Для защиты опорной зоны стен от увлажнения следует выполнять гидроизоляцию по всей толщине стены

Обновлено: 28.04.2024

8.1 Защита от переувлажнения ограждающих конструкций должна обеспечиваться путем проектирования ограждающих конструкций с сопротивлением паропроницанию внутренних слоев не менее требуемого значения, определяемого расчетом одномерного влагопереноса (осуществляемому по механизму паропроницаемости).

Сопротивление паропроницанию , , ограждающей конструкции (в пределах от внутренней поверхности до плоскости максимального увлажнения, определяемой в соответствии с 8.5) должно быть не менее наибольшего из следующих требуемых сопротивлений паропроницанию:

а) требуемого сопротивления паропроницанию , (из условия недопустимости накопления влаги в ограждающей конструкции за годовой период эксплуатации), определяемого по формуле

б) требуемого сопротивления паропроницанию , (из условия ограничения влаги в ограждающей конструкции за период с отрицательными средними месячными температурами наружного воздуха), определяемого по формуле:

где - парциальное давление водяного пара внутреннего воздуха, Па, при расчетных температуре и относительной влажности воздуха в помещении, определяемое по формуле (8.3)

где - парциальное давление насыщенного водяного пара, Па, при температуре внутреннего воздуха помещения , определяемое в соответствии с 8.6;

- относительная влажность внутреннего воздуха, %, принимаемая для различных зданий в соответствии с 5.7;

- сопротивление паропроницанию, , части ограждающей конструкции, расположенной между наружной поверхностью ограждающей конструкции и плоскостью максимального увлажнения, определяемое по 8.7;

- среднее парциальное давление водяного пара наружного воздуха за годовой период, Па, определяемое по таблице 5а* СП 131.13330;

- продолжительность периода влагонакопления, сут., принимаемая равной периоду с отрицательными средними месячными температурами наружного воздуха по СП 131.13330;

- парциальное давление насыщенного водяного пара в плоскости максимального увлажнения, Па, определяемое при средней температуре наружного воздуха периода влагонакопления согласно 8.6 и 8.8;

- плотность материала увлажняемого слоя, ;

- толщина увлажняемого слоя ограждающей конструкции, м, принимаемая равной 2/3 толщины однородной (однослойной) стены или толщине слоя многослойной ограждающей конструкции, в котором располагается плоскость максимального увлажнения;

- предельно допустимое приращение влажности в материале увлажняемого слоя, % по массе, за период влагонакопления , принимаемое по таблице 10;

В случае, когда плоскость максимального увлажнения приходится на стык между двумя слоями, в формуле (8.2) принимается равной сумме , где и соответствуют половинам толщин стыкующихся слоев.

Таблица 10 - Значения предельно допустимого приращения влажности в материале

Материал ограждающей конструкции Предельно допустимое приращение влажности в материале* , % по массе
1 Кладка из глиняного кирпича и керамических блоков 1,5
2 Кладка из силикатного кирпича 2,0
3 Легкие бетоны на пористых заполнителях (керамзитобетон, шунгизитобетон, перлитобетон, шлакопемзобетон)
4 Ячеистые бетоны (газобетон, пенобетон, газосиликат и др.)
5 Пеногазостекло 1,5
6 Фибролит и арболит цементные 7,5
7 Минераловатные плиты и маты
8 Пенополистирол и пенополиуретан
9 Фенольно-резольный пенопласт
10 Теплоизоляционные засыпки из керамзита, шунгизита, шлака
11 Тяжелый бетон, цементно-песчаный раствор
* В случае, если значение сорбционной влажности материала при относительной влажности воздуха 97% меньше, чем значение влажности материала при условии эксплуатации Б, и разница между этими значениями составляет , % по массе, то значение предельно допустимого приращения влажности в материале увеличивается на величину . Сорбционную влажность материала определяют по ГОСТ 24816.

Е - парциальное давление насыщенного водяного пара в плоскости максимального увлажнения за годовой период эксплуатации, Па, определяемое по формуле

где , , - парциальные давления насыщенного водяного пара в плоскости максимального увлажнения, соответственно зимнего, весенне-осеннего и летнего периодов, Па, определяемые согласно 8.6, по температуре в плоскости максимального увлажнения (определяется согласно 8.8), при средней температуре наружного воздуха соответствующего периода;




, , - продолжительность зимнего, весенне-осеннего и летнего периодов года, мес., определяемая по СП 131.13330 с учетом следующих условий:

а) к зимнему периоду относятся месяцы со средними температурами наружного воздуха ниже минус 5°С;

б) к весенне-осеннему периоду относятся месяцы со средними температурами наружного воздуха от минус 5°С до 5°С;

в) к летнему периоду относятся месяцы со средними температурами воздуха выше плюс 5°С;

- коэффициент, определяемый по формуле

где - среднее парциальное давление водяного пара наружного воздуха периода месяцев с отрицательными среднемесячными температурами, Па, определяемое по СП 131.13330.

Примечание - При определении парциального давления для летнего периода температуру в плоскости максимального увлажнения во всех случаях следует принимать не ниже средней температуры наружного воздуха летнего периода, парциальное давление водяного пара внутреннего воздуха - не ниже среднего парциального давления водяного пара наружного воздуха за этот период.

8.2 Сопротивление паропроницанию , , чердачного перекрытия или части конструкции вентилируемого покрытия, расположенной между внутренней поверхностью покрытия и воздушной прослойкой, в зданиях со скатными кровлями должно быть не менее требуемого сопротивления паропроницанию , , определяемого по формуле

где , - то же, что и в формулах (8.1) и (8.5).

8.3 Для защиты от увлажнения теплоизоляционного слоя (утеплителя) в покрытиях зданий с влажным или мокрым режимом следует предусматривать пароизоляцию ниже теплоизоляционного слоя, которую следует учитывать при определении сопротивления паропроницанию покрытия в соответствии с 8.7.

8.4 Для защиты от переувлажнения навесных фасадных систем с вентилируемой воздушной прослойкой необходимо дополнительно выполнить проверку на "невыпадение конденсата" в вентилируемой воздушной прослойке в соответствии с расчетом, представленным в приложении Л.

8.5 Плоскость максимального увлажнения определяется для периода с отрицательными среднемесячными температурами следующим образом:

8.5.1 Для каждого слоя многослойной конструкции по формуле (8.7) вычисляется значение комплекса , характеризующего температуру в плоскости максимального увлажнения.

где - общее сопротивление паропроницанию ограждающей конструкции, , определяемое согласно 8.7;

- условное сопротивление теплопередаче однородной многослойной ограждающей конструкции, , определяемое по формулам (Е.6), (Е.7) приложения Е;

- средняя температура наружного воздуха для периода с отрицательными среднемесячными температурами, °С;

- то же, что и в формуле (8.1);

- то же, что и в формуле (8.5);

, - расчетные коэффициенты теплопроводности, , и паропроницаемости, , материала соответствующего слоя.

8.5.2 По полученным значениям комплекса по таблице 11 определяются значения температур в плоскости максимального увлажнения, , для каждого слоя многослойной конструкции.

8.5.3 Составляется таблица, содержащая: номер слоя, для этого слоя, температуры на границах слоя, полученные расчетом по 8.8 (при средней температуре наружного воздуха периода с отрицательными среднемесячными температурами).

8.5.4 Для определения слоя, в котором находится плоскость максимального увлажнения, производится сравнение полученных значений с температурами на границах слоев конструкции. Если температура в каком-то из слоев расположена в интервале температур на границах этого слоя, то делается вывод о наличии в данном слое плоскости максимального увлажнения и определяется координата плоскости - (в предположении линейного распределения температуры внутри слоя).

8.5.5 Если в каждом из двух соседних слоев конструкции отсутствует плоскость с температурой , при этом у более холодного слоя выше его температуры, а у более теплого слоя ниже его температуры, то плоскость максимального увлажнения находится на границе этих слоев.

Если внутри конструкции плоскость максимального увлажнения отсутствует, то она расположена на наружной поверхности конструкции.

Если при расчете обнаружилось две плоскости с в конструкции, то за плоскость максимального увлажнения принимается плоскость расположенная в слое утеплителя.

Таблица 11 - Зависимость комплекса от температуры в плоскости максимального увлажнения

, °C , , °C , , °C , , °C ,
-25 712,5 -14 312,3 -3 146,9 73,51
-24 658,9 -13 290,8 -2 137,6 69,22
-23 609,8 -12 270,9 -1 128,9 65,22
-22 564,7 -11 252,5 120,9 61,47
-21 523,2 -10 235,5 113,4 57,96
-20 485,2 -9 219,8 106,5 54,68
-19 450,1 -8 205,2 100,0 51,6
-18 417,9 -7 191,8 93,91 48,72
-17 388,2 -6 179,2 88,27 46,02
-16 360,8 -5 167,6 83,01 43,48
-15 335,6 -4 156,9 78,1 41,11

Для многослойных ограждающих конструкций с выраженным теплоизоляционным слоем (термическое сопротивление теплоизоляционного слоя больше 2/3 ) и наружным защитным слоем, коэффициент паропроницаемости материала которого меньше, чем у материала теплоизоляционного слоя, допускается принимать плоскость максимального увлажнения на наружной границе утеплителя при условии выполнения неравенства

где - расчетный коэффициент теплопроводности, , и паропроницаемости, , материала теплоизоляционного слоя.

8.6 Парциальное давление насыщенного водяного пара Е, Па, при температуре t, °С от минус 40°С до плюс 45°С, определяется по формуле:

8.7 Сопротивление паропроницанию , , однослойной или отдельного слоя многослойной ограждающей конструкции определяется по формуле:

где - толщина слоя ограждающей конструкции, м;

- расчетный коэффициент паропроницаемости материала слоя ограждающей конструкции, ;

Сопротивление паропроницанию , , многослойной ограждающей конструкции (или ее части) равно сумме сопротивлений паропроницанию составляющих ее слоев:

Сопротивление паропроницанию , , листовых материалов и тонких слоев пароизоляции следует принимать по приложению Н.

1 Сопротивление паропроницанию замкнутых воздушных прослоек в ограждающих конструкциях следует принимать равным нулю, независимо от расположения и толщины этих прослоек.

2 Для обеспечения требуемого сопротивления паропроницанию ограждающей конструкции следует определять сопротивление паропроницанию конструкции в пределах от внутренней поверхности до плоскости максимального увлажнения.

3 В помещениях с влажным или мокрым режимом следует предусматривать пароизоляцию теплоизолирующих уплотнителей сопряжений элементов ограждающих конструкций (мест примыкания заполнений проемов к стенам и т.п.) со стороны помещений; сопротивление паропроницанию в местах таких сопряжений проверяется из условия ограничения накопления влаги в сопряжениях за период с отрицательными среднемесячными температурами наружного воздуха на основании расчетов температурного и влажностного полей.

8.8 Температуру , °С, ограждающей конструкции в плоскости, отстоящей от внутренней поверхности на расстоянии х, м, следует определять по формуле

где и - температура внутреннего и наружного воздуха, соответственно, °С;

- сопротивление теплопередаче части многослойной ограждающей конструкции от внутренней поверхности до плоскости, отстоящей от внутренней поверхности на расстоянии х, , определяемое по формуле:

Омоноличивание сборных элементов при двухэтапной технологии может также производиться путем нагнетания тампонажного раствора в выработку через инъекторы, заложенные в стеновые панели или погруженные в выработку рядом с ними.

Омоноличивание сборных элементов при двухэтапной технологии может также производиться путем нагнетания тампонажного раствора в выработку через инъекторы, заложенные в стеновые панели или погруженные в выработку рядом с ними.

14.3.12 Основными компонентами глино-цементных тампонажных растворов являются цемент и глина. Для регулирования параметров в раствор должны вводить: замедлитель схватывания - сульфитно-спиртовая барда (ССБ) и суперпластификатор на основе нафталинформальдегидных сульфокислот (С-2) или иные, обеспечивающие требующие характеристики. Для сокращения расхода цемента в состав тампонажных растворов может вводиться зола-уноса (отход теплоэлектростанций, работающих на угле и сланце).

Подбор состава глино-цементных тампонажных растворов производят в лабораторных условиях и уточняют в производственных условиях в зависимости от принятой технологии и геологического сложения строительной площадки.

14.3.13 Приготовленный тампонажный раствор должен удовлетворять требованиям, изложенным в таблице 14.7.

14.3.14 Прочность затвердевшего тампонажного раствора на одноосное сжатие в возрасте 7 сут должна быть не менее 0,1 МПа (но не менее прочности окружающего грунта), водонепроницаемость, характеризуемая коэффициентом фильтрации, -10 -6 -10 8 см/с.

14.4 Устройство противофильтрационной завесы

14.4.1 Противофильтрационная завеса в зависимости от ее назначения и сроков службы устраивается путем заполнения грунтовой выработки, разрабатываемой под защитой глинистого раствора: глинистым грунтом; заглинизированным грунтом, получаемым при разработке траншеи фрезерными механизмами; глинистыми пастами, включающими цемент и глинистые материалы; бетонной смесью.

14.4.2 Наибольший эффект от противофильтрационной завесы достигается при ее заглублении в водоупорные слои грунта. Глубина врезки завесы в водоупор должна быть не менее 1 м. При глубоком заложении водоупорных слоев или их отсутствии работа противофильтрационной завесы в период эксплуатации должна совмещаться с открытым водоотливом или водопонижением.

14.4.3 При подборе материала заполнения грунтовой выработки для противофильтрационной завесы следует руководствоваться таблицей 14.8.

14.4.4 Заглинизированный грунт (смесь разрабатываемого грунта с глинистым раствором) рекомендуется укладывать в траншею экскаватором (грейфером) или способом обратного замыва. Обратный замыв применяют при разработке грунта в траншее фрезерными установками.

14.4.5 Комовая глина, укладываемая в выработку, должна быть плотной, медленно размокаемой в воде, иметь выраженную комовую структуру в насыпи. Основная масса комьев должна быть размером не менее 10 см, максимальный размер комьев не должен превышать 1/3 ширины траншеи; природная влажность должна быть близка к пределу раскатывания. Консистенция комьев - твердая, полутвердая или тугопластичная.

14.4.6 Для приготовления глиноцементного раствора применяют глины и суглинки с содержанием не менее 30% частиц размером менее 0,05 мм, цементы любой марки, химически стойкие к подземным водам, пески мелкие и средней крупности.

Плотность глиноцементного раствора должна быть выше плотности глинистой суспензии для обеспечения вытеснения последней из траншей. В зависимости от того, какими необходимыми свойствами должен обладать затвердевший раствор, плотность глиноцементного раствора подбирают в пределах 1,5-1,8 г/см3.

14.4.7 Глинопаста, приготовленная из местных комовых глин или суглинков, должна удовлетворять условиям ее удобной укладки в тело завесы и проектным требованиям к водопроницаемости завесы.

14.4.8 Бетонная смесь, используемая в качестве твердеющего заполнителя противофильтрационной завесы, должна отвечать всем требованиям, предъявляемым к бетону, применяемому для устройства монолитной "стены в грунте".

14.4.9 Рекомендуется укладку в грунтовую выработку материала заполнения производить не ранее 24 ч после ее разработки, необходимых для формирования на стенках траншеи глинистой корки и закольматированного слоя, обладающих высокими противофильтрационными свойствами. Оставлять траншею незаполненной на больший промежуток времени не следует, так как это может привести к вывалу грунта из стен траншеи.

14.4.10 Подачу в грунтовую выработку (траншею) противофильтрационного материала следует осуществлять способами, исключающими образование в траншее пустот и сводов из материала заполнителя.

14.4.11 Фильтрационные свойства материала заполнения противофильтрационной завесы (плотность, гранулометрический состав, коэффициент фильтрации) должны контролировать путем отбора образцов из тела завесы и их испытания в лабораторных условиях из расчета 30 проб на 1000 м3.

14.4.12 Контроль качества укладки материала заполнения в противофильтрационную завесу должны осуществлять путем определения его плотности и влажности через каждые 20-25 м их длины, например с использованием радиоизотопного метода.

15 Гидроизоляционные работы

15.1 Все гидроизоляционные работы должны выполнять строго в соответствии с РД и ППР, разработанных с учетом конструкции подземной части сооружения и местных инженерно-геологических условий строительной площадки.

15.2 До устройства фундаментной плиты любой тип гидроизоляции должен наноситься на бетонную или цементно-песчаную подготовку с выровненной поверхностью. Ровность поверхности определяют по СП 71.13330. После устройства гидроизоляции она должна быть защищена от механических повреждений цементно-песчаной стяжкой.

15.3 Гидроизоляционные работы должны производить в осушенном котловане на сухой поверхности. При отрицательных температурах на гидроизолируемой поверхности не должно быть снега и наледи. Допустимая влажность поверхности для различных видов гидроизоляционных материалов указана в СП 71.13330.

Допустимую температуру применения гидроизоляционных материалов должен предоставлять изготовитель данных материалов.

15.4 При наличии смотровых колодцев дренажных систем, пересекающих тело фундаментной плиты, мест сопряжений свай с фундаментной плитой, сквозных проходок горизонтальной гидроизоляции и в других местах пересечения конструктивных элементов с фундаментной плитой следует обратить особое внимание на качественное и надежное сопряжение горизонтальной гидроизоляции с указанными конструкциями. Места перехода вертикальной поверхности на горизонтальную поверхность (внешний угол) должны быть скруглены с радиусом не менее 50 мм.

15.5 В том случае, если подземная часть сооружения строится в открытом котловане или под защитой ограждения из труб-стоек с деревянной забиркой, гидроизоляционное покрытие должно быть выведено из-под подошвы фундаментной плиты на ее торцевую поверхность. Свободные участки полотнищ гидроизоляции должны быть выведены выше плиты и защищены от загрязнения и повреждений, а затем надежно сопряжены с вертикальной гидроизоляцией, наносимой на внешнюю поверхность стен. Нанесение гидроизоляции на фанерные щиты или деревянную опалубку не допускается.

15.6 В том случае, если подземная часть сооружения строится в котловане под защитой "стены в грунте" или ограждения из грунтоцементных свай, а несущий каркас сооружения может испытывать неравномерные осадки, гидроизоляционный ковер из- под подошвы фундаментной плиты должен переходить на выровненную внутреннюю поверхность ограждения несколько выше верха фундаментной плиты. Возможность удлинения гидроизоляционного материала при осадке сооружения как в строительный, так и в эксплуатационный периоды должна быть обеспечена специальным компенсатором, предусмотренным РД и размещаемым под фундаментной плитой в месте ее сопряжения с ограждением. Некачественное выполнение компенсатора приводит к разрыву гидроизоляционного материала.

15.7 При нанесении гидроизоляции на наружную поверхность сооружения она должна быть защищена от механических повреждений путем устройства защитной стенки (листы дренажного материала, синтетическое покрытие и т.п.). При обратной засыпке пазух котлована следует предусмотреть мероприятия, обеспечивающие сохранность гидроизоляции.

15.8 В том случае, если для защиты сооружения от подземных вод РД предусматривает применение бентонитовых матов, необходимо выполнить их пригрузку в сухом состоянии до возможного первоначального увлажнения, так как бентонит, высушенный в свободном состоянии после замачивания, теряет свои противофильтрационные свойства.

15.9 Особое внимание следует уделить качественному и надежному выполнению деформационных швов, особенно в том случае, если сопрягающиеся части фундаментной плиты имеют значительную разность осадок, которая должна компенсироваться конструкцией шва.

15.10 При применении металлоизоляции следует вести постоянный контроль за качеством и прочностью сварных швов. Необходимо исключить наличие пустот под металлом путем их заполнения цементным раствором. В связи с тем что в металлическом покрытии возникает электрохимическая коррозия под действием макрогальванической пары, следует после устройства покрытия предусмотреть постоянную анодную или катодную защиту.

15.11 При наличии в теле фундаментной плиты водосборных или лифтовых приямков трапецеидального сечения гидроизоляционный контур должен плавно обтекать эти углубления.

15.12 Применение дренажных покрытий допустимо только в том случае, если состав бетона сооружения не учитывает степень агрессивности подземных вод. Это же условие распространяется на применение в качестве защиты от подземных вод бетона повышенной водонепроницаемости. В противном случае следует применять пристенный дренаж.

15.13 В "холодных" швах фундаментной плиты, а также на участке ее сопряжения со "стеной в грунте" или наружной стеной сооружения необходимо устанавливать специальные гидрошпонки.

15.14 Сварку на строительной площадке полотнищ гидроизоляции рулонного типа можно осуществлять как ручными, так и автоматическими сварочными агрегатами (последнее предпочтительнее, так как обеспечивается более качественный шов).

15.15 Перед монтажом рулонной гидроизоляции из полимерных материалов на подготовленную бетонную поверхность укладывают разделительный слой геотекстиля плотностью не менее 500 г/м2.

15.16 Для проверки качества сварки полотнищ гидроизоляции из полимерных материалов следует отбирать образцы покрытия с различных участков сварных швов и проводить в процессе строительства систематические испытания прочности швов в сертифицированной лаборатории.

15.17 При применении рулонных полимерных покрытий, укомплектованных набором штуцеров и шлангов для нагнетания ремонтных растворов за прижимную стенку на дефектных участках секционированного покрытия, следует исключить загрязнение этих штуцеров и шлангов, а также их заполнение цементным раствором в процессе производства строительных работ.

15.18 На объектах 1-го уровня ответственности следует организовать научное сопровождение гидроизоляционных работ с привлечением сертифицированной организации.

15.19 В течение всего периода строительства на строительной площадке должен быть организован входной контроль за соответствием РД и качеству поступающих гидроизоляционных материалов, операционный контроль за соблюдением проектных решений, технологии устройства гидроизоляции, контроль качества при приемке выполненных работ.

15.20 В сейсмических районах гидроизоляцию вводов коммуникаций при проходе через ограждающие конструкции следует предусматривать из эластичных гидроизоляционных материалов, обеспечивающих взаимное перемещение без нарушения герметичности.

16 Закрепление грунтов

16.1 Общие положения

16.1.1 Правила настоящего раздела распространяются на производство и контроль работ по улучшению свойств грунтов закреплением химическими, цементными растворами, буросмесительным и термическим способами, по струйной технологии, а также в режиме гидроразрывов на вновь строящихся, реконструируемых, расширяемых и иных объектах, где требуется выполнение этого вида работ.

16.1.2 Способ и порядок производства работ по улучшению свойств грунтов назначаются РД и ППР в зависимости от конкретных грунтовых, гидрогеологических условий и особенностей возводимого или реконструируемого сооружения.

13.12 Для зданий высотой не более трех этажей и высотой наружных несущих стен не более 9 м допускается не выполнять горизонтальные деформационные швы в лицевом слое кладки.

В этом случае помимо проверки прочности связей на вырыв и растяжение необходимо выполнять проверку связей по прочности на сдвиг, срез и смятие материала с учетом величины относительных перемещений слоев, определяемой с учетом этапности и длительности возведения по приложению А.

13.13 При опирании на кладку перекрытий, балок, перемычек и т.п. следует выполнять проверку прочности горизонтального сечения на сжатие и смятие. При опирании на край простенка также следует выполнять проверку прочности на скалывание по наклонному сечению и срез по вертикальному сечению.

Во всех случаях следует выполнять конструктивные указания по устройству распределительных плит, горизонтальному армированию кладки и т.д. на участках приложения местной нагрузки в соответствии с СП 15.13330.

13.14 Плиты перекрытий и их консольные выступы должны рассчитываться на дополнительную краевую нагрузку от наружных навесных стен. При этом прогиб перекрытия на краевом участке должен быть не более 15 мм, исходя из допускаемого 50%-ного обжатия упругой прокладки.

13.15 В двухслойных стенах наружных стен зазор между слоями должен быть заполнен кладочным раствором.

13.16 Требования по пожарной безопасности, предъявляемые к наружным стенам с лицевым слоем из кирпичной кладки, должны соответствовать [1].

В целях снижения вероятности распространения огня по наружным стенам следует применять вертикальные и горизонтальные рассечки из негорючих материалов.

Рассечки следует располагать по периметру оконных и дверных проемов, в зоне вертикальных и горизонтальных деформационных швов, вокруг технологических отверстий, в зоне вентиляционных отверстий, имеющихся в лицевом слое кладки.

При наличии вентиляционных прослоек между утеплителем и кладкой рассечки следует устраивать на всю толщину полости между наружным и внутренним слоями кладки стены.

В зданиях и сооружениях степеней огнестойкости I-III, кроме малоэтажных (до трех этажей) жилых домов, не допускается выполнять отделку внешних поверхностей наружных стен из материалов групп горючести Г2–Г4 согласно требованиям СП 2.13130.2012 (пункт 5.2.3), а конструкция наружной стены не должна распространять горение.

13.17 Для удовлетворения требованиям влажностного режима конструкцию трехслойных стен со средним слоем из минераловатных плит следует проектировать преимущественно с воздушным вентилируемым зазором. Толщину вентилируемой прослойки и сечения отверстий в облицовочном слое следует определять расчетом в соответствии с СП 50.13330.

13.18 Для защиты опорной зоны стен от увлажнения следует выполнять гидроизоляцию по всей толщине стены.

13.19 Началу работ по возведению многослойных стен должны предшествовать операции по проверке вертикальности и соосности выступающих граней перекрытий, являющихся опорой для ненесущих наружных стен. Отклонение торцов перекрытий от вертикальной грани допускается не более 10 мм.

13.20 Установка плит утеплителя в трехслойных стенах предусматривает сначала их точечную приклейку к внутреннему слою, а затем крепление анкерами (8–10 шт. на 1 м 2 ). При устройстве утеплителя в два слоя необходимо обеспечить перевязку стыков.

14 Требования по армированию кладки лицевого слоя трехслойных и двухслойных стен с гибкими связями

14.1 Армирование кладки лицевого слоя с гибкими связями в трехслойных стенах и поэтажным опиранием на высоту 1 м от опоры выполняется сетками, располагаемыми с шагом по высоте не более 40 см. Для армирования следует использовать сварные сетки, изготавливаемые в соответствии с ГОСТ 23279, выполняемые из двух или более продольных стальных стержней диаметром от 3 до 5 мм с поперечной арматурой диаметром 3 мм, располагаемой с шагом не более 100 мм.

Требуемая суммарная площадь сечения продольной арматуры сеток, расположенных в нижней части стены высотой на 1 м, должна быть эквивалентна по прочности шести стержням диаметром 5 мм арматуры класса В500при расстоянии между вертикальными температурными швами, устанавливаемыми по таблице 20.1.

Выше 1 м от опоры армирование выполняют конструктивно сварными сетками с шагом по высоте не более 60 см, состоящими из двух продольных стержней диаметром 4 мм с поперечной арматурой диаметром 3 мм, располагаемой с шагом не более 100 мм. Кроме того, следует выполнять армирование горизонтальными сетками участков вблизи углов оконных проемов, в частности, под опорами перемычек.

Допускается армирование кладки сетками из композитных материалов, изготовленных по техническим условиям, утвержденным в соответствии с действующим законодательством и разработанным на основе экспериментальной проверки прочности и трещиностойкости армированной кладки.

14.2 На углах каждый из слоев кладки должен быть армирован Г-образными сварными стальными сетками на длину не менее 1 м от угла или до вертикального деформационного шва, если он расположен ближе, с шагом по высоте не более 60 см (рисунок 12.1).

На прямолинейных участках допускается укладывать сетки внахлест, длина перехлеста должна составлять не менее 40 см.

14.3 С целью снижения расхода арматуры или увеличения расстояний между вертикальными деформационными швами, устраиваемыми в лицевом слое, подбор арматуры до-пускается проводить по результатам расчетов кладки на растяжение от совместного действия температурно-влажностных деформаций, прогиба перекрытия и возможного пере-коса стены в соответствии разделами 10, 11 и приложения В.

14.4 Требования по армированию лицевого слоя кладки двухслойных стен с гибкими связями между слоями, являются аналогичными приведенным выше.

15 Требования по армированию кладки лицевого слоя стен с вертикальными диафрагмами

Армирование каждого из слоев стены, соединенных вертикальными кирпичными диафрагмами, осуществляется сетками, располагаемыми по высоте не реже, чем через 1 м. Диафрагмы армируют сетками из арматуры диаметром не менее 3 мм или Z-образными стержнями диаметром не менее 5 мм с шагом по высоте не более 60 см.

16 Требования по устройству гибких связей для крепления кладки лицевого слоя к внутреннему слою

Материалом связей могут служить стальная арматура, композитные материалы на основе углепластика, базальтового волокна, стеклопластика. Связи, выполненные из композитных материалов, должны выпускаться в соответствии с национальными стандартами, содержащими положения о возможности их применения в стенах с одним или более слоями из кирпичной или каменной кладки.

16.2 При проектировании стен независимо от вида материала и типа связи предъявляются следующие требования.

Одиночные связи, располагаемые в растворном шве, имеющие анкерное устройство в виде крюка, петли (рисунок 7.1а) или сварной сетки (рисунок 7.1б) следует устанавливать в шахматном порядке в количестве не менее 5 шт./м 2 . Одиночные связи с другими видами анкерных креплений, приведенными на рисунке 7.2, следует устанавливать в шахматном порядке в количестве не менее 8 шт./м 2 .

По периметру проемов, на углах здания и вблизи температурных вертикальных швов необходимо устанавливать дополнительные связи с шагом по вертикали и горизонтали не более 25 см.

Диаметр одиночных стальных связей, закрепленных в растворном шве с помощью загнутого конца (Z-, Г-, С-образные), должен быть не менее 5 мм. На концах такие связи должны иметь загибы в виде крюка диаметром 50 мм (рисунок 7.1а). Одиночные связи в виде сеток, а также связи, крепящиеся сваркой к расположенным в горизонтальных швах сеткам или стержням, допускается выполнять из стали диаметром 3 мм (рисунок 7.1б).

Применение в качестве гибких связей перфорированной ленты не допускается. Одиночные связи должны отстоять от вертикальных растворных швов не менее чем на 2 см.

Связевые сетки следует выполнять из стальной арматуры, имеющей диаметр 3–5 мм. Требования к изготовлению сеток приведены в ГОСТ 23279.

Прочность кладочного раствора должна соответствовать марке не ниже М75. Глубина заделки связей в горизонтальный растворный шов должна составлять не менее 80 мм.

Стальные связевые сетки, устанавливаемые в горизонтальный растворный шов кладки внутреннего слоя двухслойных стен, следует заводить на всю толщину стены с защитным слоем с каждой стороны по 15 мм. Сетки из композитных материалов заводят на всю толщину стены.

16.4 Прочность кладочного раствора при установке связей из композитных материалов должна соответствовать марке не ниже М100. Глубина заделки связей в горизонтальный растворный шов должна составлять не менее 100 мм.

Связевые сетки из композитных материалов устанавливают на всю толщину наружного и внутреннего слоев кладки.

16.5 При соблюдении требований настоящего раздела и разрезке лицевого слоя стены вертикальными деформационными швами на плоские фрагменты установка связей выполняется конструктивно в соответствии с приведенными выше положениями.

16.6 Конструкции связей из стали и композитных материалов, в том числе регулируемых по высоте, не приведенные в разделе 7, требуют экспериментальной проверки по прочности и жесткости по методике и с обработкой результатов, аналогичной приведенной в ГОСТ Р 54923.

16.7 Максимальное значение податливости связей всех типов не должно превышать 1 мм при действии расчетной нагрузки с учетом деформаций как самой связи, так и обоих анкерных узлов.

16.8 Требования по устойчивости связей к коррозии приведены в разделе 13 и ГОСТ Р 54923. Для фрагментов стен, у которых в лицевом слое на углах отсутствуют вертикальные деформационные швы, связи, расположенные на углах стен, подбирают по результатам расчетов связей и узлов их анкеровки на растяжение от суммарного действия температурно-влажностных деформаций и ветровой нагрузки в соответствии с разделом 12 при соблюдении приведенных выше конструктивных требований.

16.9 При использовании одиночных гибких связей и связевых сеток между лицевым и внутренним слоями стен, устанавливаемых в растворных швах кладки, высота ряда кладки облицовочного слоя должна быть кратной высоте ряда основного (внутреннего) слоя кладки. При несовпадении рядов внутреннего и наружного слоев кладки в уровне расположения связей более чем на 5 мм допускается использовать в кладке гибкие связи, монтируемые в толщу камней основного слоя кладки или регулируемые по высоте связи.

16.10 Непосредственно на объекте необходимо проводить испытания связей и анкеров на вырыв, а для стен без горизонтальных деформационных швов также на их срез и смятие кладки при сдвиге.

17 Вертикальные деформационные швы в зданиях с двухслойными несущими стенами

17.1 Вертикальные температурные швы в стенах каменных зданий следует устраивать в местах возможной концентрации температурных и усадочных деформаций, которые могут вызвать трещины (по концам протяженных армированных и стальных включений, а также в местах значительного ослабления стен отверстиями или проемами).

17.2 В двухслойных стенах с жесткими связями между слоями вертикальные температурно-усадочные швы устраивают по всей толщине стены также, как и в обычных стенах из однослойной кладки.

Повышенное влагосодержание характерно для многих конструкций, контактирующих с водой в процессе изготовления и эксплуатации, при этом различается пять видов увлажнения:

  • при изготовление конструкций (строительная влага);
  • атмосферными осадками;
  • утечками из водопроводно-канализационной сети;
  • конденсатом водяных паров воздуха;
  • капиллярным и электроосмотическим подсосом грунтовой воды.

Практика показывает, что повышенное влагосодержание отрицательно сказывается на эксплуатационных показателях несущих и ограждающих конструкций. С увеличением влажности возрастает коэффициент теплопроводности материала, ухудшаются его теплотехнические свойства. Кроме того, при изменении влажности изменяется объём материала, а при многократном увлажнении расшатывается его структура и снижается долговечность. Неблагоприятно сказывается переувлажнение и на состоянии воздушной среды помещений, ухудшая её с гигиенической точки зрения.

Содержание строительной влаги в конструкциях обусловлено спецификой их изготовления и в начальный период не превышает следующих величин: для бетонных и железобетонных конструкций - 6…9%, для каменных и армокаменных конструкций - 8…12%.
В дальнейшем при неблагоприятных условиях эксплуатации влажность материала конструкции может существенно увеличиваться.

Увлажнение атмосферными осадками происходит при повреждениях кровли, неудовлетворительном состоянии водоотводящего оборудования здания (водосточных труб, желобов, водосливов), коротких карнизах и носит преимущественно сезонный характер. Для защиты стен от увлажнения атмосферными осадками проводятся конструктивные мероприятия, направленные на удлинение коротких карнизов, ремонт и восстановление желобов, водосточных труб и водосливов. Кроме того, поверхность стен оштукатуривается или облицовывается водостойкими материалами. Применяется также покраска стен эмалевыми и лакокрасочными составами.

Увлажнение утечками из водопроводно-канализационной сети обычно встречаются в зданиях с изношенным санитарно-техническим оборудованием при нарушении сроков проведения планово-предупредительных ремонтов. Утечки приводят к переувлажнению и быстрому разрушению кладки стен, особенно из силикатного кирпича. Места увлажнения утечками легко обнаруживаются при обследовании стен по характерным пятнам. Увлажнение утечками устраняется путём ремонта санитарно-технического оборудования с последующим просушиванием конструкций тёплым воздухом.

Увлажнение ограждающих конструкций конденсатом водяных паров воздуха происходит при температуре точки росы, когда влажность воздуха у поверхности конструкции или в порах её материала оказывается выше максимальной упругости пара при данной температуре и избыток влаги переходит в жидкую фазу. Механизм образования конденсата внутри ограждающей конструкции достаточно сложен и зависит от многих параметров: разности парциального давления паров воздуха у противоположных поверхностей конструкций, относительной влажности и температуры воздуха внутри и снаружи помещения, а также плотности материала.
Существенная величина парциального давления позволяет воздушному потоку достаточно свободно проникать сквозь толщу наружной стены. Замечено, что чем ниже теплоизоляция наружной стены и больше относительная влажность воздуха в помещении за этой стеной, тем выше опасность ее переувлажнения водяными парами из помещения. Если же наружная поверхность стены покрыта плотным паронепроницаемым материалом, то проникающий через стену водяной пар имеет возможность конденсировать внутри стены, переувлажняя её и увеличивая теплопроводность.
Конденсационное увлажнение предотвращается путем рационального конструирования стен, основанного на выполнении требований норм и расчёте температурно-влажностного режима. Так, например, в зданиях, эксплуатируемых в условиях умеренно-влажностного и сухого климата, сопротивление наружных стен уменьшается от внутренней поверхности к наружной, при этом пароизоляция располагается на внутренней поверхности стены. Особенно это важно при защите от переувлажнения наружных стен влажных и мокрых помещений (бань, саун, прачечных и др.). При выборе наружной отделки стен следует помнить, что опасны как ее паронепроницаемость, так и чрезмерная пористость. Если в первом случае возможно переувлажнение стены конденсатом, то во втором – атмосферной влагой.

Увлажнение капиллярным и электроосмотическим подсосом грунтовой влаги характерно для стен, у которых отсутствует горизонтальная гидроизоляция или когда гидроизоляция расположена ниже отмостки. Механизм капиллярного увлажнения основан на действии сил притяжения между молекулами твердого тела и жидкости (явление смачивания). При отсутствии в материале стены гидрофобных (водоотталкивающих) веществ вода смачивает стенки капилляров и поднимается по ним.
При обследовании зданий подъём грунтовой влаги в стенах наблюдался на высоту до 5м, что существенно превышает высоту капиллярного подсоса. По-видимому, решающую роль в этом играет действие электроосмотических сил.
Под электроосмосом понимается направленное движение жидкости, от анода к катоду, через капилляры или пористые диафрагмы при наложении электрического поля.
Следует отметить, что слабые электрические поля всегда присутствуют в стенах, испытывающих перепады температуры по длине или на противоположных поверхностях (термоэлектрический эффект Зеебека). При этом положительные заряды (аноды) группируются главным образом у основания стены в зоне контакта с грунтом, а отрицательные (катоды) – вверху.
Рассматривая стены из капиллярно-пористого материала как своеобразную диафрагму, следует полагать, что грунтовая вода за счёт электроосмотических сил поднимается вверх по стене в сторону катода. Так как потенциал электрического поля стены изменяется под воздействием внешних факторов (перепада температуры, интенсивной солнечной инсоляции, влажности воздуха), то и величина электроосмотического увлажнения – переменная.
Изложенные теоретические предпосылки дают основание к применению электроосмоса для регулирования влажности и осушения стен.
Электроосмотическое осушение стен производится тремя способами:

  • коротким (посредством стальных полос) замыканием противоположных полюсов электрического поля стены, включая фундамент (пассивное осушение). Для этого стальные полосы на наружной поверхности стены располагаются с шагом 0,3-0,5м. Длина полос принимается не менее высоты увлажнения стены;
  • наложенным током с напряжением 40-60В и силой тока 3-5А. При этом электрический ток подаётся от генератора постоянного тока. Положительный полюс генератора подключается к стальной полосе, расположенной в верхней части стены, а отрицательный – к полосе, закреплённой на фундаменте. Продолжительность сушки наложенным током обычно не превышает двух-трёх недель.
  • гальваническими элементами (медно-цинковыми, угольно-цинковыми и пр.). Активный элемент (протектор) устанавливается в грунте на уровне подошвы фундамента, а пассивный – на внутренней поверхности осушаемой стены. Расстояние между электродами гальванических пар определяется расчётным путём на основании данных о гальванической активности элементов, пористости стены, радиусе капилляров, коэффициенте электроосмоса и удельной электропроводности воды. Электроосмотическое осушение стен гальваническими элементами пока не нашло широкого применения и находится в стадии дальнейшей разработки и совершенствования.

При реконструкции зданий, рассчитанных на длительную эксплуатацию (50 и более лет), радикальными методами защиты стен от увлажнения грунтовыми водами считаются водоотведения, а также восстановление или устройство новой гидроизоляции стен.
Одним из эффективных способов отведения грунтовых вод от стен подвальных помещений и заглублённых сооружений является дренаж.
При проектировании дренажа необходимо учитывать, что водопонижение, особенно в глинистых и пылеватых песчаных грунтах, влечёт за собой уплотнение и осадку осушаемой толщи грунта, что может привести к значительным деформациям фундаментов. Дополнительная осадка зданий на осушаемой территории определяется из расчёта, что каждый метр понижения уровня подземных вод соответствует увеличению нагрузки на грунт 9,8 кН/м. Для защиты подземных сооружений от грунтовых вод в комбинации с дренажом эффективно устройство противофильтрационных завес, выполняемых набивкой глины или нагнетанием битума.
К наиболее сложным и трудоёмким процессам или в ремонтных работах относятся восстановление или устройство новой гидроизоляции стен здания. Значения гидроизоляции трудно переоценить, поскольку она является единственным надёжным способом защиты стен от воздействия и проникновения капиллярной грунтовой влаги, безнапорных и напорных грунтовых вод. При этом горизонтальная гидроизоляция препятствует капиллярному и электроосмотическому подсосу влаги вверх по стене, а вертикальная – поверхностному увлажнению и проникновению влаги в подвальные помещения.
Проведению ремонтно-восстановительных работ по гидроизоляции здания предшествует тщательное обследование его подземной части, особенно стен подвальных помещений, выполненных из бетонных блоков, бутовой или кирпичной кладки и имеющих большое количество швов. Обследование проводится при временном понижении уровня грунтовых вод путём их откачивания из шурфов или иглофильтрами. Для предотвращения вымывания грунта из подошвы фундаментов шурфы и иглофильтры размещаются вне подвальных помещений.
Выявленные участки повреждений гидроизоляции удаляются вручную с помощью металлических щёток и скребков или с использованием механических способов. При незначительных повреждениях гидроизоляция ремонтируется с применением, по возможности, тех же гидроизоляционных материалов. Если повреждения превышают 40%, то целесообразна замена гидроизоляции на более эффективную. При выборе типа гидроизоляции учитываются гидрогеологические условия эксплуатации здания, категория сухости помещений и трещиностойкость ограждающей конструкции.
Ремонт и восстановление горизонтальной гидроизоляции стен может производиться двумя методами:

  • инъецированием в кладку стен гидрофобных веществ, препятствующих капиллярному подсосу влаги$
  • закладкой нового гидроизоляционного слоя из рулонных материалов.

Инъецирование производится растворами кремнийорганических соединений ГКЖ-10 и ГКЖ-11 через отверстия в стенах, располагаемые в один или два ряда. Расстояние между рядами принимается 25см, а между отверстиями в ряду - 35…40см. Отверстия диаметром 30…40мм сверлятся на глубину, примерно равную 0,9 толщины стены. Подача раствора производится одновременно через 10-12 инъекторов (стальные трубки диаметром 25мм), вставленных в отверстия в стене, и зачеканенных паклей.
Гидроизоляцию нежилых помещений можно производить с помощью электросиликатизации по методу проф. Л.А. Цебертовича. В этом случае через инъекторы подаются последовательно растворы жидкого стекла и хлористого кальция. В результате химического взаимодействия образуется гель кремниевой кислоты, заполняемый поры в материале кладки и препятствующий капиллярному подсосу влаги. Обработка кирпичной кладки стен производится в поле постоянного тока с градиентом потенциала 0,7-1 В/см.

Восстановление горизонтальной гидроизоляции стен рулонными материалами (рубероидом, гидроизол-пергамином и пр.) производится участками длиной 1-1,5м. Для этого с помощью отбойного молотка или других механизмов пробиваются сквозные отверстия в стене на высоту двух рядов кладки, в которые укладываются два слоя рулонного материала на битумной мастике. Затем отверстия заделываются кирпичом на обычном цементно-песчаном растворе М75-100. Для включения в работу восстановленного участка стены зазор между новой и старой кладкой тщательно зачеканивается раствором, приготовленном на расширяющемся цементе.
Горизонтальная гидроизоляция рулонными материалами устраивается примерно на 30 см выше планировочной отметки (отмостки здания) и на расстоянии не менее 5 см от нижней плоскости перекрытия подполья. В зданиях с полами по грунту, расположенными в уровне отмостки, горизонтальную гидроизоляцию стен целесообразно восстанавливать методом инъецирования гидрофобных составов, размещая инъекторы на 5 см выше уровня отмостки.

Обследование строительных конструкций на сегодняшний день представляет собой комплекс мероприятий и исследований, необходимых для определения текущего состояния различных частей и конструкций здания.

Допускается армирование кладки сетками и отдельными стержнями из композитных материалов в соответствии с разделом 14.

Устойчивость к коррозии изделий из композитных материалов, находящихся в растворных швах с щелочной средой, следует определять в соответствии с ГОСТ Р 54923.

Материалы, применяемые для изготовления гибких связей и арматуры из стали, композитных материалов и др., должны соответствовать требованиям действующих нормативных документов, иметь сопроводительную документацию, подтверждающую их соответствие нормативным требованиям, включая паспорта качества и/или протоколы испытаний, и должны подвергаться входному контролю.

В соответствии с ГОСТ Р 54923 при эксплуатации в условиях холодного климата с температурой наиболее холодной пятидневки от минус 60 °С до минус 40 °С в расчет прочностных характеристик следует вводить понижающий коэффициент условий работы (хруп-кости), равный 0,7.

13.7 Горизонтальный деформационный шов должен быть защищен сверху выступающим из плоскости стены не менее чем на 50 мм козырьком из стойкого к атмосферным воздействиям материала либо выступающей над верхним рядом кирпичной кладки на 50 – 80 мм плитой перекрытия со скошенным под углом 15°–30°торцом (рисунки 8.5, 8.7, 8.8), имеющими капельники.

13.8 Проектирование трехслойных стен с гибкими связями следует выполнять с учетом следующих требований.

Для лицевого слоя толщиной до 120 мм включительно следует преимущественно применять клинкерный или полнотелый кирпич (в том числе пустотностью до 13%), а также пустотелый кирпич с несквозными пустотами.

Допускается расшивка швов с заглублением до 1 см при применении в лицевом слое клинкерного или полнотелого кирпича (в том числе пустотностью до 13%), а также пустотелого кирпича с несквозными пустотами и пустотелого с вертикальными пустотами с толщиной наружной стенки не менее 20 мм. В остальных случаях швы выполняют заподлицо или с расшивкой внешним валиком.

Опирание лицевого слоя кладки на междуэтажные железобетонные перекрытия, консольные балки выполняют заподлицо с их торцом.

13.9 При проектировании трехслойных стен с гибкими связями следует учитывать совместную работу слоев на восприятие ветровых нагрузок.

13.10 Не допускается в построечных условиях наносить на наружный торец плиты перекрытия декоративные элементы, проводить выравнивание торца штукатуркой. Устройство декоративной отделки, например из керамической плитки, следует выполнять до заливки плиты бетоном с заводкой в плиту анкеров либо закладки в плиту до ее заливки бетоном железобетонных балок заводского изготовления, являющихся одновременно несъемной опалубкой (рисунок 8.8).

Крепление к лицевому слою стен с гибкими связями растяжек, вентиляционного и другого оборудования не допускается.

13.11 Требования к конструкции лицевого слоя в двухслойных стенах с горизонтальными деформационными швами аналогичны приведенным для трехслойных стен.

13.12 Для зданий высотой не более трех этажей и высотой наружных несущих стен не более 9 м допускается не выполнять горизонтальные деформационные швы в лицевом слое кладки.

В этом случае помимо проверки прочности связей на вырыв и растяжение необходимо выполнять проверку связей по прочности на сдвиг, срез и смятие материала с учетом величины относительных перемещений слоев, определяемой с учетом этапности и длительности возведения по приложению А.

13.13 При опирании на кладку перекрытий, балок, перемычек и т.п. следует выполнять проверку прочности горизонтального сечения на сжатие и смятие. При опирании на край простенка также следует выполнять проверку прочности на скалывание по наклонному сечению и срез по вертикальному сечению.

Во всех случаях следует выполнять конструктивные указания по устройству распределительных плит, горизонтальному армированию кладки и т.д. на участках приложения местной нагрузки в соответствии с СП 15.13330.

13.14 Плиты перекрытий и их консольные выступы должны рассчитываться на дополнительную краевую нагрузку от наружных навесных стен. При этом прогиб перекрытия на краевом участке должен быть не более 15 мм, исходя из допускаемого 50%-ного обжатия упругой прокладки.

13.15 В двухслойных стенах наружных стен зазор между слоями должен быть заполнен кладочным раствором.

13.16 Требования по пожарной безопасности, предъявляемые к наружным стенам с лицевым слоем из кирпичной кладки, должны соответствовать [1].

В целях снижения вероятности распространения огня по наружным стенам следует применять вертикальные и горизонтальные рассечки из негорючих материалов.

Рассечки следует располагать по периметру оконных и дверных проемов, в зоне вертикальных и горизонтальных деформационных швов, вокруг технологических отверстий, в зоне вентиляционных отверстий, имеющихся в лицевом слое кладки.

При наличии вентиляционных прослоек между утеплителем и кладкой рассечки следует устраивать на всю толщину полости между наружным и внутренним слоями кладки стены.

В зданиях и сооружениях степеней огнестойкости I-III, кроме малоэтажных (до трех этажей) жилых домов, не допускается выполнять отделку внешних поверхностей наружных стен из материалов групп горючести Г2–Г4 согласно требованиям СП 2.13130.2012 (пункт 5.2.3), а конструкция наружной стены не должна распространять горение.

13.17 Для удовлетворения требованиям влажностного режима конструкцию трехслойных стен со средним слоем из минераловатных плит следует проектировать преимущественно с воздушным вентилируемым зазором. Толщину вентилируемой прослойки и сечения отверстий в облицовочном слое следует определять расчетом в соответствии с СП 50.13330.

13.18 Для защиты опорной зоны стен от увлажнения следует выполнять гидроизоляцию по всей толщине стены.

13.19 Началу работ по возведению многослойных стен должны предшествовать операции по проверке вертикальности и соосности выступающих граней перекрытий, являющихся опорой для ненесущих наружных стен. Отклонение торцов перекрытий от вертикальной грани допускается не более 10 мм.

13.20 Установка плит утеплителя в трехслойных стенах предусматривает сначала их точечную приклейку к внутреннему слою, а затем крепление анкерами (8–10 шт. на 1 м 2 ). При устройстве утеплителя в два слоя необходимо обеспечить перевязку стыков.

14 Требования по армированию кладки лицевого слоя трехслойных и двухслойных стен с гибкими связями

14.1 Армирование кладки лицевого слоя с гибкими связями в трехслойных стенах и поэтажным опиранием на высоту 1 м от опоры выполняется сетками, располагаемыми с шагом по высоте не более 40 см. Для армирования следует использовать сварные сетки, изготавливаемые в соответствии с ГОСТ 23279, выполняемые из двух или более продольных стальных стержней диаметром от 3 до 5 мм с поперечной арматурой диаметром 3 мм, располагаемой с шагом не более 100 мм.

Требуемая суммарная площадь сечения продольной арматуры сеток, расположенных в нижней части стены высотой на 1 м, должна быть эквивалентна по прочности шести стержням диаметром 5 мм арматуры класса В500при расстоянии между вертикальными температурными швами, устанавливаемыми по таблице 20.1.

Выше 1 м от опоры армирование выполняют конструктивно сварными сетками с шагом по высоте не более 60 см, состоящими из двух продольных стержней диаметром 4 мм с поперечной арматурой диаметром 3 мм, располагаемой с шагом не более 100 мм. Кроме того, следует выполнять армирование горизонтальными сетками участков вблизи углов оконных проемов, в частности, под опорами перемычек.

Допускается армирование кладки сетками из композитных материалов, изготовленных по техническим условиям, утвержденным в соответствии с действующим законодательством и разработанным на основе экспериментальной проверки прочности и трещиностойкости армированной кладки.

14.2 На углах каждый из слоев кладки должен быть армирован Г-образными сварными стальными сетками на длину не менее 1 м от угла или до вертикального деформационного шва, если он расположен ближе, с шагом по высоте не более 60 см (рисунок 12.1).

На прямолинейных участках допускается укладывать сетки внахлест, длина перехлеста должна составлять не менее 40 см.

14.3 С целью снижения расхода арматуры или увеличения расстояний между вертикальными деформационными швами, устраиваемыми в лицевом слое, подбор арматуры до-пускается проводить по результатам расчетов кладки на растяжение от совместного действия температурно-влажностных деформаций, прогиба перекрытия и возможного пере-коса стены в соответствии разделами 10, 11 и приложения В.

14.4 Требования по армированию лицевого слоя кладки двухслойных стен с гибкими связями между слоями, являются аналогичными приведенным выше.

15 Требования по армированию кладки лицевого слоя стен с вертикальными диафрагмами

Армирование каждого из слоев стены, соединенных вертикальными кирпичными диафрагмами, осуществляется сетками, располагаемыми по высоте не реже, чем через 1 м. Диафрагмы армируют сетками из арматуры диаметром не менее 3 мм или Z-образными стержнями диаметром не менее 5 мм с шагом по высоте не более 60 см.

16 Требования по устройству гибких связей для крепления кладки лицевого слоя к внутреннему слою

Материалом связей могут служить стальная арматура, композитные материалы на основе углепластика, базальтового волокна, стеклопластика. Связи, выполненные из композитных материалов, должны выпускаться в соответствии с национальными стандартами, содержащими положения о возможности их применения в стенах с одним или более слоями из кирпичной или каменной кладки.

16.2 При проектировании стен независимо от вида материала и типа связи предъявляются следующие требования.

Одиночные связи, располагаемые в растворном шве, имеющие анкерное устройство в виде крюка, петли (рисунок 7.1а) или сварной сетки (рисунок 7.1б) следует устанавливать в шахматном порядке в количестве не менее 5 шт./м 2 . Одиночные связи с другими видами анкерных креплений, приведенными на рисунке 7.2, следует устанавливать в шахматном порядке в количестве не менее 8 шт./м 2 .

По периметру проемов, на углах здания и вблизи температурных вертикальных швов необходимо устанавливать дополнительные связи с шагом по вертикали и горизонтали не более 25 см.

Диаметр одиночных стальных связей, закрепленных в растворном шве с помощью загнутого конца (Z-, Г-, С-образные), должен быть не менее 5 мм. На концах такие связи должны иметь загибы в виде крюка диаметром 50 мм (рисунок 7.1а). Одиночные связи в виде сеток, а также связи, крепящиеся сваркой к расположенным в горизонтальных швах сеткам или стержням, допускается выполнять из стали диаметром 3 мм (рисунок 7.1б).

Применение в качестве гибких связей перфорированной ленты не допускается. Одиночные связи должны отстоять от вертикальных растворных швов не менее чем на 2 см.

Читайте также: