкнутые токи, которые и создают магнитное поле магнита, взаимодействующее с магнитным полем токонесущего проводника.

Явление электромагнитной индукции

Явление электромагнитной индукции

Еще через 7 лет, в 1831 году, Фарадей опытным путем обнаружил явление электромагнитной индукции, то есть ему удалось установить факт появления в проводнике электродвижущей силы в момент, когда на этот проводник действует изменяющееся магнитное поле. Смотрите - практическое применение явления электромагнитной индукции.

Например двигая постоянный магнит возле проводника, можно получить в нем пульсирующий ток, а подавая пульсирующий ток в одну из катушек, на общем железном сердечнике с которой находится вторая катушка, во второй катушке также появится пульсирующий ток.

Джеймс Клерк Максвелл

Через 33 года, в 1864 году, Максвелл сумел обобщить математически уже известные электрические и магнитные явления, - он создал теорию электромагнитного поля , согласно которой электромагнитное поле включает в себя взаимосвязанные электрическое и магнитное поля. Так, благодаря Максвеллу, стало возможным научное математическое объединение результатов предшествующих экспериментов в электродинамике.

Следствием этих важных выводов Максвелла явилось его предсказание о том, что в принципе любое изменение в электромагнитном поле должно порождать электромагнитные волны, которые распространяются в пространстве и в диэлектрических средах с некоторой конечной скоростью, которая зависит от магнитной и диэлектрической проницаемостей среды распространения волн.

Для вакуума эта скорость оказалась равна скорости света, в связи с чем Максвелл предположил, что свет — это тоже электромагнитная волна, и данное предположение позже подтвердилось (хотя еще за долго до экспериментов Эрстеда на волновую природу света указывал Юнг).

Максвелл же создал математическую основу электромагнетизма, и в 1884 году появились знаменитые уравнения Максвелла в современной форме. В 1887 году Герц подтвердит теорию Максвелла относительно электромагнитных волн: приемник зафиксирует посланные передатчиком электромагнитные волны.

Колебания электричсекого поля

Изучением электромагнитных полей занимается классическая электродинамика. В рамках же квантовой электродинамики электромагнитное излучение рассматривается как поток фотонов, в котором электромагнитное взаимодействие переносится частицами-переносчиками — фотонами — безмассовыми векторными бозонами, которые можно представить как элементарные квантовые возбуждения электромагнитного поля. Таким образом, фотон — это квант электромагнитного поля с точки зрения квантовой электродинамики.

Электромагнитное взаимодействие представляется сегодня одним из фундаментальных взаимодействий в физике, а электромагнитное поле — одно из фундаментальных физических полей наряду с гравитационным и фермионным.

Физические свойства электромагнитного поля

О наличии электрического, или магнитного, или и того и другого поля в пространстве можно судить по силовому действию со стороны электромагнитного поля на заряженную частицу или на ток.

Сила электромагнитного поля

Электрическое поле действует на электрические заряды, как на подвижные, так и на неподвижные, с определенной силой, зависящей от напряженности электрического поля в данной точке пространства в данный момент времени, и от величины пробного заряда q.

Зная силу (величину и направление), с которой электрическое поле действует на пробный заряд, и зная величину заряда, можно найти напряженность E электрического поля в данной точке пространства.

Электрическое поле

Электрическое поле создается электрическими зарядами, его силовые линии начинаются на положительных зарядах (условно проистекают от них), и заканчиваются на отрицательных зарядах (условно втекают в них). Таким образом, электрические заряды — это источники электрического поля. Еще одним источником электрического поля является изменяющееся магнитное поле, о чем математически свидетельствуют уравнения Максвелла .

Сила, действующая на электрический заряд со стороны электрического поля — это часть силы, действующей на данный заряд со стороны электромагнитного поля.

Магнитное поле

Магнитное поле создается движущимися электрическими зарядами (токами), либо изменяющимися во времени электрическими полями (об этом свидетельствуют уравнения Максвелла), и действует только на движущиеся электрические заряды.

Сила действия магнитного поля на движущийся заряд пропорциональна индукции магнитного поля, величине движущегося заряда, скорости его движения и синусу угла между вектором индукции магнитного поля B и направлением скорости движения заряда. Данная сила часто называется силой Лоренца , однако является лишь «магнитной» ее частью.

Сила Лоренца

На самом деле сила Лоренца включает в себя электрическую и магнитную составляющие. Магнитное поле создается движущимися электрическими зарядами (токами), его силовые линии всегда замкнуты и охватывают ток.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Читайте также: