Цокольный барабан космический корабль

Обновлено: 16.05.2024

Каждый раз читая российские форумы в которых затрагивается тема полётов человека на Луну, я наталкиваюсь на абсолютное невежество среди форумчан (в т. ч. и среди технически образованных людей). В рунете распространено мнение, что лунный модуль, спроектированный и построенный фирмой Grumman Aerospace Corporation для высадки человека на поверхность Луны в рамках программы «Аполлон», сделан чуть-ли не из фольги. Мол толщина стенок его кабины настолько тонкая (наиболее часто говорят о трёх слоях фольги), что её можно пробить ногой, а прочность конструкции обеспечивается внутренним давлением. Это заблуждение среди отечественных читателей тянется с 1976 года, и базируется на неверной интерпретации фразы астронавта Джеймса Макдивитта (James Alton McDivitt), произнесённой им на одной из пресс-конференций перед полётом космического корабля «Аполлон-9». Изначально она была неверно интерпретирована советским писателем-фантастом и журналистом Владимиром Степановичем Губаревым, который написал популярную в СССР книгу «Космические мосты» (издана в 1976 году в Москве издательством «Молодая Гвардия»). Владимир Губарев пишет (цитата из книги):
«Р. Швейкарт должен быть очень осторожен. Одно неверное движение, и он повредит лунную кабину. Стенки её настолько тонки и непрочны, что человек может пробить их ногой, — заявил перед стартом Д. Макдивитт. — На Земле стенки лунной кабины во многих местах может повредить даже случайно уронённая отвёртка. »

image

Другой журналист, не менее популярный популяризатор космонавтики, коллега Губарева — Ярослав Кириллович Голованов пишет в известной книге «Правда о программе «APOLLO» (практически копирует текст своего коллеги, добавляя при этом своё мнение, которое является по-сути мнением дилетанта):
«- Швейкарт должен быть очень осторожен, — предупреждал Макдивитт. — Одно неверное движение, и он повредит лунный модуль. Стенки его настолько тонки и непрочны, что человек может пробить их ногой. На Земле стенки лунного отсека может повредить даже случайно оброненная отвёртка…
Я две недели рассматривал лунную кабину, которая стояла в зале, где разместилась пресса во время полета «Союза-19» и «Аполлона» в Хьюстоне. «Паучок» сделан из металлической фольги. Не из такой, конечно, в которую заворачивают шоколадные конфеты, но все-таки, если выбирать из двух определений: металлический лист или металлическая фольга — фольга точнее. В вакууме жесткость этой конструкции увеличивалась за счет внутреннего надува, но все-таки она оставалась весьма субтильной.» (источник)

image


Взлётная ступень лунного модуля LM-12 космического корабля «Аполлон-17». Фотография NASA AS17-149-22857

Мнение Ярослава Голованова о конструкции, «сделанной из фольги», и «увеличивающей свою жёсткость в вакууме» выглядит особенно нелепым, если посмотреть фотографии лунного модуля LTA-1, сделанные в Cradle Of Aviation Museum, расположенном в городе Ист-Гарден-Сити на Лонг-Айленде, штат Нью-Йорк:

image

image

LTA-1 (Lunar Test Article 1) представляет собой первый экземпляр лунного модуля (прототип), построенный в 1966 году, который конструктивно подобен серийным образцам, предназначенным для полётов в космос. До LTA-1 фирма Grumman Aerospace Corporation строила лишь полномасштабные макеты лунного модуля (т. н. Mock-Up's: M-1, M-5, TM-1). Конструктивно эти макеты были выполнены из металла и дерева, предназначенные для представления заказчику (NASA), отработки компоновочных решений по размещению различного вспомогательного оборудования и тренировок астронавтов. Но силовая конструкция LTA-1, а также все системы (двигательные установки, их ПГС, электрооборудование и т. д.) были выполнены по рабочим чертежам с соблюдением всех технологических процессов. Данный экземпляр был предназначен для отработки процесса изготовления, сборки и дальнейшей отладки лунного модуля, когда ещё велось проектирование, а также для статических, динамических и электрических испытаний:

image


Стыковка взлётной и посадочной ступени лунного модуля LTA-1 в комнате для испытаний на кондуктивные электромагнитные помехи на предприятии Grumman Aerospace Corporation, город Бетпейдж, Лонг-Айленд, штат Нью-Йорк. Фотография NASA S67-22164

Основное конструктивное отличие LTA-1 от серийных образцов летавших в космос — передний люк, предназначенный для выхода и входа экипажа из взлётной ступени лунного модуля. На LTA-1 он круглой формы. Начиная с LTA-8 и на всех серийных образцах лунного модуля, по требованию астронавтов, люк был выполнен прямоугольной формы. Проведённые на борту «летающей лаборатории» NASA (переделанный топливозаправщик Boeing KC-135A Stratotanker) эксперименты показали, что в условиях лунной гравитации астронавтам было гораздо удобнее протискиваться в скафандре с ранцевой системой жизнеобеспечения PLSS именно через люк прямоугольной формы). В 1974 году, после завершения программы «Аполлон», LTA-1 был передан на хранение в Национальный музей авиации и космонавтики Смитсоновского института, расположенном в городе Вашингтон (округ Колумбия), а в июне 1998 года передан для реставрации и дальнейшей экспозиции в Cradle Of Aviation Museum, где и находится в настоящее время:

image

image

image

Лунный модуль космического корабля «Аполлон» конструктивно состоит из двух ступеней: посадочной и взлётной. Посадочная ступень оборудована жидкостным ракетным двигателем (ЖРД) для осуществления схода с орбиты искусственного спутника Луны, выполнения захода на посадку и мягкого прилунения. Посадка осуществляется на четырёхножное шасси с тарельчатыми опорами. Перегрузка при прилунении снижается за счёт укорачивания ног шасси, которые представляют собой телескопические штанги. Кинетическая энергия при ударе о лунную поверхность поглощается сминаемым заполнителем сотовой конструкции из алюминиевого сплава. Экипаж, состоящих из двух астронавтов (командир и второй пилот), находится в герметичной кабине взлётной ступени, которая установлена сверху над посадочной. Спуск астронавтов на поверхность Луны осуществляется по лестнице, закреплённой на одной из телескопических ног посадочного шасси, расположенной со стороны переднего люка. Взлётная ступень оборудована ЖРД для взлёта с поверхности (стартовым столом на этом этапе служит посадочная ступень) и выхода на орбиту искусственного спутника Луны. Также взлётная ступень оборудована реактивной системой управления (РСУ). РСУ предназначена для управления не только взлётной ступенью, но и всем лунным модулем (когда он находится в посадочной конфигурации) по шести степеням свободы. ЖРД РСУ могут работать в группе или отдельно — непрерывно или импульсно. Т. к. взлётная ступень вмещала в себя экипаж, то её конструкция представляет наибольший интерес в рамках рассматриваемого массового заблуждения.

image

image

image

Основная конструкция взлётной ступени лунного модуля представляет собой полумонококовую конструкцию, выполненную из хорошо сваривающегося дюралюминиевого сплава 2219 (основной легирующий элемент медь) и высокопрочного деформируемого алюминиевого сплава 7075-T6 (основной легирующий элемент — цинк), имеющие изотропные характеристики. Основная конструкция состоит из трёх главных частей: кабины экипажа, центральной секции и заднего отсека оборудования:

image


Схема установки ферменного каркаса внешнего корпуса на основную конструкцию взлётной ступени лунного модуля

image


Схема установки термоизоляционного покрытия на основную конструкцию взлётной ступени лунного модуля

Микрометеоритная защита представляет собой внешнюю оболочку взлётной ступени лунного модуля и состоит из тонких листов из алюминиевого сплава толщиной до 0,5 мм, устанавливаемая поверх одеял термоизоляционного покрытия:

image


Схема установки микрометеоритной защиты (внешняя оболочка) на термоизоляционное покрытие взлётной ступени лунного модуля

Её раскрой по секторам идентичен. Крепление осуществляется с помощью тех же специальных шпилек, с помощью которых к основной конструкции взлётной ступени лунного модуля крепится термоизоляционное покрытие. Шпильки над одеялами имеют продолжение, что обеспечивает минимальный зазор 25,4 мм между ними и листами защиты. Стыки между листами заклеиваются липкой лентой.
Во избежание вспучивания термоизоляционного покрытия и микрометеоритной защиты из-за резкого падения окружающего давления во время набора ракетой-носителем высоты, в одеялах и листах проделаны оконтованные вентиляционные отверстия, через которые происходит выравнивание давления.
В районе воздействия струй ЖРД РСУ микрометеоритная защита покрывается специальной термозащитной краской чёрного цвета (ей покрыта большая часть микрометеоритной защиты кабины экипажа).
Если посмотреть на многочисленные фотографии взлётной ступени лунного модуля, то для обывателя создаётся впечатление, что внешняя оболочка из тонких листов алюминия, местами проклеенная липкой лентой, и есть герметичная обочка, которую «легко пробить ногой», т. к. она «сделана из фольги». Это заблуждение было наглядно продемонстрировано Ярославом Головановым в известной для любителей космонавтики книге.

image

image

P. S.: Подробный фотоотчёт (Walk Around, 57 фотографий взлётной ступени и 49 фотографий посадочной ступени) по лунному модулю LTA-1 можно посмотреть здесь

© Сергей Вяткин, 2014

* — шпильки обеспечивают равный зазор между основной конструкцией взлётной ступени лунного модуля, термоизоляционным покрытием и микрометеоритной защитой.

Корабль «Союз» состоит из трех частей. Если смотреть сверху вниз, то они расположены следующим образом. Наверху – бытовой отсек. Под ним – спускаемый аппарат, в котором космонавты находятся при выведении корабля в космос и при возвращении домой. Еще ниже – приборно-агрегатный отсек.

Когда «Союз» устанавливают на ракету, его накрывают головным обтекателем. На самом головном обтекателе находится довольно высокая башенка системы аварийного спасения с твердотопливными двигателями увода. Она нужна для того, чтобы в случае аварии ракеты на старте или в первые минуты полета сорвать корабль с носителя и увести куда-нибудь подальше. Через две минуты после старта башенка и обтекатель сбрасываются, и, если авария произойдет после этого, то от ракеты отделится весь корабль, который пойдет сквозь атмосферу по баллистической траектории, разделится в полете на отсеки, спускаемый аппарат выпустит парашют и приземлится по штатной схеме.

Как устроены отсеки? В спускаемом аппарате, который по форме напоминает фару старинного автомобиля, находятся три кресла экипажа, а также всё оборудование, необходимое для управления кораблем. Тут же размещены системы телевизионной и радиосвязи, аккумуляторы. Есть два иллюминатора, которые позволяют нам видеть происходящее снаружи. Кроме того, в аппарате хранится аварийный запас на случай нештатной посадки где-нибудь в отдаленном районе, куда спасатели не смогут сразу добраться. Космонавты могут управлять движением спускаемого аппарата при входе в атмосферу – для этого он снабжен жидкостными двигателями, которые поддерживают правильную ориентацию. Для приземления используются парашюты и твердотопливные двигатели мягкой посадки, которые срабатывают в последнюю секунду перед касанием земли.


Космический корабль «Союз МС-04» в полете

Шарообразный бытовой отсек герметичен и остается частью корабля всё время пребывания на орбите; сбрасывается он перед входом в атмосферу. В его верхней части находится узел для стыковки с Международной космической станцией; в нем есть сквозной люк для перехода из корабля на станцию. Бытовой отсек может использоваться как шлюзовая камера при выходе в открытый космос; в нем имеется специальный люк, через который мы попадаем в корабль, когда он в составе ракеты ожидает запуска на стартовой площадке. То есть в бытовой отсек мы входим в корабль еще на Земле перед стартом, а при необходимости можем выходить из него в космосе. Рядом со стыковочным агрегатом находится окно-блистер, который можно использовать при ручной стыковке. С внешней стороны отсека смонтированы антенны радарной системы, которая помогает приблизиться к станции или другому космическому кораблю. Кроме того, в бытовом отсеке размещены системы жизнеобеспечения, пульт управления, предметы гигиены.


Устройство космического корабля «Союз МС

Приборно-агрегатный отсек присоединен к спускаемому аппарату снизу с помощью открытой ферменной конструкции. На ней расположены устройства для разделения отсеков, радиоантенны, разъемы для подключения наземного оборудования перед запуском и баллоны, которые снабжают нас кислородом. Верхняя часть приборно-агрегатного отсека похожа на большой барабан, она герметична и заполнена инертным газом. Туда конструкторы поместили стойки с радиооборудованием, телеметрическими системами, аккумуляторами и блоками электропитания, модулями управления терморегулированием, движением и ориентацией корабля в пространстве. В нижней негерметичной части приборно-агрегатного отсека располагается двигательная секция, в которой находятся топливные баки, ракетные двигатели управления ориентацией, сближающе-корректирующий двигатель и радиаторы, предназначенные для сброса избыточного тепла излучением в космическое пространство. Кроме того, на приборно-агрегатном отсеке закреплены панели солнечных батарей, которые под головным обтекателем сложены, а раскрываются после выхода на орбиту.


Космический корабль «Союз МС-05» пристыкован к МКС

Как известно, корабль «Союз» признан самым надежным и безопасным в истории космонавтики. И его постоянно модернизируют. Я летал на вариантах «Союз-ТМА» и «Союз МС». В «Союзе-ТМА», например, появились удлиненные кресла нового образца – они позволяют размещаться в кабине космонавтам любого роста; при этом сами кресла снабжены вкладными элементами, «подогнанными» под каждого космонавта, чтобы он мог вернуться домой на любом другом корабле, а не только на том, который доставил его на станцию. В «Союзе МС» модернизация была более глубокой: поменяли солнечные батареи, переставили стыковочную систему, обновили радиооборудование и компьютерную технику, поставили дополнительную противометеоритную защиту и так далее – сейчас это самый современный корабль, и он очень сильно отличается от «Союза», который проектировался в 1960-е годы.

Думаю, «Союзы» еще долго будут служить нам, и когда-нибудь, возможно, появится модификация для полетов вокруг Луны.

В предыдущей статье мы рассмотрели основную конфигурацию космического корабля Аполлон: командный и сервисный модули. Другие конфигурации отличались тем, что кроме основного корабля в специальном отсеке ракеты-носителя находился еще один космический аппарат, к которому главный корабль пристыковывался уже в космосе. Именно эти аппараты мы рассмотрим сейчас.

27.jpg


Лунный модуль Аполлона-14

Лунный модуль был практически полноценным космическим кораблем: у него был герметичный объем для двух астронавтов, свои системы жизнеобеспечения, терморегуляции, электропитания, свой двигатель с топливными баками. Единственное, чего у него не было, - это теплозащиты и парашютов для посадки на Землю. Таким образом в ходе миссии Аполлон-9 впервые в мире люди летали на космическом корабле, не способном войти в атмосферу и приземлиться.

28.jpg

Задачей лунного модуля была посадка на поверхность Луны с селеноцентрической орбиты и взлет с выходом на эту же орбиту. Модуль был сделан настолько легким, насколько это возможно. Первоначальный его проект предусматривал вот такой несколько нелепый дизайн:

29.jpg

Астронавты должны были сидеть в креслах, а для хорошего обзора предусматривались огромные иллюминаторы. Такой дизайн оказался очень нерациональным с точки зрения массы аппарата: иллюминаторы весят очень много. В этом отрывке сериала «С Земли на Луну» весьма достоверно показано, как инженерам удалось избавиться от таких больших иллюминаторов, сохранив хороший обзор для экипажа, а также ряд других мер по облегчению аппарата:

В результате лунный модуль приобрел вот такую, немного похожую на паука, форму:

30.jpg

Рассмотрим его поближе:

31.jpg


Лунный модуль Аполлона-11

Из нижней части лунного модуля торчит сопло посадочного двигателя. Вокруг него днище модуля прикрывает щит. Он не дает теплу от сопла перегреть конструкции посадочной ступени. Двигатель мог отклоняться, чтобы управлять модулем, изменяя направление вектора тяги. В стороны отходят четыре "лапки"-опоры, на которые и опирался модуль, стоя на Луне. Они могут немного изменять длину, чтобы надежно стоять на неровной лунной поверхности. Касание поверхности определяет датчик-щуп, торчащий из каждой опоры. На одной из опор также виден трап для спуска. Корпус посадочной ступени обклеен блестящей, похожей на фольгу, экранно-вакуумной теплоизоляцией. Она спасает оборудование в модуле от чрезмерного нагрева Солнцем. Между опорами установлены узкие длинные защитные экраны, предохраняющие поверхность теплоизоляции от струй горячих газов из двигателей ориентации.
Попробуем теперь «заглянуть» внутрь посадочной ступени. Устроена она до безобразия просто. Как именно, понятно из этой схемы:

32.jpg

Каркас с установленными топливными баками и двигателем хорошо виден на фотографии посадочной ступени в сборочном цехе:

33.jpg

На наружных поверхностях отсеков с топливными баками установлены кронштейны для посадочных опор, а на переднем плане хорошо видны два шар-баллона: нижний с гелием и верхний с кислородом. «Треугольные» отсеки с внешней стороны, а также сверху и снизу закрываются легкими панелями, состоящими из нескольких слоев теплоизоляции и противометеоритной защиты настолько тонких, что создается иллюзия, будто ступень частично сделана из картона, частично из фольги.

34.jpg


Посадочная ступень Аполлона-13 в цехе

Это продиктовано необходимостью, насколько возможно, снизить массу лунного модуля. А поскольку ему нужно было летать только в вакууме, никакой обтекаемости и особой прочности не нужно.
А на этой фотографии виден сложенный лунный ровер перед погрузкой в отсек посадочной ступени Аполлона-15:

35.jpg

Хорошо заметно, как он идеально подходит под «треугольный» отсек ступени.
Перейдем теперь к взлетной ступени. Она устанавливается на посадочную ступень сверху посредством четырех пироболтов, разрываемых в момент взлета с Луны.

36.jpg


Лунный модуль Аполлона-16

Отдельно взлетная ступень выглядит так:

37.jpg


Взлетная ступень ЛМ Аполлона-17

Она похожа на нечто вроде положенной набок цилиндрической банки, на которую снаружи навешано много всякой всячины. На специальных кронштейнах вынесены 4 блока по 4 двигателя ориентации (на фото видны 2, остальные сзади) аналогичные таковым на сервисном модуле Аполлона. На лицевой стороне модуля видны два треугольных иллюминатора (в правом видна голова Юджина Сернана в шлеме), а между ними выступ, внутри которого проложена проводка и установлено оборудование радара сближения, антенна которого торчит сверху. Чуть ниже радара на поверхности выступа установлена антенна S-диапазона, а еще ниже – сигнальный проблесковый фонарь, предназначенный для улучшения заметности лунного модуля на поверхности Луны с большого расстояния. Остронаправленная поворотная антенна S-диапазона торчит позади и выше левого блока двигателей ориентации. Под выступом хорошо различим люк для выхода на поверхность Луны.

38.jpg


Взлетная ступень ЛМ Аполлона-9

Снизу видно сопло двигателя, а по бокам от него два выступа, похожих на мешки. Это отсеки со сферическими баками горючего и окислителя. Заметная асимметрия их расположения объясняется тем, что бак горючего меньше и легче бака окислителя, поэтому для точной установки центра масс аппарата этот бак пришлось вынести дальше от геометрического центра.

39.jpg


Лунный модуль Аполлона-9

При взгляде на верхнюю часть модуля мы видим стыковочный узел, чуть ниже него немного видна мишень, по которой астронавты выставляли ориентацию кораблей при стыковке. Чуть левее этой мишени торчит антенна метрового диапазона и еще одна справа от стыковочного узла. Между узлом и радаром виден объектив навигационного телескопа.
Для лучшего понимания конструкции взлетной ступени обратимся к фотографиям из сборочного цеха.

40.jpg

Здесь видна цилиндрическая герметичная капсула для экипажа. Она должна выдерживать внутреннее давление 0,4 атмосферы, поэтому все ее стенки снабжены большим количеством ребер жесткости. Слева на капсуле закреплены кронштейны, на которых установлены блоки двигателей ориентации, а между ними закреплен солидных размеров бак окислителя. Сверху слегка торчит бачок с водой.

41.jpg

Здесь взлетная ступень представлена нам сзади, причем на более позднем этапе сборки: бак с окислителем укутан толстым слоем теплоизоляции, над ним уже установлены два выкрашенных в черный цвет топливных бака двигателей ориентации, между которыми пристроился гелиевый баллон, а поверх всего этого на каркасе из тонких алюминиевых трубок частично смонтированы панели из нескольких слоев алюминия и майлара, образующие наружный корпус ступени и ее тепловую и противометеоритную защиту. С задней стороны расположена вся электроника, две серебряно-цинковые батареи электропитания, два шар-баллона с гелием для наддува топливных баков взлетного двигателя и два шар-баллона с кислородом для системы жизнеобеспечения.

42.jpg

Вот, взлетная ступень почти готова - осталось только обшить теплоизоляцией отсек электроники С этой стороны хорошо виден отсек с баком горючего. Над ним под небольшим выступом корпуса смонтирован второй комплект баков с топливом и газом наддува для двигателей ориентации, а сверху – второй бачок с водой. Двигатель взлетной ступени в отличие от посадочного имеет меньшую тягу, закреплен жестко, то есть не способен менять вектор тяги и не дросселируется. Его возможности настолько урезаны для того, чтобы его конструкция была максимально простой и легкой.
Видно, как старались инженеры сделать корабль легким. В итоге для аппарата с такими характеристиками (две ступени, характеристическая скорость 4700 м/с, до 72 часов автономной работы) он действительно таковым получился: масса посадочной ступени около 11,7 т, взлетной – около 4,5 т.
Напоследок взглянем на музейный экспонат в виде полностью «раздетого» лунного модуля (это первый рабочий прототип модуля, экспонируемый в музее «Колыбель авиации» в Ист-Гарден-Сити)…

43.JPG

…и перейдем в кабину.

44.jpg

Свободный объем кабины 4,6 кубометра (немного больше двух телефонных будок). На фотографии видны два иллюминатора, пульт управления кораблем между ними и люк для выхода наружу под пультом. На потолке имеется небольшое прямоугольное окошко для наблюдения за стыковкой. У каждого иллюминатора предусмотрены светофильтры для защиты от солнечного ультрафиолета (на фотографии свернуты в рулончики). Здесь не хватает бортового компьютера, точно такого же, как в командном модуле (прямоугольное отверстие внизу пульта) и части электроники на боковых стенках. Что поделать, музейный экспонат…

45.jpg

Вот так размещаются в кабине астронавты при пилотировании: стоя, пристегнувшись к полу. На этой фотографии запечатлен процесс наземной тренировки экипажа Аполлона-9 на тренажере-имитаторе лунного модуля.
Взглянем на заднюю часть кабины (на снимке музейный экспонат):

46.jpg

Сверху – люк стыковочного узла, снизу под ним пол образует выступ, похожий на колпак. Внутри него находится взлетный двигатель. В металлическом ящике на задней стенке спрятана электроника компьютера наведения. Все, что находится на левой и правой стенах – аппаратура системы жизнеобеспечения. Большой белый предмет справа – это ранцевая СЖО для скафандра, установленная на месте ее заправки. Под ней расположено ассенизационно-санитарное устройство (мочеприемник). Решетка справа от колпака двигателя – выпуск системы рециркуляции воздуха. Тонкий шланг перед ней – водораздатчик. Слева от решетки находится панель управления системой жизнеобеспечения и шланги для подключения к ней скафандров. Аппарат, находящийся позади этой панели хорошо виден на этой фотографии:

47.jpg

Здесь видны два гнезда с картриджами поглотителя углекислого газа (гидроксид лития, LiOH), а позади крышки двигателя хранится запасной картридж. Натянутые всюду сетки предназначены для хранения всякого инвентаря (камеры, инструменты, мешки для образцов и т п).
Перейдем теперь к пульту управления:

48.jpg

Сверху установлен навигационный телескоп, по бокам от него на струбцинках закреплены фонарики для освещения кабины, а возле правого иллюминатора закреплена кинокамера. Пульт демонстрирует типичный американский подход: управление всеми системами корабля доверить человеку. Даже то, чем по умолчанию рулит автоматика. Отсюда так много различных тумблеров, переключателей, ручек и показометров.

Лунный модуль был единственным космическим кораблем, который никогда не возвращался на Землю и не был для этого предназначен, а также он был единственным кораблем, на котором в пилотируемом режиме были осуществлены посадка и взлет с отличного от Земли астрономического объекта. Кроме того это был первый пилотируемый корабль, с которым стыковался другой пилотируемый корабль (Джемини стыковался с беспилотной мишенью Аджена).

49.jpg


Лунный модуль Аполлона-12

Мы разобрали уже две конфигурации Аполлона: командно-сервисный модуль, в основном летавший по низкой околоземной орбите (кроме Аполлона-8) и лунный модуль, летавший к Луне (кроме Аполлона-9). Но была еще и третья конфигурация. Она использовалась только один раз, когда был совершен последний полет Аполлона с целью практически бесполезной для науки, но бесценной для политики стыковки с советским кораблем Союз-19. Конструкция Аполлона и Союза кардинально различалась. И если со стыковочными узлами проблем не было: на оба корабля легко было поставить андрогинно-периферийные агрегаты стыковки, то вот несовместимость атмосфер обоих кораблей ставила перед инженерами серьезную задачу. На Аполлоне использовался чистый кислород при давлении 0,4 атм, что позволяло значительно упростить систему жизнеобеспечения и облегчить командный модуль, сделав его стенки тоньше. На Союзе же использовался обычный воздух при давлении 1 атм. Из-за этого для перехода экипажей между кораблями возникла необходимость в декомпрессионной камере, где при переходе из Союза в Аполлон люди должны были несколько часов дышать чистым кислородом и затем медленно сбавлять давление для выхода азота из крови и предотвращения кессонной болезни. И такая камера была изготовлена. При старте Аполлона она размещалась в адаптере позади корабля, как лунный модуль, а после выхода на орбиту корабль разворачивался и стыковался с этим отсеком точно так же, как с лунным модулем.

50.jpg

В отличие от лунного модуля стыковочный модуль не был полноценным космическим кораблем: у него не было ни двигателей ориентации, ни маршевого двигателя, ни пульта управления. По сути это просто бочка, закутанная в экранно-вакуумную теплоизоляцию с присоединенными к ней с двух сторон баллонами с кислородом и воздухом, помещенные в покрытые теплоизоляцией отсеки, которые хорошо видны на этой фотографии:

51.jpg

На переднем торце этой «бочки» расположен стыковочный узел АПАС-75 и антенна сближения. Сам стыковочный узел изначально разрабатывался именно для этого полета, но его потомки АПАС-89 и АПАС-95 использовались на шаттлах и сейчас используются на китайских космических кораблях Шеньчжоу. Хорошо разглядеть этот замечательный стыковочный агрегат можно в музее космонавтики в Москве:

52.jpg

53.jpg

Фотографий стыковочного модуля Аполлона изнутри в полете мне найти не удалось. Возможно, во время декомпрессии экипажу было не до фотографирования. Зато есть фотографии с наземных тренировок в этом модуле, на которых виден его интеръер:

54.jpg

Маленький цилиндрический отсек, в котором человек даже не мог выпрямиться в полный рост. На торцах – люки стыковочных устройств (со стороны командного модуля Аполлона такой же узел «штырь-конус», какой использовался для стыковки с лунным модулем), на стенах закреплено оборудование для декомпрессии.

55.jpg

Больше про этот модуль сказать в принципе нечего: он совершенно прост.

56.jpg

На этом мы заканчиваем разбор одного из лучших космических кораблей, когда-либо построенных человечеством. До сих пор никто не сделал корабля с такими возможностями, какие были у Аполлона. Летать бы ему и летать, но закрытие лунной пилотируемой программы сильно ударило по этой космической системе, а ставка на систему Спейс Шаттл прибила Аполлон окончательно. Конструктор ракетно-космических систем NASA Вернер фон Браун прямо заявил: "Нам всегда было очевидно, что после титанических усилий, связанных с высадкой людей на Луну, придется сделать определенный шаг назад. Мы . стремились в своих докладах показать, что подобные программы нельзя открывать и закрывать, как водопроводный кран; что каждый раз, когда "кран закрывают", обнаруживаются огромные потери в знаниях и опыте, и вновь запустить подобную программу стоит колоссальных средств и что государству гораздо целесообразнее иметь программу, обеспеченную равномерным ежегодным финансированием".

Так вышло, что развитию космонавтики мы обязаны военным программам США, СССР, Германии. Сперва это было просто желание закинуть бомбу подальше да потяжелее, а потом, со взрывным ростом космических технологий в конце 50-х – 60-х годах, появились идеи вывода на орбиту самых разных видов вооружения. В том числе это были боевые и разведывательные станции, спутники и ракетопланы. Холодная война подталкивала противоборствующие стороны ко всё более и более сложным системам, ведь выводимое тогда на орбиту оружие было неуязвимо для имевшихся зенитных и авиационных ракет. Но стоимость развёртывания образцов доходила до таких космических значений, что СССР и США решили от греха подальше подписать Договор о космосе, ибо бюджеты не потянули бы гонку.

И как заключительный акт этой истории, 24 января 1975 года советская станция Салют-3 затряслась от длинной очереди из своей оборонительной установки.

И всё-таки, зачем нужна была пушка на орбитальной станции, тем более стрельбы были аж через 8 лет после подписания Договора о космосе? Идея орбитальных пилотируемых станций (ОПС) родилась ещё в начале 60-х, когда разведывательные спутники у нас только начинали развитие и были далеки от совершенства. Пилотируемая станция могла снять гораздо больше, причём выборочно, не тратя драгоценную плёнку на пустые районы. Также предполагалось оснастить станцию уникальным фотоаппаратом с диаметром зеркала около 2 м. В это же время в США активно развивались ракетопланы (X-15, X-20), а неказистые с виду Джемини могли активно маневрировать.



Аэрокосмический пилотируемый ракетоплан Boeing X-20 DYNA-SOAR

Стыковки и выходы в открытый космос для астронавтов стали делом привычным. Мало того, разведка донесла о работах над спутниками-инспекторами и перехватчиками. Терять драгоценную станцию, высококвалифицированных космонавтов и технологии не хотелось. Потому было решено вооружить станцию.



Нил Армстронг после первого полёта на North American X-15 30 ноября 1960

Огнестрельное оружие было выбрано не случайно. На время старта работ ракеты воздух-воздух были ещё далеки от совершенства и у нас в стране не считались оружием победы. Начавшаяся чуть позже война во Вьетнаме всё-таки показала, что ракеты нужны и желательно побольше, но и эксплуатация ранних Фантомов показала, что пушки всё-таки тоже нужны. Кроме капризности при размещения ракет на станции прибавлялись и другие минусы — большая масса, необходимость сложной системы наведения, основанной на мощных РЛС, которые опять же много весили и требовали мощный источник питания с серьёзной системой охлаждения. Предлагалось энергетическое оружие, но на 60-е это было за гранью фантастики. Автопушка же обладала достаточно невысокой массой, возможностью нести серьёзный боекомплект, а для поражения ракетоплана было достаточно одного попадания и тот, даже если переживёт его на орбите, не сможет вернуться на Землю. Крайне низкая плотность атмосферы на орбите позволяла снарядам долгое время не терять скорость и, соответственно, свою поражающую способность. Конечно, были минусы в виде необходимости компенсации отдачи и малой прицельной дальности. С первым решили бороться компенсирующей работой двигателей, а со вторым смирились. Для основы будущей оборонительной установки взяли авиационную 23-мм пушка Рихтера Р-23 от огнестрельного комплекса бомбардировщика Ту-22.



дальний тяжёлый сверхзвуковой (и в данном случае — ракетоносец) Ту-22


23-мм автоматическая пушка Р-23

Весила она 58,5 кг и имела огромную для одноствольной конструкции скорострельность — до 2500 выстрелов в минуту. То есть для создания равной с Р-23 плотности огня потребовалось бы три «обычных» авиапушки НР-23 весом 38 кг каждая. Этого удалось добиться барабанной схемой (часто ещё называют револьверной), когда на один ствол приходится несколько патронников. Это позволяет проводить сразу несколько операций — досылание, запирание ствола, выстрел, отпирание и экстракция гильзы. Автоматика пушки работала аж от трёх (!) газовых поршней. первый производил экстракцию гильзы вперёд, второй досылал патрон, третий поворачивал барабан. Чтобы уменьшить длину системы, досылание патрона происходило спереди, что накладывало ограничения на боеприпас и не позволяло использовать уже выпускающиеся серийно.



Особенности заряжания и огромные нагрузки на боеприпас (при заряжании скорость доходила до 25 м/с, а экстрагированная гильза летела 40 м/с) потребовали создать крайне тяжёлый патрон 23х260 мм. Он весил 509 г против 320 г у привычного 23х115 мм. Начальная скорость ОФС — 850 м/с, ради чего достаточно короткоствольной пушке потребовался мощный заряд в 67 грамм. Стальная толстостенная гильза вмещала в себя и заряд, и снаряд, как у современных телескопических боеприпасов. Масса боекомплекта оборонительной установки Ту-22 была аж на полтонны больше, чем если бы использовали предлагавшуюся АМ-23. Известный ныне конструктор Грязев писал, что система пушка-патрон получилась просто безумно дорогой. Были проблемы с надёжностью. Вот так Р-23 на земле осталась уникальным вооружением Ту-22.



Устройство патрона 23х260



Он же собственной персоной

Разработка орбитального варианта Р-23 началась в середине 60-х (хотя зачастую указывают начало 70-х). Тут сразу стоит сказать, что доступной официальной информации по системе очень мало и многое было неизвестно до видеоролика Военной приёмки «Пуля — не дура. Или шесть рекордов русских оружейников». В довольно серьёзных книгах рисовали модели чего-то с длинным и тонким стволом, что отличалось от базовой модели. Некоторые указывали, что за основу брали не Р-23, а НР-23 (но тут скорее ошибка из-за того, что в созданием Р-23М руководил Нудельман). По сети гуляли мутные фотографии из запасников Точмаша, по которым умельцы сделали довольно известные 3D-модели, но были и сомневающиеся, что изделие является именно космической пушкой и доверяли книжным рисункам. Обратимся к физике — при огромной скорострельности Р-23 ствол должен либо иметь феноменальное охлаждение, либо быть весьма массивным, что и выбрал Рихтер. На орбите же проблемы с длинным и тонким стволом увеличатся — это и размещение в ограниченном объеме и охлаждение, с которым в космосе очень большие проблемы — передача тепла может производиться фактически только за счёт излучения, тогда как на Земле львиная доля приходится на взаимодействие частиц. Это же ограничивает применение энергетического оружия — мало того, что надо найти источник энергии, так избыточное тепло надо куда-то деть.



Фото реальной Р-23М



Одно из первых доступных фото Р-23М



Это выдавали за Р-23М в 90-х — 00-х

Из самого интересного, что узнали из Военной приёмки — это то, что царь-то не настоящий пушка вовсе не пушка, а крупнокалиберный пулемёт калибра 14,5 мм. Оно и понятно — на станции важен каждый грамм, а таскать хотя бы 300 снарядов массой по полкилограмма — и из разведывательной станции получится жирный истребитель спутников. В видео замтехдиректора Точмаша Валерий Макеев указал массу пулемёта (будем уж точны и назовём вещи своими именами) в 17 кг, что гораздо легче 58 кг Р-23. Зато выросла скорострельность — аж 5000 в/мин (ранее указывалось 800-950 в/мин)! Для одноствольной системы это просто фантастическая цифра. Её достигали ещё при разработке Р-23, но, опять же, сделав на базе пушки пулемёт. Правда, тогда после первой же очереди ствол сгорел. Вполне возможно, это была не отдельная разработка, а как раз первые образцы Р-23М. Получившийся новый патрон достаточно небольшой и, судя по всему, обладает латунной, а не стальной, как у 23х260, гильзой, что также снижает массу. Пули, небольшие, тупоносые. Из-за особенностей заряжания, как и у предка, донце находится на сужающемся конце гильзы. Какой боекомплект был — неизвестно, но судя по патронному коробу явно невелик.



Патронная лента к Р-23М

Пулемёт, в составе установки Щит-1, неподвижно монтировался в корпусе станции. Для наведения надо было ворочать всю станцию целиком. Сделано это для одного — компенсировать отдачу работой 2 ЖРД коррекции по 400 кгс тяги и 16 ЖРД жёсткой ориентации по 20 кгс. ОПС Алмаз должен был иметь массу 17,8 т (для сравнения, транспортный корабль снабжения ТКС имел стартовую массу 21 т) и стрельба из крупнокалиберного пулемёта с дикой скорострельностью вполне могла увести с целевой орбиты. То есть, возможность стрельбы ограничивалась не только боекомплектом, но и запасом топлива. В конце жизненного цикла станции, после многочисленных корректировок орбиты, вполне могло статься, что станция будет беззащитной. Стрельбу можно было вести как в ручном режиме с центра контроля полёта и управления станцией, так и дистанционном, с Земли. Из-за характерной конструкции панорамного-обзорного устройства и перископа кругового обзора Сокол обстановка напоминала место наводчика танка.



Центр контроля полёта и управления станциями типа Алмаз

В свой полёт с первой и последней стрельбой Р-23М отправилась в составе Алмаз-2 (он же Салют-3) 26 июня 1974 года. К ней были отправлены две экспедиции на кораблях Союз-14 (с 3 по 19 июля 74-го, экипаж — Павел Попович и Юрий Артюхин) и Союз-15 (с 26 по 28 августа, экипаж — Геннадий Сарафанов, Лев Дёмин, из-за поломки системы стыковки Игла пришлось возвращаться ни с чем). Срок жизни станции подошёл к концу в 75-ом. 24 января 1975 года её вывели на орбиту захоронения. Тогда и была дана тестовая очередь из 20 выстрелов. Больше оружия на станции не ставили — американцы так и не создали орбитальных истребителей, а пулемёт всё-таки был слабой защитой, если перехватчики всё-таки создали бы — развитие авиационных ракет сделало стрелковое оружие вторичным.



Салют-3 на Байконуре

Первушин А. Звёздные войны. Американская Республика против Советской Империи. 2005.

Афанасьев И. Мировая пилотируемая космонавтика. История. Техника. Люди. 2005.

Первушин А. Опасный «Полёт» и боевые «Космосы». Warspot, 2020.

Первушин А. Первая орбитальная станция: как «Алмаз» стал «Салютом». Warspot, 2019.

Морозов В., Обухович В., Сидоренко С. и др. Энциклопедия современной военной авиации 1945-2002. 2005.

Автор: Алексей Борзенков


Облачные серверы от Маклауд быстрые и безопасные.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!


15 июля исполнилось 40 лет миссии «Союз-Аполлон», историческому полету, который часто считают окончанием космической гонки. Впервые два корабля, построенные на противоположных полушариях, встретились и состыковались в космосе. «Союз» и «Аполлон» были уже третьим поколением космических аппаратов. К этому моменту конструкторские коллективы уже «набили шишки» на первых экспериментах, и новые корабли должны были находиться в космосе долго и выполнять новые сложные задачи. Думаю, будет интересно посмотреть, к каким техническим решениям пришли коллективы конструкторов.

Введение

Любопытно, но в изначальных планах и «Союзы» и «Аполлоны» должны были стать аппаратами второго поколения. Но в США достаточно быстро осознали, что между последним полетом «Меркурия» и первым полетом «Аполлона» пройдет несколько лет, и для того, чтобы это время не пропало зря, была запущена программа «Джемини». А СССР ответил на «Джемини» своими «Восходами».

Также, для обоих аппаратов главной целью была Луна. США не жалели денег на лунную гонку, потому что до 1966 года СССР имел приоритет во всех значимых космических достижениях. Первый спутник, первые лунные станции, первый человек на орбите и первый человек в открытом космосе — все эти достижения были советскими. Американцы изо всех сил стремились «догнать и перегнать» Советский Союз. А в СССР задача пилотируемой лунной программы на фоне космических побед затмевалась другими насущными задачами, например, надо было догонять США по количеству баллистических ракет. Пилотируемые лунные программы — это отдельный большой разговор, а здесь мы поговорим про аппараты в орбитальной конфигурации, такой, в какой они встретились на орбите 17 июля 1975 года. Также, поскольку корабль «Союз» летает много лет и претерпел множество модификаций, говоря о «Союзе», мы будем иметь в виду версии близкие по времени к полету «Союз-Аполлона».

Средства выведения

Ракета-носитель, про которую обычно редко вспоминают, выводит космический корабль на орбиту и определяет многие его параметры, главными из которых будут максимальный вес и максимальный возможный диаметр.

В СССР для вывода нового корабля на околоземную орбиту решили использовать новую модификацию ракеты семейства «Р-7». На РН «Восход» заменили двигатель третьей ступени на более мощный, что увеличило грузоподъемность с 6 до 7 тонн. Корабль не мог иметь диаметр больше 3 метров, потому что в 60-х годах аналоговые системы управления не могли стабилизировать надкалиберные обтекатели.



Слева схема РН «Союз», справа — старт корабля «Союз-19» миссии «Союз-Аполлон»

В США для орбитальных полетов использовалась специально разработанная для «Аполлонов» РН «Saturn-I» В модификации -I она могла вывести на орбиту 18 тонн, а в модификации -IB — 21 тонну. Диаметр «Сатурна» превышал 6 метров, поэтому ограничения на размер космического корабля были минимальными.



Слева Saturn-IB в разрезе, справа — старт корабля «Apollo» миссии «Союз-Аполлон»

По размерам и весу «Союз» легче, тоньше и меньше «Аполлона». «Союз» весил 6,5-6,8 т. и имел максимальный диаметр 2,72 м. «Аполлон» имел максимальную массу 28 т (в лунном варианте, для околоземных миссий топливные баки были не полностью залиты) и максимальный диаметр 3,9 м.

Внешний вид


«Союз» и «Аполлон» реализовывали ставшую уже стандартной схему деления корабля на отсеки. Оба корабля имели приборно-агрегатный отсек (в США он называется сервисным модулем), спускаемый аппарат (командный модуль). Спускаемый аппарат «Союза» получился очень тесным, поэтому на корабль был добавлен бытовой отсек, который также мог использоваться как шлюзовая камера для выхода в открытый космос. В миссии «Союз-Аполлон» американский корабль также имел третий модуль, специальную шлюзовую камеру для перехода между кораблями.

«Союз» по советской традиции запускался целиком под обтекателем. Это позволяло не заботиться об аэродинамике корабля на выведении и располагать на наружной поверхности хрупкие антенны, датчики, солнечные батареи и прочие элементы. Также, бытовой отсек и спускаемый аппарат покрыты слоем космической теплоизоляции. «Аполлоны» продолжали американскую традицию — аппарат на выведении был закрыт лишь частично, носовую часть прикрывала баллистическая крышка, выполненная конструктивно вместе с системой спасения, а с хвостовой части корабль был закрыт переходником-обтекателем.



«Союз-19» в полете, съемка с борта «Аполлона». Темно-зеленое покрытие — теплоизоляция



«Аполлон», съемка с борта «Союза». На маршевом двигателе, похоже, местами вспучилась краска



«Союз» более поздней модификации в разрезе



«Аполлон» в разрезе

Форма спускаемого аппарата и теплозащита



Спуск корабля «Союз» в атмосфере, вид с земли

Спускаемые аппараты «Союза» и «Аполлона» похожи друг на друга больше, чем это было в предыдущих поколениях космических кораблей. В СССР конструкторы отказались от сферического спускаемого аппарата — при возвращении с Луны он потребовал бы очень узкого коридора входа (максимальная и минимальная высота, между которыми нужно попасть для успешной посадки), создал бы перегрузку свыше 12 g, а район посадки измерялся бы десятками, если не сотнями, километров. Конический спускаемый аппарат создавал подъемную силу при торможении в атмосфере и, поворачиваясь, менял ее направление, управляя полетом. При возвращении с земной орбиты перегрузка снижалась с 9 до 3-5 g, а при возвращении с Луны — с 12 до 7-8 g. Управляемый спуск серьезно расширял коридор входа, повышая надежность посадки, и очень серьезно уменьшал размеры района посадки, облегчая поиск и эвакуацию космонавтов.



Расчет несимметричного обтекания конуса при торможении в атмосфере



Спускаемые аппараты «Союза» и «Аполлона»

Диаметр 4 м, выбранный для «Аполлона», позволил сделать конус с углом полураствора 33°. Такой спускаемый аппарат имеет аэродинамическое качество порядка 0,45, а его боковые стенки практически не нагреваются при торможении. Но его недостатком были две точки устойчивого равновесия — «Аполлон» должен был входить в атмосферу ориентированным дном по направлению полета, потому что в случае входа в атмосферу боком, он мог перевернуться в положение «носом вперед» и погубить астронавтов. Диаметр 2,7 м для «Союза» делал такой конус нерациональным — слишком много места пропадало впустую. Поэтому был создан спускаемый аппарат типа «фара» с углом полураствора всего 7°. Он эффективно использует пространство, имеет только одну точку устойчивого равновесия, но его аэродинамическое качество ниже, порядка 0,3, а для боковых стенок требуется теплозащита.

В качестве теплозащитного покрытия использовались уже освоенные материалы. В СССР применяли фенол-формальдегидные смолы на тканевой основе, а в США — эпоксидную смолу на матрице из стеклопластика. Механизм работы был одинаковый — теплозащита обгорала и разрушалась, создавая дополнительный слой между кораблем и атмосферой, а сгоревшие частицы принимали на себя и уносили тепловую энергию.



Материал теплозащиты «Аполлона» до и после полета

Двигательная система

И «Аполлоны» и «Союзы» имели маршевые двигатели для коррекции орбиты и двигатели ориентации для изменения положения корабля в пространстве и выполнения точных маневров по стыковке. На «Союзе» система орбитального маневрирования была установлена впервые для советских космических кораблей. По каким-то причинам конструкторы выбрали не очень удачную компоновку, когда маршевый двигатель работал от одного топлива (НДМГ+АТ), а двигатели причаливания и ориентации — от другого (перекись водорода). В сочетании с тем, что на «Союзе» баки вмещали 500 кг топлива, а на «Аполлоне» 18 тонн, это привело к разнице запаса характеристической скорости на порядок — «Аполлон» мог изменить свою скорость на 2800 м/с, а «Союз» только на 215 м/с. Больший запас характеристической скорости даже недозаправленного «Аполлона» делал его очевидным кандидатом на активную роль при сближении и стыковке.



Корма «Союза-19», хорошо видны сопла двигателей



Двигатели ориентации «Аполлона» крупным планом

Система посадки

Системы посадки развивали наработки и традиции соответствующих стран. США продолжали сажать корабли на воду. После экспериментов с системами посадки «Меркуриев» и «Джемини» был выбран простой и надежный вариант — на корабле стояли два тормозных и три основных парашюта. Основные парашюты были резервированы, и безопасная посадка обеспечивалась при отказе одного из них. Такой отказ произошел при посадке «Аполлона-15», и ничего страшного не случилось. Резервирование парашютов позволило отказаться от индивидуальных парашютов астронавтов «Меркурия» и катапультных кресел «Джемини».



Схема посадки «Аполлона»

В СССР традиционно сажали корабль на сушу. Идеологически система посадки развивает парашютно-реактивную посадку «Восходов». После сброса крышки парашютного контейнера срабатывают последовательно вытяжной, тормозной и основной парашюты (на случай отказа системы установлен запасной). Корабль спускается на одном парашюте, на высоте 5,8 км сбрасывается теплозащитный экран, а на высоте ~1 м срабатывают реактивные двигатели мягкой посадки (ДМП). Система получилась интересная — работа ДМП создает эффектные кадры, но комфортность посадки изменяется в очень широком диапазоне. Если космонавтам везет, то удар о землю практически неощутим. Если нет, то корабль может чувствительно удариться о землю, а если совсем не повезет, то еще и опрокинется на бок.



Схема посадки



Совершенно нормальная работа ДМП



Дно спускаемого аппарата. Три круга сверху — ДМП, еще три — с противоположной стороны

Система аварийного спасения

Любопытно, но, идя разными путями, СССР и США пришли к одинаковой системе спасения. В случае аварии специальный твердотопливный двигатель, стоявший на самом верху ракеты-носителя, отрывал спускаемый аппарат с космонавтами и уносил его в сторону. Посадка производилась штатными средствами спускаемого аппарата. Такая система спасения оказалась самой хорошей из всех использованных вариантов — она простая, надежная и обеспечивает спасение космонавтов на всех этапах выведения. В реальной аварии она применялась один раз и спасла жизни Владимира Титова и Геннадия Стрекалова, унеся спускаемый аппарат от горящей в стартовом сооружении ракеты.



Слева направо САС «Аполлона», САС «Союза», различные версии САС «Союза»

Система терморегуляции

В обоих кораблях использовалась система терморегуляции с теплоносителем и радиаторами. Покрашенные в белый цвет для лучшего излучения тепла радиаторы стояли на сервисных модулях и даже выглядели одинаково:


Средства обеспечения ВКД

И «Аполлоны» и «Союзы» проектировали с учетом возможной необходимости внекорабельной деятельности (выхода в открытый космос). Конструкторские решения также были традиционными для стран — США разгерметизировали весь командный модуль и выходили наружу через стандартный люк, а СССР использовал бытовой отсек в качестве шлюзовой камеры.



ВКД «Аполлона-9»

Система стыковки

И «Союз» и «Аполлон» использовали стыковочное устройство типа «штырь-конус». Поскольку при стыковке активно маневрировал корабль, и на «Союзе» и на «Аполлоне» были установлены штыри. А для программы «Союз-Аполлон», чтобы никому не было обидно, разработали универсальный андрогинный стыковочный агрегат. Андрогинность означала, что могли состыковаться любые два корабля с такими узлами (а не только парные, один со штырем, другой с конусом).



Стыковочный механизм «Аполлона». Он, кстати, использовался и в программе «Союз-Аполлон», с его помощью командный модуль стыковался со шлюзовой камерой



Схема стыковочного механизма «Союза», первая версия



«Союз-19», вид спереди. Хорошо виден стыковочный узел

Кабина и оборудование

По составу оборудования «Аполлон» заметно превосходил «Союз». Прежде всего, в состав оборудования «Аполлона» конструкторы сумели добавить полноценную гиростабилизированную платформу, которая с высокой точностью хранила данные о положении и скорости корабля. Далее, командный модуль имел мощный и гибкий для своего времени компьютер, который при необходимости можно было бы перепрограммировать прямо в полете (и такие случаи известны). Интересной особенностью «Аполлона» было также отдельное рабочее место для астронавигации. Оно использовалось только в космосе и было расположено под ногами астронавтов.



Панель управления, вид с левого кресла



Панель управления. Слева расположены органы управления полетом, по центру — двигателями ориентации, сверху аварийные индикаторы, снизу связь. В правой части индикаторы топлива, водорода и кислорода и управление электропитанием

Несмотря на то, что оборудование «Союза» было проще, оно было самым продвинутым для советских кораблей. На корабле впервые появился бортовой цифровой компьютер, а в состав систем корабля входило оборудование для автоматической стыковки. Впервые в космосе использовались многофункциональные индикаторы на электронно-лучевой трубке.



Панель управления кораблей «Союз»

Панорама спускаемого аппарата корабля «Союз-35»

Система жизнеобеспечения

Система жизнеобеспечения была традиционной для стран. В США использовалась кислородная атмосфера при пониженном давлении, в СССР — кислородно-азотная смесь при атмосферном давлении. Эта ситуация делала невозможной прямую стыковку кораблей. Пришлось делать специальный шлюзовой отсек. Причем если из «Аполлона» в «Союз» можно было перейти очень быстро, то для обратного перехода приходилось три часа сидеть в шлюзовом отсеке, дыша чистым кислородом, чтобы удалить из крови азот. Даже советские комбинезоны становились пожароопасными в атмосфере «Аполлонов», и пришлось разрабатывать специальную ткань, в которой советские космонавты смогли бы навестить «Аполлон». Как показала практика, неудобства кислородной атмосферы перевесили ее достоинства, уже на Спейс Шаттлах атмосфера была близка к земной, и сейчас на чисто кислородной атмосфере никто не летает.
Специфика атмосферы означала, что на старте «Аполлона» астронавты должны были быть в скафандрах. На «Союзах» же летали в спортивных костюмах до катастрофы «Союза-11», после чего для безопасности старт и посадка стали происходить только в скафандрах.
С точки зрения удобства кабина «Союза» маленькая и тесная, но это компенсируется бытовым отсеком.
Бытовые удобства на «Союзе» были заметно лучше — на «Аполлонах» стоял очень некомфортный туалет.

Система электропитания

«Аполлоны» использовали очень удобную для полетов длительностью 2-3 недели систему — топливные элементы. Водород и кислород, соединяясь, вырабатывали энергию, а полученная вода использовалась экипажем. На «Союзах» в разных версиях стояли разные источники энергии. Были варианты с топливными элементами, а для полета «Союз-Аполлон» на корабле установили солнечные батареи.

Заключение

И «Союзы» и «Аполлоны» оказались по-своему очень удачными кораблями. «Аполлоны» успешно слетали к Луне и станции «Скайлэб». А «Союзы» получили крайне долгую и успешную жизнь, став основным кораблем для полетов к орбитальным станциям, с 2011 года они возят на МКС и американских астронавтов, и будут возить их, как минимум, до 2018 года.

Но за этот успех была заплачена очень дорогая цена. И «Союз» и «Аполлон» стали первыми кораблями, в которых погибли люди. Что еще печальнее, если бы конструкторы, инженеры и рабочие меньше спешили и после первых успехов не перестали бы бояться космоса, то Комаров, Добровольский, Волков, Пацаев, Гриссом, Уайт и Чеффи были бы живы.

Дополнительные материалы

Фильм о программе NASA

P.S> Небольшое объявление. В эту субботу, 25 июля, в Уфе пройдет моя лекция «Луна и лунные программы». Встреча ВК.

Читайте также: