Диагональ делит угол по полам

Обновлено: 13.05.2024

Прямоугольник — это параллелограмм, у которого все углы прямые.

Диагонали прямоугольника равны.

Прямоугольник

1. В прямоугольнике диагональ делит угол в отношении , меньшая его сторона равна . Найдите диагональ данного прямоугольника.

Рисунок к задаче 1

Всё просто. Рассмотрите прямоугольный треугольник . Найдите, чему равен угол и его синус, а затем найдите .

А сейчас рассмотрим еще одну задачу, в которой применяются свойства диагоналей прямоугольника.

2 . Острые углы прямоугольного треугольника равны и . Найдите угол между высотой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.

Рисунок к задаче 2

Казалось бы, при чем здесь прямоугольник? Дан прямоугольный треугольник, из вершины прямого угла проведены высота и медиана. А что можно сказать о длине этой медианы?

Давайте достроим чертеж до прямоугольника. Поскольку диагонали прямоугольника равны (это свойство прямоугольника) и делятся пополам в точке пересечения, отрезки , и тоже будут равны. Каждый из них равен половине диагонали прямоугольника. Мы доказали теорему:

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

Итак, , значит, треугольник равнобедренный, и угол равен .

По свойству высоты, проведенной из вершины прямого угла,
.

Тогда угол (между медианой и высотой треугольника ) равен .
Ответ: .

Как вы думаете, где находится центр окружности, описанной вокруг прямоугольного треугольника? Ведь центр описанной окружности — точка, равноудаленная от всех вершин треугольника. Очевидно, эта точка — середина гипотенузы.

В прямоугольном треугольнике центром описанной окружности является середина гипотенузы.

1 . Найдите диагональ прямоугольника, вписанного в окружность, радиус которой равен .

Рисунок к задаче 3

Рисунок к задаче 3


Получим, что равна .
Ответ: .

Во время ремонта или решения геометрических задач возникает необходимость определения основных параметров прямоугольника. Свойства диагоналей фигуры иногда могут играть важную роль, поскольку заметно облегчают решение. В интернете существует множество информации, но возникает некоторая проблема. Она состоит в полном отсутствии систематизации знаний, которые следует искать по всей сети.

Признаки и свойства диагоналей прямоугольника

Общая информация

Нахождение периметра и площади, диагоналей и сторон

В задачах по геометрии и физике приходится находить некоторые параметры прямоугольника: углы, стороны, периметр, площадь и диагонали. Все эти величины связаны между собой некоторыми соотношениями. Каждый должен уметь их рассчитывать, поскольку это необходимо не только для решения математических задач, но и в жизни. Например, при укладке керамзитной плитки на пол.

Используя свойство диагоналей, можно определить метод ее укладки. Кроме того, в физике иногда требуется рассчитать площадь поперечного сечения, а необходимая формула неизвестна. Во время планирования покупки строительных материалов нужно вычислить их количество, произведя вычисление площади или периметра помещения.

Однако формул для ведения расчетов недостаточно, поскольку нужно идентифицировать геометрическую фигуру. Для каждой из них применяются разные соотношения. В случае неверного определения вычисления окажутся недостоверными, а это негативно сказывается не только на экзаменах или контрольных, но и в финансовой сфере.

Сведения о прямоугольнике

Пример решения задачи

Прямоугольником называется фигура с прямыми внутренними углами между смежными сторонами, у которой противоположные стороны равны. Его частным случаем, как говорят математики, является квадрат. У него все стороны равны, а углы также являются прямыми. Не каждый может правильно определить тип фигуры, поскольку от этого шага зависит правильность вычислений какого-либо параметра.

Для каждого геометрического тела существуют определенные критерии, по которым можно узнать его принадлежность. Эти критерии называются признаками. Некоторые новички путают признаки и свойства, но существует главное отличие, которое заключено в определении терминов «признак» и «свойство». Кроме того, специалисты предлагают простой способ, позволяющий избежать путаницы между терминами.

Идентификация или признаки

Признак — некоторые критерии, по которым можно отнести фигуру к определенному типу. Свойствами называются некоторые аксиомы и утверждения, полученные при доказательстве теорем. Идентифицировать прямоугольник можно с помощью теоремы из эвклидовой геометрии. Она имеет такую формулировку: если три угла фигуры являются прямыми, то она является прямоугольником. Для доказательства нужно выполнить такие действия:

  • Вычислить значение четвертого угла: D = 360 — (90 * 3) = 90 (градусов).
  • Сопоставить сведения, полученные при вычислении, с определением.

Существуют также и другие признаки, по которым можно идентифицировать фигуру. По одному из них можно определить ее принадлежность к прямоугольнику. К признакам можно отнести такие:

Свойства диагоналей прямоугольника и формулы для расчета

  • Равенство сторон, которые противоположны между собой.
  • Внутренние углы между собой равны, а их градусная мера соответствует 90 градусам.
  • Диагонали равны между собой.
  • Сумма квадратов двух сторон, которые не противоположны, равна квадрату одной диагонали. Это следует из теоремы Пифагора, по которой находится одна из сторон прямоугольного треугольника.
  • Если прямоугольник не является квадратом, то его стороны не равны одному значению.

Первый и второй признаки получаются из основного определения фигуры. Третий признак является следствием доказательства теоремы, формулировка которой является следующей: диагонали прямоугольника равны. Она еще называется теоремой о диагоналях прямоугольника.

Для ее доказательства нужно начертить произвольный прямоугольник ABCD и провести в нем диагонали AC и BD. Они будут пересекаться в некоторой точке X. Они образуют прямоугольные треугольники ABC и ABD. В этом случае нужно доказать равенство треугольников. Они равны между собой: сторона АВ — общая, угол А равен В и сторона BC = AD (по равенству противоположных сторон). Из этого следует, что треугольники равны. Следовательно, их гипотенузы, которые также являются и диагоналями, равны.

Четвертый признак также доказывается. Следует рассматривать прямоугольный треугольник ABC. Используя теорему Пифагора, нужно выразить гипотенузу, которая является диагональю фигуры, через катеты (стороны фигуры): AC 2 = AB 2 + BC 2 . Таким способом доказывается данный признак. Последнее утверждение получается из частного случая: если у прямоугольника все стороны равны, то он является квадратом.

Свойства фигуры

Необходимо отметить, что квадрат — правильный четырехугольник, поскольку у него все стороны равны. Результирующая формула диагонали прямоугольника будет выглядеть таким образом: d = (AB 2 + BC 2 )^(½). При решении задач применяются свойства прямоугольника:

Формула для расчета диагоналей прямоугольника

  • Каждый из углов равен 90 градусам.
  • Стороны, которые являются противолежащими и параллельными, равны.
  • Сумма углов внутри фигуры составляет 360.
  • Пересечение диагоналей в точке, которая делит их пополам, также является центром окружности, описанной вокруг фигуры и центром симметрии.
  • Треугольники, полученные в результате проведения диагоналей, равны.
  • Суммарное значение квадратичных значений всех сторон эквивалентно двойному квадрату диагонали.
  • Большой и маленький треугольники, образованные диагоналями, подобны. Следует обратить внимание на коэффициент подобия.
  • Диагональ эквивалентна диаметру окружности, описанной около фигуры.
  • Геометрическая характеристика фигуры (сумма противоположных углов составляет 180) позволяет описать вокруг нее окружность.
  • Вписать круг в прямоугольник можно тогда, когда он является правильным, т. е. ширина эквивалентна длине (квадрат).
  • Угол между смежными сторонами равен 90.
  • В любом прямоугольнике диагонали взаимно перпендикулярны, когда он является квадратом.
  • Диагонали, пересекаясь между собой, образуют не разносторонние, а прямоугольные и равносторонние треугольники.
  • Половина диагонали, проведенная из любой вершины фигуры, является медианой и высотой.
  • Диагональ является биссектрисой (прямоугольник — квадрат).
  • Средняя линия прямоугольника проходит через точку пересечения диагоналей.

Соотношения для описанной окружности

Однако при решении задач свойств недостаточно. Для этого применяются специальные соотношения и формулы. Некоторые из них были получены из свойств фигуры. Во всех формулах будет браться радиус описанной окружности — R и ее диаметр — D, а также функция «sqrt», которая эквивалентна квадратному корню (x^(1/2) = x^(0.5)).

Периметр и площадь

Площадь прямоугольника

  • Величина площади и сторона, которая известна: P = (2S + 2a 2 ) / a или P = (2S + 2b 2 ) / b.
  • Диагональ и a (b): P = 2(a + (d 2 — a 2 )^(0.5)) = 2(b + (d 2 — b 2 )^(0.5)).
  • a (b) и R: P = 2(a + (4 * R 2 — a 2 )^(0.5)) = 2(b + (4 * R 2 — b 2 )^(0.5)).
  • D и a (b): P = 2(a + sqrt(D 2 — a 2 )) = 2(b + sqrt(D 2 — b 2 )).

Площадь — характеристика размерности двумерной фигуры. Ее обозначают литерой S, и измеряют в метрических единицах в квадрате (мм 2 , см 2 , м 2 и т. д.). Следует отметить, что она вычисляется интегральным методом. Однако для частных случаев существуют соотношения. Формула, которая является основанием для всех остальных соотношений, называется базовой. Она имеет такой вид: S = a * b. Площадь находится в зависимости от параметров, которые известны:

P и a (b): S = [(P * a) — 2a 2 ] / 2 = [(P * b) — 2b 2 ] / 2.

a (b) и d: S = a * sqrt[d 2 — a 2 ] = b * sqrt[d 2 — b 2 ].

Синус острого угла (Y) между двумя d и d: S = d 2 * sin (Y) / 2.

R и a (b): S = a * sqrt[4 * R 2 — a 2 ] = b * sqrt[4 * R 2 — b 2 ].

D и a (b): S = a * sqrt[D 2 — a 2 ] = b * sqrt[D 2 — b 2 ].

Для решения различных задач также могут быть полезны и другие соотношения, позволяющие найти не только диагонали, но и стороны прямоугольника.

Диагонали и стороны

Для оптимизации решения нужно знать формулы, с помощью которых можно находить одну из сторон или диагональ прямоугольника. Необходимо разобрать основные соотношения, по которым находятся стороны фигуры, когда известны следующие параметры:

  • d и a (b): a = sqrt[d 2 — b 2 ] и b = sqrt[d 2 — a 2 ].
  • S и a (b): a = S / b и b = S / a.
  • P и a (b): a = (P — 2b) / 2 и b = (P — 2a) / 2.

Для нахождения диагонали также есть некоторые формулы. Для их применения следует знать такие параметры фигуры:

a и b: d = [a 2 + b 2 ]^(1/2).

S и a (b): d = (S 2 + a 4 )^(1/2) / a= (S 2 + b 4 )^(1/2) / b.

P и a (b): d = (P 2 — 4Pa + 8a 2 )^(1/2) / 2 = (P 2 — 4Pb + 8b 2 )^(1/2) / 2.

Однако это не все соотношения. В некоторых случаях разрешается описывать окружность вокруг фигуры. С помощью такого «геометрического хода» можно существенно упростить решение задачи. Это позволяет воспользоваться другими формулами.

Другие соотношения

Для решения задач используются и другие соотношения, которые позволяют найти параметры окружности, которая описана. Пусть дана окружность с радиусом R и диаметром D. Кроме того, известны некоторые параметры фигуры (a, b, d, P и S). С помощью формул можно найти D и R окружности при известных некоторых величинах:

a и b: R = (a 2 + b 2 )^(1/2) / 2.

P и a (b): R = (P 2 — 4Pa + 8a 2 )^(1/2) / 4 = (P 2 — 4Pb + 8b 2 )^(1/2) / 4.

S и a (b): R = (S 2 + a 4 )^(1/2) / 2a = (S 2 + b 4 )^(1/2) / 2b.

Для нахождения угла F следует воспользоваться такой формулой: sin (F) = a / d и cos (F) = b / d. Острый угол между двумя диагоналями определяется при помощи такого соотношения: sin (Y) = 2S / d 2 .

Пример решения

Пусть дана некоторая фигура, диагонали которой равны, а ее периметр равен 50. Одна из сторон a = 10. Следует провести идентификацию, а также найти такие параметры:

В любом прямоугольнике диагонали взаимно перпендикулярны

  • Другие стороны.
  • Значения диагоналей.
  • Площадь.
  • R описанной окружности через площадь и периметр.
  • Выяснить возможность укладки плитки в форме квадрата на такую поверхность.
  • Вычислить значения всех углов между смежными сторонами.

Данная задача является типом сложного класса, поскольку название фигуры не упоминается. Ее следует идентифицировать, а затем применить некоторые формулы для решения. Кроме того, необходимо верно выполнить 5 пункт. Однако не следует углубляться в строительную сферу. Бывают два метода укладки плитки: обычный — форма помещения является прямоугольником или квадратом, и с центра — другая фигура.

Способы решения задач нахождения диагоналей прямоугольника

У фигуры диагонали равны, значит по третьему признаку она является прямоугольником. К нему можно применять вышеописанные формулы. Для нахождения другой стороны следует составить уравнение 2x + 2 * 10 = 50. Затем нужно перенести все известные значения в правую часть: 2х = 50 — 20. Далее можно найти переменную: х = 30 / 2 = 15 (ед.). Следует обратить внимание на написание единицы измерения. Если в условии задачи она не указана, то пишется единица измерения, которая заключается в круглые скобки. Достаточно найти только одну сторону, поскольку у прямоугольника существует свойство равенства противоположных сторон.

Значение диагоналей находится по формуле: d = [a 2 + b 2 ]^(1/2) = (15 2 + 10 2 )^(1/2) = (225 +100)^(1/2) = (325)^(1/2). Площадь можно найти таким образом: S = a * b = 15 * 10 = 150 [(ед.)^2]. Радиус вычисляется так:

R = (P 2 — 4Pa + 8a 2 )^(1/2) / 4 = (50 2 — 4 * 50 * 10 + 8 * 10 2 )^(1/2) / 4 = (1300)^(1/2) / 4 (ед.).

R = (S 2 + a 4 )^(1/2) / 2a = (150 2 + 100 4 )^(1/2) / (2 * 10) = (1300)^(1/2) / 4 (ед.).

Плитку можно укладывать обыкновенным способом, начиная не с центра, поскольку поверхность является прямоугольником. Все углы между сторонами равны между собой. Их градусная мера по 12 свойству соответствует 90.

Таким образом, при решении задач рекомендуется идентифицировать геометрическую фигуру, а затем применять к ней формулы.

Прямоугольник - это четырехугольник у которого две противоположные стороны равны и все четыре угла одинаковы.

Прямоугольники отличаются между собой только отношением длинной стороны к короткой, но все четыре угла у них прямые, то есть по 90 градусов.

Длинную сторону прямоугольника называют длиной прямоугольника, а короткую - шириной прямоугольника.

Стороны прямоугольника одновременно является его высотами.

Изображение прямоугольника с обозначениями
Изображение прямоугольника с обозначениями
Рис.1 Рис.2

Основные свойства прямоугольника

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

2 d 2 = 2 a 2 + 2 b 2

8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.

9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам:

AO = BO = CO = DO = d
2

10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности

12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов:

∠ABC + ∠CDA = 180° ∠BCD + ∠DAB = 180°

13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника - квадрат).

Стороны прямоугольника

Длиной прямоугольника называют длину более длинной пары его сторон. Шириной прямоугольника называют длину более короткой пары его сторон.

Формулы определения длин сторон прямоугольника

2. Формула стороны прямоугольника (длины и ширины прямоугольника) через площадь и другую сторону:
a = S
b
b = S
a
3. Формула стороны прямоугольника (длины и ширины прямоугольника) через периметр и другую сторону:
a = P - 2 b
2
b = P - 2 a
2
5. Формула стороны прямоугольника (длины и ширины прямоугольника) через диаметр и угол β :
a = d sin β
2
b = d cos β
2

Диагональ прямоугольника

Диагональю прямоугольника называется любой отрезок соединяющий две вершины противоположных углов прямоугольника.

Формулы определения длины диагонали прямоугольника

2. Формула диагонали прямоугольника через площадь и любую сторону:
d = √ S 2 + a 4 = √ S 2 + b 4
a b
3. Формула диагонали прямоугольника через периметр и любую сторону:
d = √ P 2 - 4P a + 8 a 2 = √ P 2 - 4P b + 8 b 2
22
6. Формула диагонали прямоугольника через синус угла, прилегающего к диагонали, и длину стороны противоположной этому углу:
d = a
sin α
7. Формула диагонали прямоугольника через косинус угла, прилегающего к диагонали, и длину стороны прилегающей к этому углу:
d = b
cos α

8. Формула диагонали прямоугольника через синус острого угла между диагоналями и площадью прямоугольника

Периметр прямоугольника

Формулы определения длины периметру прямоугольника

2. Формула периметру прямоугольника через площадь и любую сторону:
P = 2S + 2 a 2 = 2S + 2 b 2
a b

P = 2( a + √ d 2 - a 2 ) = 2( b + √ d 2 - b 2 )

P = 2( a + √ 4R 2 - a 2 ) = 2( b + √ 4R 2 - b 2 )

P = 2( a + √ Do 2 - a 2 ) = 2( b + √ Do 2 - b 2 )

Площадь прямоугольника

Площадью прямоугольника называется пространство ограниченный сторонами прямоугольника, то есть в пределах периметра прямоугольника.

Формулы определения площади прямоугольника

2. Формула площади прямоугольника через периметр и любую сторону:
S = P a - 2 a 2 = P b - 2 b 2
22

S = a √ d 2 - a 2 = b √ d 2 - b 2

4. Формула площади прямоугольника через диагональ и синус острого угла между диагоналями:
S = d 2 · sin β
2

S = a √ 4R 2 - a 2 = b √ 4R 2 - b 2

S = a √ Do 2 - a 2 = b √ Do 2 - b 2

Окружность описанная вокруг прямоугольника

Окружностью описанной вокруг прямоугольника называется круг проходящий через четыре вершины прямоугольника, центр которого лежит на пересечении диагоналей прямоугольника.

Сегодня мы расскажем об одной из основных геометрических фигур – ПРЯМОУГОЛЬНИКЕ.

Название это весьма говорящее, и в нем скрыто официальное определение.

Улыбка прямоугольника

Прямоугольник – это четырехугольник, у которого все углы прямые, то есть равны 90 градусам.

Впервые описание этой фигуры встречается еще в Древнем Египте. Но в те времена все геометрические правила давались как неопровержимые истины, не предоставляя доказательств.

Более правильный подход появился в Древней Греции. И естественно, автором стал самый знаменитый математик той эпохи — Евклид. А прямоугольник, как и многие другие фигуры и термины, был подробно описан в его произведении «Начала».

Прямоугольник — это.

Все тот же Евклид разделил все четырехугольники на два вида – параллелограммы (что это?) и трапеции (что это?).

У первых противоположные стороны равны и параллельны, а у вторых параллельна только одна пара сторон, и они при этом не равны.

То есть выглядит это так:

Фигуры

Так вот, прямоугольник в данном случае является частным случаем параллелограмма.

Определение прямоугольника

Параллелограмм

У этой фигуры противоположные стороны параллельны. Это первое условие по Евклиду. И к тому же они равны, что является условием номер два.

У прямоугольника есть и собственный частный случай. Когда равны не только противоположные стороны, а все. И как нетрудно догадаться, фигура эта называется квадрат.

Ну, и логично предположить, что квадрат (как и сам прямоугольник) является частным случаем параллелограмма.

Признаки прямоугольника

Признаки геометрической фигуры – это совокупность отличий, по которым ее можно выделить среди других.

В случае с прямоугольником их всего три:

  1. Если один из углов параллелограмма прямой, то данный параллелограмм является прямоугольником.
  2. Если три угла четырехугольника являются прямыми, то перед нами опять же прямоугольник. При этом нет необходимости доказывать, что четырехугольник является параллелограммом. Это промежуточное звено становится верно само по себе.
  3. Если диагонали параллелограмма равны между собой, то фигура точно является прямоугольником.

Диагонали прямоугольника

Как мы уже упомянули выше, диагонали прямоугольника (отрезки, соединяющие его противоположные углы) равны между собой.

Доказать это можно с помощью известной теоремы Пифагора. Она гласит, что «Сумма квадратов катетов прямоугольного треугольника равна квадрату гипотенузы».

Гипотенуза

В нашем случае гипотенузой является диагональ прямоугольника, которая делит его на два равных прямоугольных треугольника. И теорема Пифагора выглядит следующим образом:

Формула

Свойства прямоугольника

К свойствам прямоугольника относятся следующие утверждения:

    Прямоугольник является параллелограммом, а значит имеет все присущие ему свойства.
      У прямоугольника равны противоположные стороны.

    Стороны


    Параллельны

    Углы

    Формула углы

    Диагонали

    Точка пересечения


    Окружность

    Периметр и площадь

    Для того чтобы определить периметр прямоугольника, надо просто сложить длины всех его четырех сторон.

    Периметр

    Но с учетом того, что попарно они равны, то конечная формула может выглядеть более просто:

    Формулы

    Площадь прямоугольника вычисляется также весьма просто. Надо лишь перемножить две его стороны:

    Площадь

    К слову, это не единственная формула для вычисления площади. Площадь также можно получить, имея значение периметра фигуры или длину его диагонали. Но эти формулы гораздо сложнее.

    Вычисление

    Вот и все, что мы хотели рассказать о геометрической фигуре ПРЯМОУГОЛЬНИК. До новых встреч на страницах нашего блога.

    Эта статья относится к рубрикам:

    Комментарии и отзывы (5)

    Главная основа геометрии — это все же треугольник. Через него можно построить любую фигуру и доказать любую теорему.

    Прямоугольник отличается от квадрата, этому учат в школе в младших классах. Квадрат — это одинаковая длина соединяющих углов, если я правильно выражаюсь, а прямоугольник формы может быть: телефон, звуковые колонки, паспорт и прочее.

    Не согласен с утверждением, что раз один угол прямой, то перед нами точно прямоугольник, всё же прямоугольник — это когда все противоположные стороны параллельны друг другу, а если только один угол прямой, то там и трапеция может быть.

    Я бы сказала, что прямоугольник — это основа архитектуры. Все здания так или иначе используют эту фигуру в своем дизайне.

    Вот за что я люблю прямоугольники, так за то, что площадь его легко найти, да и периметр, вот с трапецией сложнее, увы, но те же земельные участки больше трапеции, отсюда и земельные споры.

    Диагонали прямоугольника равны между собой. Диагональ делит прямоугольник на два равных прямоугольных треугольника ABC и ACD. Диагональ равна диаметру описанной окружности.

    1. Формулы длины диагонали в прямоугольнике.

    Длина диагонали прямоугольника

    d - диагональ прямоугольника

    a , b - стороны

    α , β - углы полученные от деления, диагональю, прямого угла

    Формула диагонали через стороны, ( d ):

    Формула диагонали через стороны

    Формулы диагонали через сторону и угол, ( d ):

    Формулы диагонали через сторону и угол

    Формулы диагонали через сторону и угол

    Формулы величины углов через диагональ и стороны, ( α , β ) :

    Формулы величины углов через диагональ и стороны

    Формулы величины углов через диагональ и стороны

    2. Формулы углов между диагоналями в прямоугольнике.


    d - диагонали прямоугольника

    a , b - стороны

    α , β - углы между диагоналями

    Формулы углов между диагоналями через стороны и диагональ, ( α , β ):

    Формулы углов между диагоналями через стороны и диагональ

    Формулы углов между диагоналями через стороны и диагональ

    Читайте также: