Добавки пав для бетона

Обновлено: 15.05.2024

Toggle navigation

Ремонт в регионах

Как ранее было указано, пластифицирующие поверхностно-активные добавки для бетона повышают подвижность бетонной смеси и улучшают структуру затвердевшего бетона. В СССР применяли: сульфитно-спиртовую барду (ССБ), смолу нейтрализованную воздухововлекающую (СНВ), мылонафт применять в жирных бетонах с расходом цемента более 250 кг/м3, СНВ — в более тощих бетонах с малой подвижностью смеси.

Пластифицирующие добавки для бетона

Пластифицирующая добавка для бетона — ССБ изготовляется из отходов целлюлозно-бумажного и гидролизного производства.
В упаренном виде ССБ носит название концентратов барды: жидкого (КБЖ) с содержанием твердых веществ около 50% и твердого (КБТ) с содержанием твердых веществ около 80%.
Обычно барда разводится до 10—25% концентрации, при этом она становится жидко-текучей и легко дозируется в бетономешалку.

Образующиеся на поверхности цементных зерен при перемешивании бетонной смеси с добавкой ССБ адсорбционные пленки замедляют процессы гидролиза и гидратации цемента в начальной стадии схватывания и потери подвижности смеси, а также нарастание прочности в раннем возрасте, не препятствуя ее нормальному росту в дальнейшем.

Дозировка пластифицирующей добавки для бетона ССБ в расчете на сухое вещество может изменяться к весу цементов в пределах от 0,1 для бетонов на сульфостойких и малоалюминатных цементах до 0,2 и даже 0,3% для бетонов на высокоалюминатных цементах. В жаркое летнее время количество добавки может быть увеличено в 1,5—2 раза.

Пластификаторы - концентраты сульфитно-спиртовой барды (с.с.б.) в жидком (к.б.ж.), твердом (к.б.т.) и порошкообразном (к.б.п.) состоянии применяются для повышения пластичности и соответственно для экономии цемента в бетоне. Количество пластификатора, вводимого в бетонную смесь, устанавливается лабораторией. Примерно оно составляет 0,1—0,2% от веса цемента, считая на к.б.т.

Продукты омыленного древесного пека — пластификатор ЦНИПС-1— способствуют воздухововлечению в бетонную смесь. Его пластифицирующий эффект лучше проявляется в растворах, нежели в бетонах.

Воздухововлекающие добавки для бетона

Воздухововлекающие добавки, также улучшающие удобоукладываемость бетонной смеси, изготовляются на основе различных древесных смол, продуктов переработки нефти, растительных жиров и др. К гидрофобизирующим добавкам этого типа относятся различные мыла: канифолевые и абиетиновые, мылонафт, хлопковое, из древесного лека и др.

Добавка СНВ изготовляется в виде порошка из абиетиновой смолы и едкого натра. Порошок СНВ хорошо растворяется в воде и легко дозируется по весу. Гидрофобизирующие добавки, и СНВ в том числе, замедляют твердение бетона в начальные сроки, но к возрасту 28 дней прочность бетона с добавкой СНВ и без нее практически выравнивается.

Воздухововлечение улучшает структуру цементного теста и раствора, повышает прочность, водонепроницаемость, сульфатостойкость и морозостойкость бетона, снижает тепловыделение, усадку и набухание, повышает деформативную способность и стойкость к трещинообразованию.

Дозировка воздухововлекающей добавки СНВ в расчете на сухое вещество по отношению к весу цемента может применяться в пределах 0,01—0,03°%. Оптимальной добавкой следует считать 0,02%. На 1 м3 бетона требуется от 30 до 90 г порошка СНВ.
В некоторых случаях применяют совместно пластифицирующую ССБ и воздухововлекающую СНВ добавки во взаимнодополняющих оптимальных дозировках.

бетонные добавки

Газовыделяющие и воздухововлекающие кремнийорганические добавки для бетона

К этому виду добавок могут быть отнесены кремнийорганические соединения двух типов — полигидросилоксаны (ГКЖ-94, ГКЖ-94М, ГКЖ-13) и силикаты натрия (ГКЖ-10 и ГКЖ-11).

Полиэтилгидросилоксановая жидкость ГКЖ-94 и полиметилгидро-силоксановые жидкости ГКЖ-94М и ГКЖ-13 не агрессивны, не выделяют вредных паров или газов, легко растворяются в органических растворителях, с водой не смешиваются, но образуют эмульсии. Введение их в бетонную смесь производится в виде 50%-ной эмульсии, приготовляемой на техническом желатине с помощью специальных быстроходных мешалок.

В бетоне происходит химическое взаимодействие между кремний-органическими соединениями и гидратом окиси кальция, выделяющимся при гидратации цемента. В процессе взаимодействия образуются новые сложные полимерные соединения и выделяется водород. Эти новообразования, не растворимые в воде, откладываются в микропорах и капиллярах и гидрофобизируют их стенки, снижают адгезию льда к бетону при замерзании воды, затрудняют проникание в поры воды и агрессивных жидкостей.

Выделяющийся же водород создает мелкопористую структуру цементного камня с замкнутыми порами, что в целом способствует значительному повышению морозостойкости бетона. Количество добавки, вводимой в бетон, составляет 0,1—0,2% веса цемента в расчете на исходную жидкость или 0,2—0,4% в расчете на 50%-ную эмульсию.

Кремнийорганические жидкости ГКЖ-10 и ГКЖ-11 представляют собой водноспиртовые растворы соответственно этил- и метилсиликоната натрия. Эти жидкости смешиваются с водой.
Действие этих добавок примерно равноценно действию воздухо-вовлекающих добавок типа СHB.
Количество добавки, вводимой в бетон, составляет 0,1—0,2% веса цемента.

Плотность бетона можно повысить путем введения также специальных активных и уплотняющих добавок или пропиткой уже затвердевшего бетона. К числу активных минеральных добавок относятся природные и искусственные мелкоизмельченные материалы, породы осадочного происхождения, доменные гранулированные шлаки, топливные золы и шлаки, обожженные глины.

Эти добавки пуццоланизируют портландцемент, связывают выделяющийся при его гидратации гидрат окиси кальция, но, как уже отмечалось ранее, Повышают водопотребность вяжущего и снижают воздухо- и морозостойкость бетона на нем.

Для получения плотных бетонов, применяемых при сооружении маслонепроницаемых полов, используют уплотняющие добавки в виде жидкого калиевого или натриевого стекла, гидратов окислов железа — ГОЖ (1,5% в расчете на металлическое железо), натриевой бентонитовой глины (5%) и сульфитно-спиртовой барды (0,1—0,2%), хлорного железа (1,5%) и сульфитно-спиртовой барды (0,1—0,3%). Расчет количества добавки ведется к весу цемента.

Ускорители твердения

Ускорители твердения — хлористый кальций либо соляная кислота — вводятся в бетонные смеси вместе с водой затворения в количестве (соответственно) 2 и 1% от веса цемента (для хлористого кальция в расчете на безводную соль) при изготовлении армированных конструкций с арматурой диаметром не менее 4 мм.
При изготовлении неармированных конструкций ускорители вводятся в количестве до 3% и до 1,5% от веса цемента (соответственно).
Добавки названных ускорителей не допускаются в бетон конструкций, работающих в среде с повышенной влажностью (бани, прачечные, цехи с большим паровыделением и т. п.), конструкций, близ которых расположены источники тока высокого напряжения (электростанции, трансформаторные и т. п.), а также конструкций, на поверхности которых не допускаются высолы.

Уплотняющие минеральные добавки

Уплотняющие минеральные добавки: инертные — молотые каменные материалы, молотый песок и т. п., а также активные — трепел, трасс, пемза, доменный гранулированный шлак — добавляются в количестве до 15% от веса цемента (инертные добавки) и до 30% от веса цемента (активные) .
Дозирование материалов. При приготовлении бетона на приобъектных установках дозирование материалов производится:

  1. цемента и активных добавок в сухом виде — по весу, с точностью 2%;
  2. заполнителей по весу или по объему, с точностью 5%;
  3. воды и активных добавок в мокром виде, а также раствора хлористого кальция — по весу или по объему, с точностью 2%.

На централизованных бетонных заводах дозирование материалов при приготовлении бетонной смеси производится по весу, с точностью не менее: цемента, воды и добавок—1%; заполнителей — 3%.

Для дозирования по весу цемента, заполнителей и воды промышленность выпускает дозаторы. Количество бетона, получаемое с одного замеса, вычисляют путем умножения номинальной емкости бетономешалки Л на величину выхода бетона b, равную для подвижного бетона па щебне 0,65, а для бетона на гравии — 0,7; для жесткого бетона соответственно 0,6 и 0,65.

Поверхностно-активные вещества (ПАВ) значительно улучшают технологические свойства бетонной смеси и строительно-технические свойства бетонов. Эти добавки, вводимые в малых дозах (0,01—0,25% от массы цемента), оказываются мощными регуляторами ряда важных свойств бетонов и растворов.

Поверхностно-активные добавки подразделяются на следующие группы: пластифицирующие, пластифицирующе-воздухововлекающие, воздухововлекающие, микрогазообразующие.

Пластифицирующие добавки. Поверхностно-активные вещества, входящие в состав добавки, адсорбируясь на поверхности клинкерных зерен цемента, уменьшают трение между ними, благодаря чему смесь становится более пластичной (текучей). Пластифицирующий эффект добавки увеличивается с повышением тонкости помола цемента, его расхода в бетоне, исходной подвижности бетонной смеси.

При применении мелких песков, шлакопортландцементов или пуццолановых портландцементов пластифицирующие добавки способствуют вовлечению в бетонную смесь заметного количества воздуха (до 2%), что приводит к увеличению ее связности и улучшению удобоукладываемости.

Однако ПАВ замедляют гидратацию цемента, что приводит к замедлению темпа твердения бетона в раннем возрасте, а превышение оптимальной дозировки добавки может привести к значительному замедлению роста прочности и даже к "отравлению" бетона (при дозировках более 1%). Меньше всего это отрицательное действие пластификаторов сказывается при введении их в бетон на быстротвердеющих и высокоалюминатных портландцементах, подвергающихся тепловой обработке.

Пластифицирующие добавки не изменяют прочности сцепления бетона с арматурой и не вызывают коррозии последней, несколько повышают трещино- и морозостойкость бетона, особенно если в смесь вводится заметное количество воздуха.

Пластифицирующе-воздухововлекающие добавки способствуют повышению связности смеси и ее однородности.

Замедляющее действие добавки на скорость гидратации цемента, а также увеличенное содержание воздуха в смеси приводит к замедлению темпа твердения бетона, понижению его прочности. Однако при содержании вовлеченного воздуха не более 5% значительно улучшаются формовочные свойства бетонной смеси, что позволяет несколько уменьшить значение В/Ц и сократить расход цемента.

Пластифицирующе-воздухововлекающие добавки повышают морозостойкость бетона не менее чем в 1,5—2 раза благодаря вовлекаемому воздуху и гидрофобизации стенок пор капилляров. Они повышают прочность бетона при растяжении, его трещиностойкость, газо- и водонепроницаемость, солестойкость, не оказывают отрицательного влияния на сцепление бетона с арматурой.

Введение этих добавок уменьшает появление выцветов на поверхности затвердевшего бетона.

Воздухововлекающие добавки. ПАВ, входящие в состав этих добавок, как активные пенообразователи способствуют вовлечению бетонной смесью воздуха в виде пузырьков сферической формы диаметром 25—250 мк. Объем вовлекаемого бетоном воздуха определяется количеством добавки, зерновым составом и минералогической природой заполнителей, расходом цемента и его составом, способом и продолжительностью перемешивания. Практически воздух вовлекается растворной частью бетона и прежде всего зернами песка размером 0,3—1 мм. Увеличение в песке фракций менее 0,3 мм, равно как и увеличение расхода цемента, снижает объем вовлекаемого воздуха.

Увеличение содержания воздуха в бетоне приводит к уменьшению его прочности. Однако при содержании воздуха не более 5% пластифицирующее действие добавок позволяет уменьшить В/Ц и получать бетон требуемой прочности с сокращенным расходом цемента. Эффективность применения воздухововлекающих добавок повышается с увеличением В/Ц бетона, снижением расхода цемента и уменьшением содержания в нем трехкальциевого алюмината.

Воздухововлекающие добавки практически не замедляют гидратацию цемента и поэтому эффективнее пластифицирующих при коротких и умеренных режимах тепловой обработки бетона.

Воздухововлекающие добавки повышают морозостойкость бетона не менее чем в 2—3 раза, существенно не снижают сцепления бетона с арматурой, несколько увеличивают прочность бетона при растяжении, газо- и водонепроницаемость.

Микрогазообразующие добавки. При введении в состав бетонной смеси этих добавок в бетоне образуются равномерно распределенные замкнутые поры. Эффект газообразования зависит от количества введенной добавки, температуры твердения, содержания щелочи в цементе. Эти добавки должны обеспечивать дополнительное образование газа в количестве 1—2%.

Введение микрогазообразующей добавки практически не сказывается на формовочных свойствах смеси, но существенно замедляет твердение бетона на ранних стадиях, что вызывает необходимость удлинения предварительного выдерживания бетона перед тепловой обработкой.

Бетоны с этими добавками характеризуются повышенной прочностью при растяжении, повышенной солестойкостью в условиях капиллярного подсоса, попеременного увлажнения и высушивания. Кроме того, мелкопористая структура бетона и частичная гидрофобизация внутренней поверхности пор и капилляров обеспечивает высокую морозостойкость, газо- и водонепроницаемость и долговечность бетона.

Комплексные добавки. В бетонах успешно применяются сочетания добавок различного действия, так называемые комплексные добавки.

С точки зрения улучшения свойств бетонных смесей и затвердевших бетонов комплексные добавки предпочтительнее, чем каждая из добавок в отдельности.

Применяются комплексные добавки-ускорители твердения в сочетании с пластифицирующей, пластифицирующе-воздухововлекающей, воздухововлекающей или микрогазообразующей добавкой; пластифицирующие в сочетании с воздухововлекающей или с микрогазообразующей добавкой; а также ускорители твердения совместно с ингибиторами коррозии стали.

При применении ускорителей твердения совместно с пластифицирующей или воздухововлекающей добавкой ускоритель твердения частично или полностью нейтрализует отрицательное действие последних на схватывание и твердение бетона.

Комплексная добавка, как правило, позволяет в большей степени уменьшить расход цемента, чем одинарная, однако применение добавки, состоящей из двух составляющих, менее технологично и поэтому ее целесообразно применять лишь в тех случаях, когда одинарная добавка не обеспечивает требуемого эффекта.

Рассматривается технологияпроизводства ячеистого бетона с повышенной прочностью и трещиностойкостью.

Структура ячеистых или особолегкихбетонов характеризуется наличием в сплошной среде пор в виде распределенных повсему объему отдельных замкнутых (или условно замкнутых) ячеек. Мелкие исредние воздушные ячейки диаметром до 1–1,5 ммзанимают 85 % общего объема. Поэтому такие материалы мало проницаемы и болеепрочны.

Они могут быть автоклавного ибезавтоклавного твердения. Для автоклавных характерно химическое взаимодействиегидроксида кальция с кремнеземом заполнителя. И здесь желателен заполнительбогатый кварцем, особенно при получении бесцементного пено- или газосиликата.Используются в них мелкие природные или молотые пески, поскольку тяжелыекрупные зерна песка могут вызвать осадку пенобетонной массы и даже помешатьнормальному процессу ее вспучивания. Чем меньше заданная плотность ячеистогобетона, тем мельче должен быть заполнитель.

Однако в целом применение вопределенном количестве не слишком мелкого заполнителя улучшает структуруматериала между порами и уменьшает усадочные деформации в ячеистом бетоне.Поэтому в каждом случае требуется подбирать оптимальный зерновой состав песка.Природный песок, как правило, должен проходить полностью через сито сотверстиями 0,63 мм.

Объем производства ячеистогопенобетона в России уже не уступает газобетону и продолжает неуклонно расти. Становлениюпроизводства способствует относительная простота изготовления и наличие большогоколичества различных весьма эффективных пенообразователей. Благодаря последним производствопенобетона уже весьма популярно в странах общего рынка. А за счет исключения изтехнологии газообразователя — алюминиевой пудры — оно стало совершенно безопасным.

объемпроизводства ячеистого пенобетона в России уже не уступает газобетону ипродолжает неуклонно расти

Положительным качествомпенобетонной смеси является реологическая особенность, позволяющая осуществлятьтехнологию подачи или перекачивания по трубопроводам на довольно значительныерасстояния. При наличии мини-заводов строителями эффективно возводятся ограждающиемонолитные конструкции.

Однако, несмотря наположительные особенности, технология пенобетона по сравнению с газобетономимеет недостатки, которые следует учитывать при его изготовлении.

Так, из-за обязательногоиспользования значительного количества ПАВ пенобетону присущи: замедленный (на20–30 %) рост пластической прочности; невозможность эффективного ускоренногоподогрева сырца из-за разрушения пеномассы; просадка уровня (на 5–10 %)заливаемого при формовании изделия; образование на поверхности штучных илимассивных изделий легко отслаивающейся пленки, затрудняющей дальнейшую отделку.Кроме того, замедленное схватывания сырца приводит к послойному (по высотеизделия) разбросу плотности (от 100 до 200 кг/м3), что способствует развитиюдеструктивных процессов в массиве пенобетона.

Коалексценция пенообразователя, активнопроисходящая, как правило, при малой плотности пенобетона, образуетзначительное количество каверн. А разрушение пены в процессе технологическойпереработки (механическое или динамическое перемещение) пеномассы способствуетпреобразованию сферической формы ячеек в полиэдрическую (многогранную) споследующими после твердения локальными повышенными внутренними напряжениями.

К сожалению, эти явления редкопринимаются во внимание изготовителями, что приводит к выпуску некачественнойпродукции. Решить проблему можно исключительно повышением стойкости пен.

По существу, стабилизация пены,или усиление ее роли как «заполнителя» для бетона, является главнымтехнологическим требованием при оценке комплексного действия добавок напорообразующий аспект пенобетона, определяющий в целом его основные характеристики.

У зарубежных производителейвысокий показатель пеноустойчивости достигается созданием в оболочке пузырькапрочной минерализованной полимерной пленки.

Практика показывает, что, несмотряна простоту технологии, тщательность отбора твердых минеральных компонентов,качественное изготовление пенобетона возможны при выборе пенообразователей со свойствами,регламентированными ГОСТ 25485.

Например, применение ПАВжелательно сочетать с введением стабилизаторов, повышающих вязкостьпенорастворов и замедляющих тем самым удаление жидкости из пен. В некоторыхслучаях даже происходит физико-химическое связывание молекул стабилизатора ипенообразователя с получением весьма устойчивых соединений и пузырьков впенорастворе.

Вещественный состав самойдобавки (или «комплексность» набора компонентов в ней) следует соотносить стехнологией ее получения и видом или специальной классификацией по требованиям кней как к техническому продукту. Стабилизаторы делятся на органические и неорганические,растворимые и нерастворимые в воде.

По воздействию на механизмпенообразования стабилизаторы разделяют на классы:

— Вещества, направленноувеличивающие вязкость пенообразующего раствора или загустители, вводимые впенообразователи в значительных количествах (с расходом от 2 до 20 % от массы ПАВ),например, метилцеллюлоза, декстрин, этиленгликоль, казеин, глицерин и т. д.

— Соединения, вызывающие в пленкахпены образование коллоидов, резко уменьшающее обезвоживание пленок. Такиестабилизаторы более эффективны, но довольно дефицитны для использования в массовомпроизводстве. Это крахмал, костный или мездровый клей, желатин и др. Расход 0,1–0,3 % от массы ПАВ. Резко (в 150 и более раз) увеличиваютвязкость жидкости в пленках, что приводит к возрастанию устойчивости пены в 5–10раз.

— Вещества, обеспечивающие полимеризациюпеномассы и также резко увеличивающие вязкость пленок, переводя последние дажев твердое состояние. К ним относятся водорастворимые полимерные композиции —карбамидные, латексные и др.

— Эффективны как стабилизаторы,нерастворимые в воде, соли меди, бария, железа, алюминия, капсулирующие пленкипены и тем самым препятствующие их разрушению. К такому типу стабилизаторовследует отнести пену с тонкоизмельченными твердыми веществами (способминерализации), которые адгезионно прикрепляясь к пенным оболочкам и постепенносближаясь, создают комплекс пенно-воздушных минерализованных ячеек, образуяагрегатную пену. Такой способ стабилизации и позволил создать новый одностадийныйспособ получения пенобетона — сухой минерализацией пены [2, 5].

Другим способом улучшениясвойств пенобетона при раздельной технологии приготовления может бытьприменение комплексных добавок, вводимых с водой затворения, например,суперпластификатор С-3 + ТНФ, или другой щелочесодержащий компонент.

Комплексные синтетическиепенообразователи на основе отечественных ПАВ со стабилизаторами указанныхклассов позволяют получить качественный пенобетон, обладающий к тому же невысокойстоимостью [3].

Таким образом, пенобетоны —растворные смеси с большим расходом вяжущего, воды и с добавкой кремнеземистогокомпонента — могут быть получены и без применения традиционных пластификаторов,но только с оптимально подобранным стабилизированным комплексным пенообразователем.

Следует отметить, что минеральныйсостав компонентов должен соответствовать требованиям ГОСТ 25485, а технология изготовления— соответствующим нормативным документам, в частности, СН 277-80. Все это позволитсвести недостатки пенобетона, о которых говорилось выше, к минимуму.

Пенобетон, не уступающий покачеству газобетону, можно получать на любых типах вяжущего (шлакощелочный,щелочноалюмосиликатный, солещелочный, кремнезольный) с использованием природныхрастительных и белковых пенообразователей, имеющих коллоидную структуру, где вяжущаясистема и является необходимой основой, исключающей недостатки пенобетона [4].

Согласно современным данным [3],наиболее целесообразно использовать для пенобетонов широкого спектра примененияследующие виды пенообразователей и стабилизаторов: ТНФ (тринатрийфосфат; ГОСТ201), КМЦ, (МЦ) (карбоксиметилцеллюлоза; ТУ 6-01-1857), Сульфанол (ТУ 6-01-1001-77)(табл. 1).

Характеристики (внешний вид)

Расход сухих компонентов на 1 л воды, г

Пастообразный продукт, получаемый обработкой моно- и диалкилфенолов оксидом этилена

Мездровый или костный клей

Пастообразный продукт или жидкость, ?=1,01–1,1 кг/л

Жидкое стекло + ТНФ

СВМ «Астра» + ТНФ + КМЦ

Синтетическое моющее вещество. Белый или светло-желтый порошок, хорошо растворимый в воде

СВМ «Альфин» + КМЦ

СВМ «Прогресс» + ТНФ + КМЦ

Исходный продукт для получения порошка СВМ белого или желтого цвета, растворим в воде

Мездровый клей или КМЦ

Сульфанол + ТНФ + жидкое стекло

ТНФ + жидкое стекло

Сульфанол + ТНФ + КМЦ

Таблица 1. Комплексные добавки для пенобетона

Преимуществом указанных комплексныхдобавок является благоприятное воздействие на реологию пеномассы, доступность компонентов,низкая стоимость и простота применения независимо от технологии изготовлениябетонной смеси.

В связи с тем, что производителиглавным образом ориентированы на производство цементных ячеистых бетонов,следует иметь в виду, что цементный камень при твердении претерпевает объемныедеформации и его усадка достигает 2 мм/м.

Из-за неравномерности усадочныхдеформаций возникают внутренние напряжения и трещины. Мелкие трещины могут бытьнезаметны невооруженным глазом, но они резко снижают прочность и долговечностьцементного камня. Заполнитель создает в бетоне жесткий скелет, воспринимает усадочные напряжения иуменьшает усадку обычного бетона примерно в 10 раз по сравнению с усадкойцементного камня.

Для понижения трещинообразования,повышения прочности при изгибе и растяжении, увеличения морозостойкости ячеистогобетона предложена универсальная технология армирования его минеральнымиволокнами (стекловолокном). Технология армирования проста и может бытьиспользована на практике при изготовлении изделий и конструкций из ячеистогобетона.

для понижения трещинообразования, повышения прочности приизгибе и растяжении, увеличения морозостойкости ячеистого бетона предложенауниверсальная технология армирования его минеральными волокнами(стекловолокном)

Доля материальных затрат вваловой продукции строительного производства составляет около 50 %, и крайневажной задачей является их снижение за счет использования вторичных продуктовпромышленности при изготовлении неавтоклавных ячеистых бетонов. А поскольку втехнологии ячеистого бетона б?льшую часть сырьевой смеси, как правило, составляеткремнеземистый компонент, появляется необходимость использовать дисперсныекварцсодержащие вторичные промпродукты. Применение таких материалов позволяетрезко снизить энергозатраты на помол кремнеземистого компонента и исключить изпотребления специальные природные кремнеземистые компоненты. В частности,зольная часть сырьевой композиции представляет собой сухую золу-унос различныхмодификаций.

Для изготовления изделий избезавтоклавных ячеистых бетонов в настоящее время применяются золы и шлаки,использование которых предопределяет производство материалов с пониженными посравнению с автоклавными ячеистыми бетонами на аналогичной основе прочностнымипоказателями. Большое значение для повышения транспортабельности трещиностойкостиготовых изделий имеет прочность безавтоклавного ячеистого бетона на растяжение.

Увеличение ее длябезавтоклавного газошлакозолосиликата, наряду с другими методами, может бытьдостигнуто путем фиброармирования матрицы материала добавкой минеральной ваты,в частности, стекловаты. Как показывает зарубежный опыт коррозионное действиещелочной среды композиций с добавкой доменного шлака и зол, в которыхпреобладают соединения Al2O3 и SiO2, настекловолокно меньше, чем традиционных, в которых преобладают кальциевыесоединения.

При исследованиях применялисьразличные сочетания как кислых, так и основных зол шлаков, затворенныхщелочными компонентами первой группы по классификации В. Д. Глуховского. Дляснижения усадочных деформаций в сырьевую смесь вводили некоторое количествонегашеной извести и гипса в количестве до 5 % от массы сухих компонентов смеси.Испытания проводились на газобетоне с расчетной плотностью до 700 кг/м3.

Оптимальный состав по прочностина сжатие подбирали на смесях, состоящих из шлакощелочного вяжущего и золы.Отношение добавки извести к шлаку менялось в определенных параметрах — не менее10 % к массе сухих компонентов. При постоянном соотношении количества извести кшлаку в составы вводилось переменное количество золы-уноса и добавка гипса — 5 %от массы сухих компонентов сырьевой смеси.

Наибольшую прочность имелиобразцы, изготовленные на составах с соотношением шлакощелочного вяжущего кзоле 1:0,6. После изготовления изделия пропаривались при температуре 90–95 °Cпо режимам, рекомендованным нормативными документами дляконструктивно-теплоизоляционного ячеистого бетона.

Так как с увеличением содержанияизвести-кипелки и золы растут водопоглощение и усадка готового бетона, всепоследующие работы проводились на составе с 30%-ным содержанием золы припостоянном соотношении шлака к щелочно-щелочноземельным активизаторам.Дисперсность сырьевой смеси находилась в пределах 3000–4000см2/г.

С целью повышения прочности прирастяжении в состав сырьевой смеси вводилась стекловата. Введение осуществлялосьследующим образом. В работающий смеситель заливали воду, загружали стекловату иперемешивали смесь в течение определенного времени. Затем в смеситель загружалисухие компоненты и перемешивали еще не менее 1–2мин. После введения требуемого количества водно-алюминиевой суспензииперемешивание продолжалось до равномерного распределения газообразователя всырьевой массе.

Исследования влияния добавокстекловаты на прочностные характеристики газобетона проводили на оптимальном попрочностным показателям составе плотностью 700 кг/м3.

Увеличение массы добавкипрактически не влияло на прочностные характеристики ячеистого бетона.

Были проведены такжеисследования влияния длины волокон стекловаты на прочностные показателигазобетона оптимального состава. Установлено, что изменение длины волокон от 10до 40 ммпрактически не влияет на физико-механические характеристики бетона. Былаотмечена тенденция к повышению устойчивости газобетонной массы и улучшению еереологических характеристик. Поверхность волокн? видимо образовывала подложки,способствующие росту микрокристаллов, формированию коагуляционных, а затем икристаллизационных структур. В начальный период твердения, все это улучшалореологические свойства ячеистобетонной смеси, что подтверждалось при всех прочихравных условиях формовки контрольных образцов и снижением ее плотности присохранении прочностных показателей.

При введении в состав сырьевойсмеси добавки стекловолокн? оптимальной длины от 15 до 40 мм было отмечено улучшениеструктуры бетона. Применение волокон длиной более 40 мм не позволялокачественно перемешать смесь из-за образования несмешиваемых с остальной массойучастков, состоящих из спутанных волоконных прядей («ежей»), что не позволялополучать качественный газобетонный сырец и бетон на его основе.

Без добавки волокн? плотность у ячеистогобетона составляла 730 кг/м3 при прочности на сжатие 3,7 МПа и прочностина изгиб 1,1 МПа. Введение волокн? оптимальной длины в количестве 5% от массысырьевых компонентов при длине волокн? до 15 мм позволяло получать бетон плотностью 670кг/м3 при прочности на сжатие 4,1 МПа и прочности на изгиб 2,3 МПа. Придлине волокн? от 30 до 40 ммплотность составляла в среднем 625 кг/м3 при прочности 4,8 МПа и прочностина изгиб 3,1 МПа. Следует отметить четкую тенденцию к снижению плотности содновременным повышением прочностных показателей газобетона. Морозостойкостьмодифицированного газобетона достигала 150 циклов замораживания и оттаиваниябез видимых признаков разрушения и снижения прочности по сравнению с традиционным(Кмрз=75; Rсж=2,8МПа).

при введении в состав сырьевой смеси добавкистекловолокн? оптимальной длины от 15 до 40 мм было отмечено улучшение структуры бетона


Рис. 1. Увеличение ?150

Рис. 2. Увеличение ?600

Рис. 3. Увеличение ?1500

На рис. 1–3 представленымикрофотографии структуры дисперсноармированного газобетона. На рис. 1 четко видна армированнаянекоррозированными волокнами межпоровая перегородка, а также ячейки макропор.

При большем увеличении (рис. 2) в отмеченной точке видно, как вол?кна,замоноличенные в основной связующий материал, сшивают матрицу газобетона, подобноарматуре. При еще большем увеличении (рис.3) показано, что вол?кна уже склеены продуктами новообразований и не имеюткоррозионных повреждений. Исследования проведены на образцах (блоках) стеновойкладки, изготовленных из блоков в производственных условиях с дисперснымармированием стекловатой, после эксплуатации в течение 5 лет в суровых климатическихусловиях Урала.

Получение нового материала сувеличенной прочностью на растяжение позволяет повысить прочность итрещиностойкость ячеистого бетона на бесцементном вяжущем. При этом за счетисключения расхода клинкерных вяжущих и автоклавной обработки изделий, а также благодаряутилизации зол и шлаков значительно сокращается энергоемкость производства.

1. Багров Б. О. Производствотеплоизоляционного материала из отходов цветной металлургии. — М.: Металлургия,1985.

2. Горлов Ю. П., Меркин А. П.,Устенко А. А. Технология теплоизоляционных материалов. — М.: Стройиздат, 1980.

3. Касторных Л. И. Добавки вбетоны и строительные растворы. — Ростов-на-Дону: Феникс, 2005.

4. Скороходова Н. Ю. Рынок ячеистыхбетонов // Стройпрофиль. — 2006. — № 5.

5. Тихомиров В. К. Пены. Теория ипрактика их получения и разрушения. — М.: Химия, 1983.

ПАВ

Поверхностно-активные вещества(ПАВ) это вещества, которые широко применяют при приготовлении цементных бетонов и растворов в качестве пластифицирующих добавок, в целях экономии расхода цемента и для значительного улучшения их свойств в процессе приготовления и укладки.

Поверхностно-активные добавки собой представляют особую группу органических веществ которых вводят в бетонные или растворные смеси для существенного улучшения их удобоукладываемости. Также ПАВ позволяют существенно уменьшить водоцементное отношение и сократить соответственно расход цемента без снижения прочности бетонных материалов и изделий.

Использование ПАВ в малых дозах(0,05…0,2% от массы цемента) позволяет уменьшить удельный расход цемента примерно на 8…12% в бетонах и растворах. ПАВ также способны повышать водонепроницаемость, коррозиеустойчивость, морозостойкость и вообще долговечность бетонных изделий и конструкций. Действие ПАВ на цементные системы основано на следующих положениях физической химии.

ПАВ способны повышать поверхностное натяжение у поверхности раздела фаз, например на границах раздела фаз-твердое тело, вода-воздух. Мельчайшие частицы ПАВ адсорбируются , другими словами связываются прочно с внутренней поверхностью раздела тел, образуя на этих поверхностях молекулярные слои толщиной в одну молекулу.

Величина этого адсорбционного слоя относится к диаметру цементной частицы, так же как толщина спички к высоте 30-этажного дома. Применение однако в малых дозах добавок ПАВ к цементным системам существенно меняет их свойства. Используемые в бетонах, цементах и растворах поверхностно-активные добавки, по определяющему эффекту действия на цементные системы условно можно разделить на три группы:

Гидрофилизующие добавки способны при затворении водой вяжущего предотвращать слипание отдельных цементных частиц между собой на определенный срок. В таком случае несколько замедляется коагуляция новообразований, то есть высвобождается вместе с тем некоторое количество воды которое как бы застревает обычно в коагуляционных структурах. Требуемая удобоукладываемость смеси с добавкой по этой причине достигается при меньшем количестве воды затворения, чем у смеси без добавки.

Наибольшее распространение в практике приготовления цементных бетонов и растворов получили гидрофилирующие добавки на основе лигносульфатов-сульфитно-дрожжевой бражки (СДБ). Эта добавка способна несколько замедлить твердение бетона в раннем возрасте и поэтому на заводах ЖБИ применяют ее в сочетании с добавками ускорителями твердения бетонных смесей.

Суперпластификаторы — новые эффективные разжижители бетонной смеси — в большинстве случаев представляют синтетические полимеры — производные меламиновой смолы или нафталинсульфокислоты. Применяют суперпластификаторС-3(НИИЖБ) — на основе нафталинсульфокислоты, суперпластификатор 10-03 (ВНИИЖелезобетон) — продукт конденсации сульфированного меламина с формальдегидом и др. При введении в бетонную смесь суперпластификатора резко увеличивается ее подвижность и текучесть.

Воздействуя на бетонную смесь, как правило, в течение 2…3 ч с момента введения, суперпластификаторы под действием щелочной среды подвергаются частичной деструкции и переходят в другие вещества, безвредные для бетона и не тормозящие процесса твердения. Суперпластификаторы, вводимые в бетонную смесь в количестве 0,15…1,2% от массы цемента, разжижают бетонную смесь в большей мере, чем обычные пластификаторы. Пластифицирующий эффект сохраняется, как правило, 1…2 ч после введения добавки, а через 2…3 ч он уже невелик.

Суперпластификаторы используются в бетонах как единолично, так и в комплексе с другими добавками, например с сульфитно-дрожжевой бражкой (СДБ) и нитрит-нитрат-хлоридом кальция (ННХК). При использовании комплексной добавки содержание каждой добавки составляет:«10-03»— 0,3.- 1,2%; ННХК—1,5…2,5% и СДБ—0,1…1,15 % от массы цемента.

Суперпластификаторы позволяют существенно снизить В/Ц, повысить подвижность смеси, изготовить изделия высокой прочности, насыщенных арматурой из изопластичных смесей.

Гидрофобизующие добавки, как правило, существенно повышают нерасслаиваемость, связанность бетонной (растворной) смеси, находящейся в покое. При действии внешних механических факторов (при перемешивании, укладке и т. д.) бетонная или растворная смесь с добавкой отличается повышенной пластичностью. Такое свойство гидрофобизующих смесей объясняется специфическим смазочным действием тончайших слоев по-верхностно-активныхвеществ, распределяемых в смеси.

Кроме того, эти добавки предохраняют цементы от быстрой потери активности при перевозке или хранении. В качестве гидрофобизующих добавок раньше применялись в основном природные продукты — некоторые животные жиры, алеиновая и стеариновая кислоты. Развитие химической промышленности дало возможность широко использовать новые гидрофобизующие добавки— битумные дисперсии (эмульсии и эмульсосуспензии), нафтеновые кислоты и их соли, окисленные, синтетические жирные кислоты и их кубовые остатки, кремнийорганические полимеры и др.

Воздухововлекающие добавки

Воздухововлекающие добавки позволяют получать бетонные (растворные) смеси с некоторым дополнительным количеством воздуха. Чтобы повысить пластичность смеси, обычно увеличивают объем вяжущего теста. Вовлекая воздух, увеличивается объем вяжущего теста без введения лишнего цемента. Поэтому удобоукладываемость такой системы повышается.

К тому же воздухововлекающие добавки образуют и ориентированные слои, активные в смазочном отношении. Широко применяют воздухововлекающие добавки на основе смоляных кислот: смолу нейтрализованную воздухововлекающую (СНВ), омыленный древесный пек и др.

К ускорителям твердения цемента, увеличивающим нараста ние прочности бетона, особенно в ранние сроки, относятся хлорид кальция, сульфат натрия, нитрит-нитрат-хлоридкальция и др.

Влияние хлористого кальция на повышение прочности бетона объясняется его каталитическим воздействием на гидратацию C 3 S и C 2 S, а также реакцией с С 3 А и C 4 AF. Ускорители твердения не рекомендуется применять в железобетонных конструкциях и предварительно напряженных изделиях с диаметром арматуры менее 5 мм и для изделий автоклавного твердения, эксплуатирующихся в среде с влажностью более 60%. Сульфат натрия может вызвать появление высолов на изделиях.

В нитрит-нитрат-хлоридекальция ускоряющее действие хлорида сочетается с ингибирующим действием нитрата кальция. Противоморозные добавки — поташ, хлорид натрия, хлорид кальция и другие — понижают точку замерзания воды, чем способствуют твердению бетона при отрицательных температурах. Для замедления схватывания применяют сахарную патоку и добавки СДБ, ГКЖ-10иГКЖ-94.

Пено- и газообразователи применяют для изготовления ячеистых бетонов. К пенообразователям относятся клееканифольные, смолосапониновые, алюмосульфонафтеновые добавки, а также пенообразователь ГК. В качестве газообразователей применяют алюминиевую пудру ПАК-3 и ПАК-4.

Комбинированные добавки, например пластификатор СДБ, ускоритель твердения (хлористый кальций) с ингибитором (нитратом натрия), способствуют экономии цемента. При этом ускоритель твердения нейтрализует некоторое замедление твердения смеси в раннем возрасте.

Специальные добавки обеспечивают получение водонепроницаемых растворов или бетонов, регулируют сроки схватывания и др.

Во время приготовления бетонных смесей добавляют следующие виды химических добавок, которые способны улучшить характеристики бетонной смеси и уменьшить расход цемента:

1.Индивидуальные- ПАВ,электролиты,полимерные смолы и другие.

2. Комплексные -ПАВ ( СДБ+ГКЖ-94,СДБ+СНВ и другие),комплексные электролиты следующих соединений(ННК+ННХК).

3.Комплексные- ПАВ и электролиты(СДБ+Na2SO4; СДБ+ННХК, СДБ+Na2SO4; СДБ+NaNO3 и другие.

Пав используются также довольно широко и в виде пластифицирующих добавок, которые позволяют не только экономить цемент но и интенсифицировать процесс твердения .Также за счет использования пластифицирующих добавок,удается снизить энергозатраты при приготовлении бетонных смесей. Применении ПАВ в рациональных, и строго дозированных количествах, позволяет снизить энергозатраты во время приготовления бетонных смесей до 50 процентов.

Широко используются на ряду с другими видами добавок суперпластификаторы С-3,НИЛ-10 ,С-4,10-03,КМБ и другие.Использование таких пластификаторов позволяет увеличивать на много прочность бетона,уменьшить водопотребность бетонной массы не уменьшая подвижность и удобоукладываемость.использование суперпластификатора 10-03 показало что увеличение подвижности бетонной смеси происходит в 7 раз.

При уменьшении доли цемента и при использовании такого же пластификатора 10-03,водопотребность бетонной массы уменьшается в два раза.Прочность бетонной массы,при этом после суточного твердения возрастает примерно до 70 процентов,а при тепловой обработки до 20 процентов.

Суперпластификаторы готовятся на основе меламиноформальдегидных смол.Также на основе продуктов конденсации нафталинсульфокислоты,формальдегида,модифицированных лигносульфонатами.На ряду с этими суперпластификаторами на предприятиях по производству бетонов применяются активно и более дешевые пластификаторы.

В частности в роли ПАВ широко используют более дешевую добавку -хлорид кальция в качестве ускорителя твердения вяжущих веществ.Но такой пластификатор вызывает коррозию стальной арматуры и уменьшает стойкость бетона ( цементного камня) в сульфатной среде. Поэтому применение такой добавки в бетонах ограничено.

Сульфат натрия используют преимущественно при тепловлажностной обработке бетона.Использование сульфата натрия дает снижение расхода цемента до 10 процентов,а также сокращается время тепловлажной обработки бетона, цикл обработки может сократится от 20 до 30 процентов.

Нитрат натрия также применяется в основном при тепловлажной обработки бетонной смеси. Использование нитрат натрия совместно с пластификатором СДБ сокращает время пропаривания до 25%, а расход цемента уменьшается до 14%. Для увеличения водопроницаемости бетона в состав бетона вводят нитрат кальция.

Комплексные добавки

Комплексные добавки в основном влияют на такие важные характеристики бетона, как темп роста прочности бетона,подвижность,сроки схватывания, усадка, морозостойкость, коррозионная стойкость и другие.

Применение комплексных добавок в бетонной смеси главным образом вызвано необходимостью уменьшить коррозию стальной арматуры,усадку,а также возможность увеличения прочности. Введение комплекса таких солей как CaCl2+NaNO2, позволяет исключить практически полностью коррозию стальной арматуры. Коррозия арматуры в бетоне происходит за счет агрессивных ионов хлора, которые регулируется солями CaCl2+NaNO2. Для увеличения прочности в бетонную смесь вводят хлорид кальция.

Применение добавки Na2SO4 ( от 0,8 до 1.2 % ) совместно с СДБ (0,15…0,2%) при использовании кассетной технологии ,существенно снижается расход цемента -от 8 до 10 процентов.Экономить цемент и сокращать время затраченное на пропаривание бетонных изделий позволяет также добавка СДБ+NaOH. Влияние расхода цемента на прочность пропаренного бетона с добавками : KCl + (0,5 + 1,2)% Na2SO4 и Na2S2O3 + (0,7 + 1)% Na2SO4 и других показано в таблице-1.

Таблица-1. Влияние вида и количество комплексных добавок на расход цемента

Предложенные комплексные добавки позволяют снизить расход цемента с 350 до 298 кг/м³, то есть получить экономию до 15% вяжущего с сохранением отпускной и марочной прочности бетона. В связи с ограниченным обеспечением строительной индустрии электролитами большое значение имеет их применение в комплексе с ПАВ. При этом резко повышается эффективность химических добавок, сокращается в 3…6 раз потребное количество электролитов.

При добавке ННХК в количестве 2…3 % от массы цемента заданная подвижность бетонной смеси достигается при меньшем ( на 6,1…6,5 %) расходе цемента. При добавке 0,5 % ННХК пластифицирующее действие отсутствует. Применение комплексной добавки из СДБ и 0,5 % ННХК оказывает сильное пластифицирующее действие и позволяет не только снизить расход цемента на 10% но и уменьшить жесткость смеси с 19 до 10 с.

Введение комплексных добавок из ПАВ и ННХК улучшает технологические свойства бетона. При введении в бетон комплексных добавок ( при соответствующем сокращении расхода цемента на 9…12 %) получается бетон с F 500…F 1000,что увеличивает срок службы конструкций. Предельное количество пластифицирующих добавок в расчете на сухое вещество приведено в таблицу-2.

Таблица-2. Рекомендуемое количество пластифицирующих добавок а также пластифицирующе-воздухововлекающих добавок для тяжелого и легкого бетонов.

Рекомендуемое количество воздухововлекающих добавок для тяжелых и легких бетонов ,% по массе следующее:

Прочность бетона зависит не только от марки используемого цемента, но и от рецептуры смеси и качества укладки бетонного раствора, температуры и влажности окружающего воздуха и ухода за залитым бетоном.

Важно, чтобы смесь хорошо заполняла опалубку и не вовлекала лишний воздух; тогда готовая конструкция получится плотной, прочной и долговечной.

Зачем в бетон добавляют пластификаторы

Пластифицирующим воздействием на бетон обладает обычная вода. Чем ее больше, тем пластичнее цементный раствор. Он хорошо растекается и заполняет все пустоты. Но увеличение воды в бетонной смеси негативно влияет на характеристики готового бетона: снижается прочность, морозостойкость, водонепроницаемость и долговечность конструкции.

Увеличение воды в бетонной смеси негативно влияет на характеристики готового бетона: снижается прочность, морозостойкость, водонепроницаемость и долговечность конструкции

Важно!

Бетонные смеси замешиваются по ГОСТу. Пропорция воды к бетону (так называемое водоцементное соотношение) составляет от 0,3 до 0,55. Этого количества воды достаточно для гидратации компонентов цемента, но совершенно не достаточно для получения удобного в работе раствора.

Тяжелый, плотный раствор плохо укладывается в форму, в готовой конструкции могут остаться полости, которые снизят прочностные характеристики бетона

Тяжелый, плотный раствор плохо укладывается в форму, особенно если применяется арматура. Он требует больших затрат на обработку, и все равно в готовой конструкции могут остаться полости, которые снизят прочностные характеристики бетона.

Интересно!

Бетонные растворы классифицируются по подвижности на 5 классов: от П1 – малоподвижные до П5 – текучие.

Как же добиться того, чтобы, не изменяя водоцементное соотношение, изменить класс подвижности бетонной смеси?

Решение этой непростой задачи – применение пластификатора.

Бетонный раствор под микроскопом

Пластификаторы – это составы на основе определенных видов поверхностно-активных веществ.

Применение пластификатора позволяет сделать строительный или штукатурный раствор более подвижным, не добавляя в него лишнюю воду.

Пластификаторы делятся на группы по силе воздействия на бетон.

Пластификаторы делятся на группы по силе воздействия на бетон

Преимущества и недостатки добавки

Пластифицирующие добавки бывают сухие и жидкие. Преимущество жидких добавок – легкость дозирования и смешивания. Они легко растворяются в воде, которую используют при замесе бетона; можно добавлять их и непосредственно при замешивании.

Плюсы жидких пластификаторов:

  1. Повышают пластичность и текучесть смеси.
  2. Улучшают удобоукладываемость, снижают затраты на обработку бетона вибрацией.
  3. Смеси с пластификатором, благодаря подвижности, хорошо заполняют даже густоармированную опалубку, не образовывая пустот.
  4. Способствуют уплотнению бетонной смеси, и бетон получается плотным и прочным.
  5. Увеличивают водонепроницаемость и морозоустойчивость готовых конструкций.
  6. Снижают расход цемента и воды. Это означает, что с пластификатором можно получить класс бетона выше заявленного, поэтому можно использовать цемент более низкой марки или уменьшить его количество на 10-15% без потери прочности. (Например, при использовании добавки для теплых полов CEMMIX CemThermo, заявленная прочность бетона достигается уже в возрасте 10 суток).
  7. Улучшают сцепление с арматурой.
  8. Улучшают смешивание компонентов цементного раствора, препятствуют расслоению смеси и оседанию заполнителей.
  9. Увеличивают время работы с раствором. Бетонный раствор без добавок начинает схватываться уже через 3–4 часа, что неудобно, если его нужно транспортировать. Добавление пластификатора решает эту проблему.
  10. Специальные пластификаторы для теплых полов уплотняют стяжку и увеличивают теплоотдачу.
  1. Пластификаторы в виде порошка нужно заранее растворять в воде.
  2. Большое количество пластификаторов приводит к тому, что бетон слишком долго не схватывается.
  3. Пластификаторы нужно покупать. Но, затрачивая деньги на покупку этих добавок, одновременно экономим деньги на цементе, воде, электроэнергии, необходимой для обработки бетона.

Зависимость пластичности и прочности смеси от количества воды и добавления пластификатора

Альтернативы пластификатору

В качестве пластификаторов для бетона используют несколько видов добавок: клей ПВА-МБ или дисперсию ПВА, известь либо бытовые моющие средства.

Клей ПВА делает бетон более пластичным, прочным и увеличивает адгезию. Его недостаток – необходимость добавлять его в раствор в больших количествах (от 5 до 20% от массы сухого цемента). ПВА используют при замесе штукатурки под плитку.

В штукатурных растворах в качестве пластификатора используют известь.

Свойства жидкого мыла менее очевидны, поскольку точный состав этой добавки не известен.

Жидкое мыло или пластификатор? Почему вместо пластификатора используют жидкое мыло

Несмотря на то, что покупка пластификатора помогает экономить деньги на закупке расходных материалов, некоторые строители решают сэкономить еще больше и использовать в качестве добавки в бетонный раствор жидкое мыло или другие моющие средства:

  1. стиральный порошок;
  2. шампунь;
  3. моющее средство для посуды.

На первый взгляд логика понятна: многие пластификаторы изготовлены на основе поверхностно-активных веществ (ПАВ) так же, как и бытовые моющие средства. К тому же, стоят они дешевле пластификаторов и дозируются экономнее, поэтому кажется, что использовать жидкое мыло лучше.

Жидкое мыло и пластификатор: принципиальное отличие состава

Чем же отличается жидкое мыло от пластификатора? Может ли оно заменить пластификатор?

Пластификатор разработан в лаборатории в качестве добавки для бетона и, прежде чем поступить в продажу, испытан, поэтому есть точная, проверенная информация о том, как его дозировать, и какие свойства он придает бетону.

Бытовые моющие средства разрабатываются совсем с другими целями, соответственно, должны иметь определенные характеристики, отвечающие этим целям.

Существует огромное количество разновидностей поверхностно-активных веществ, которые изготавливаются из сырья минерального или растительного происхождения и подразделяются на четыре основные группы:

  1. анионные;
  2. катионные;
  3. амфотерные;
  4. неионогенные.

Как правило, в состав пластификаторов входят анионные ПАВ. В составе моющего средства анионные поверхностно-активные вещества комбинируются с амфотерными или неионогенными.

Концентрация ПАВ в моющих средствах указывается приблизительно, и мы никогда не сможем точно узнать, сколько какого ПАВ в жидком мыле или шампуне. Любые заявления опытных строителей, что средство Х нужно добавить, скажем, в количестве 50 г на мешок цемента, не распространяются на средство Y, поскольку составы моющих средств сильно отличаются друг от друга.

Моющие средства содержат большое количество вспомогательных компонентов; даже средства для мытья посуды сейчас содержат глицерин, эмоленты и другие, не нужные в бетоне ингредиенты. Как они повлияют на бетон – не известно, поскольку никто не проводил таких испытаний.

Но самая главная проблема жидкого мыла – хлористые соли в составе.

Хлорид натрия используется в моющих средствах как дешевый загуститель анионных ПАВ. Но для бетона он не полезен, поскольку способствует коррозии арматуры и появлению высолов на поверхности бетона.

Какие проблемы может спровоцировать применение жидкого мыла в качестве пластификатора

Моющие средства, действительно, делают бетонную смесь более пластичной и предотвращают ее расслоение и осаживание заполнителей (песка и щебня), но это происходит с вовлечением в раствор воздуха. В результате получается менее плотный бетон сниженной прочности, что наглядно демонстрирует проведенный в лаборатории эксперимент.

Прочность бетона на сжатие. Лабораторный эксперимент

Было изготовлено 4 образца с ожидаемым классом бетона В15, из них:

  1. раствор изготовлен по ГОСТ;
  2. добавлено на 25% больше воды, чем требует ГОСТ;
  3. добавлено на 50% больше воды, чем требует ГОСТ;
  4. вода добавлена по ГОСТ, в качестве пластификатора использовано жидкое мыло.

После изготовления образцы созревали в камере в течение 3 месяцев, затем их взвесили и провели испытания.

Оказалось, что образец с моющим средством является самым легким (при одинаковом объеме образцов), а значит, его плотность снижена. Кроме того, даже увеличение воды на 50% не дало такого критического снижения прочности.

Прочность бетона на сжатие. Лабораторный эксперимент

Важно!

Проблемы, спровоцированные применением жидкого мыла, выявятся не на этапе замеса и укладки бетона, а значительно позже. Мокнущий, крошащийся бетон и ржавая арматура обратят на себя внимание, когда уже нельзя будет что-то изменить. Стоит ли незначительная экономия таких проблем?

Дозирование пластификатора и жидкого мыла

Жидкие пластификаторы добавляются в бетонные смеси из расчета 0,25–1% от массы сухого цемента. Это значит, что при замесе раствора из стандартного мешка цемента, добавляется от 125 до 500 г пластификатора. Точные дозировки нужно обязательно смотреть на упаковке конкретного пластификатора.

Важно!

Добавляя бытовые моющие средства в бетонный раствор, вы используете в ответственном строительном материале жидкости неизвестного состава в неизвестной дозировке и получаете непредсказуемый результат. Жидкое мыло – пластификатор для тех, кто любит сюрпризы.

Пластификаторы CEMMIX

Советуем ознакомиться: пластификаторы CEMMIX CemPlast, Plastix, Cem Thermo

Пластификаторы промышленного производства разрабатываются с целью сделать бетонные смеси более подвижными и способствовать их уплотнению, хорошему сцеплению с арматурой, удобству укладки и повышению прочности готовых конструкций. Их составы и дозировки проверены сериями лабораторных испытаний и гарантируют заявленный результат. Мнимая экономия при использовании бытовых моющих средств в качестве пластификаторов может обернуться крупными финансовыми потерями из-за низкого качества возведенных конструкций. Мнимое удорожание смеси добавлением пластификаторов оборачивается существенной экономией цемента, воды, электроэнергии и трудозатрат.

Читайте также: