Что составляет фундамент генетики

Обновлено: 03.05.2024

Генетика как наука по своей сути тесно связана с эволюционным учением с одной стороны, и с цитологией и молекулярной биологией - с другой. Как следствие, генетика необходима для правильного понимания биологических процессов на всех уровнях организации живой материи. В этом кратком пособии представлены наиболее часто встречающиеся задачи олимпиадного уровня по генетике и необходимые для их решения указания, сформулированы общеупотребимые понятия и продемонстрирован надлежащий путь восприятия биологической реальности с позиций современной науки.

Данный текст предполагает наличие у читателей первичных знаний по генетике, а именно знакомства с основными понятиями генетики, используемой при решении генетических задач символикой и законами Менделя.

В современной генетике для исследования закономерностей наследования применяют следующие методы:

  • Гибридологический – создание систем скрещиваний, которые позволяют проследить закономерности наследования признаков путем строгого подбора родителей, различающихся по контрастным признакам, строгого количественного учета распределения признаков у гибридов и индивидуальной оценки потомства в ряду поколений
  • Генеалогический – составление и анализ родословных
  • Близнецовый – изучение близнецов позволяет определить, насколько степень проявления признака зависит от генотипа и от внешней среды
  • Молекулярно-биологический – изучение первичной структуры молекул наследования на уровне от генов и до хромосом
  • Популяционно-генетический – изучение генетической структуры популяций и связанных с ней эволюционных закономерностей.

ДНК и ее изучение в генетике

Дезоксирибонуклеиновой кислоте отведена центральная роль в процессе хранения информации у всех клеточных организмов. Именно поэтому методы молекулярной биологии, работающих конкретно с этим полимером, так разнообразны: секвенирование последовательности нуклеотидов, полимеразная цепная реакция, гель-электрофорез, рестрикционный анализ и саузерн блоттинг.

  • Секвенирование – процесс определения последовательности азотистых оснований в цепочке ДНК. В настоящее время используется для получения полных геномов организмов и задач сходного масштаба.
  • Полимеразная цепная реакция – процесс получения многочисленных копий участка ДНК (около тысячи пар оснований), заключенного между специально подобранными короткими последовательностями (праймерами). Обычно это подготовительный этап для других методов.
  • Гель-электрофорез – способ разделения линейных фрагментов ДНК в агарозном геле в зависимости от их длины (более короткие мигрируют быстрее) за счет энергии электрического поля и последующей визуализации при помощи флуоресцентных красителей, специфически взаимодействующих с ДНК. Часто параллельно с исследуемыми образцами форез проходит набор линейных фрагментов ДНК известной длины, что позволяет точнее оценить длину исходных фрагментов.
  • Рестрикционный анализ – изучение ДНК с применением эндонуклеаз рестрикции, то есть ферментов, которые вносят в ДНК двуцепочечный разрыв, но только в тех местах, где встречается специфическая для каждой конкретной рестриктазы последовательность нуклеотидов.
  • Саузерн-блоттинг – способ поиска в исследуемой ДНК определенных последовательностей, комплементарных известной последовательности ДНК-метки. Этому этапу предшествует гель-электрофорез. Метод помогает в поиске гомологичных генов и копий гена в геноме.

С помощью этих методов можно обосновать различия генотипов организмов на молекулярном уровне и визуализировать различные мутации. Комбинируя гель-электрофорез с использованием рестриктаз, можно картировать ДНК. Для этого сопоставляют результаты гидролиза исследуемого фрагмента каждой рестриктазой в отдельности и их комбинациями. Затем эти фрагменты разделяют с помощью электрического поля и оценивают их размеры. Результаты совместного гидролиза показывают, содержится ли сайты узнавания разных рестриктаз внутри фрагмента, вычленяемого определенной рестриктазой. Если они присутствуют, то такой фрагмент исчезает в геле и превращается в два и более субфрагмента с такой же суммарной длиной. Сопоставив размеры фрагментов, можно определить локализацию сайтов рестрикции.

У многих бактерий для защиты от вирусов есть специальные ферменты – рестриктазы. Они расщепляют ДНК по определённым последовательностям, которые в ДНК бактерий данного вида отсутствуют или модифицированы присоединением к основанию метильной группы. Эти ферменты называют по первым буквам латинского названия рода и вида бактерии, например, Есо – Е sсherichia co li – рестриктаза из кишечной палочки. При действии такого фермента на очищенную ДНК разрывы происходят в строго определённых местах, и образуются фрагменты ДНК определённой длины.

Сравнивая расщепление исследуемой ДНК различными рестриктазами и их комбинациями, можно определить относительное расположение точек расщепления и построить рестрикционную карту данной последовательности ДНК. Из клеток бактерий выделили небольшую кольцевую ДНК – плазмиду, несущую ген устойчивости к пенициллину. Расщепление этой плазмиды тремя рестриктазами дало следующие фрагменты (см. таблицу). По этим данным постройте рестрикционнную карту плазмиды, расположив на ней все точки расщепления. Ответ обоснуйте и оформите по образцу (как на рис.).

Решение

Один из подходов к решению этой задачи – рассмотреть положение сайтов рестрикции Sal и Hind относительно друг друга. Sal даёт два фрагмента одинаковой длины (5 тыс. п.н.), после обработки Sal+Hind получаются фрагменты 4; 3; 2 и 1. Далее с помощью элементарной арифметики можно определить, что один из фрагментов Sal разрезается Hind на фрагменты 4 и 1 (4 + 1 = 5), а другой – на фрагменты 3 и 2 (3 + 2= 5).

Рестриктаза Hind даёт фрагменты 6 и 4 тыс. п. н. После обработки Sal+Hind фрагмент 6 тыс. п.н. разрезается на фрагменты 4 и 2 тыс. п. н., а фрагмент 4 тыс. п.н. – на 3 и 1 соответственно. Этих данных достаточно для начала построения рестрикционной карты плазмиды. Для удобства обозначим разными цветами каждую из пар, состоящих из сайта рестрикции Sal и близлежащего сайта Hind.

Теперь можно установить взаимное расположение сайтов Sal и Ava. При совместном действии Sal+Ava получается четыре фрагмента: 3,5 тыс. п. н.; 3 тыс. п. н., 2 тыс. п. н. и 1,5 тыс. п. н. Очевидно, что один из фрагментов Sal разрезается Ava на 3,5 и 1,5 тыс. п. н. (3,5 + 1,5 = 5), а второй – на 3 и 2 тыс. п. н. (3 + 2 = 5) соответственно. Аналогично можно построить карту для Sal и Ava.

Теперь построим еще одну вспомогательную карту для Hind и Ava. Очевидно, что фрагмент Hind длиной 6 тыс. п. н. разрезается Ava на фрагменты 4 и 2 тыс. п. н., а фрагмент Hind 4 тыс. п. н. разрезается Ava на фрагменты 2,5 и 1,5 тыс. п. н. При этом фрагменты 4 и 1,5 должны оказаться рядом (как и фрагменты 2 и 2,5). Это следует из данных по обработке плазмиды только Ava. Карта по Hind и Ava выглядит следующим образом.

Для окончательного решения необходимо совместить все полученные рестрикционные карты. При этом мы можем столкнуться с ситуацией, когда одну из карт придётся либо симметрично отобразить, либо повернуть на некоторый угол. Есть две возможности такого совмещения.

    1. Сайт Hind (1) на рис. В соответствует сайту Hind* , помеченному зелёным цветом на рис. А .
    1. Сайт Hind (1) на рис. В соответствует сайту Hind , помеченному розовым цветом на рис. А .

Рассмотрим обе возможности.

  1. В случае Hind(1)=Hind* сайты рестрикции Sal должны находиться на расстоянии 2 ( Sal* ) и 3 тыс. п. н. ( Sal ). Тогда точка рестрикции Sal окажется на расстоянии 0,5 тыс. п. н. от Ava (1) (см. рис. В). При совместном действии на ДНК плазмиды Sal+Ava должен получиться фрагмент длиной 0,5 тыс. п. н. Однако это противоречит условию: получаются фрагменты короче 1,5 тыс. п. н.
  2. В случае Hind(1)=Hind сайты рестрикции Sal должны находиться на расстоянии 1 ( Sal ) и 4 тыс. п. н. ( Sal* ). В этом случае сайт Sal окажется на расстоянии 1,5 от сайта Ava(1) , а сайт Sal* – на расстоянии 2,0 от сайта Ava(2) . Таким образом, сопоставляя рис. Б и рис. В, мы находим, что Ava(1) = Ava* , тогда как Ava(2) = Ava , и мы должны отобразить карту на рис. Б зеркально. Итоговая рестрикционная карта выглядит следующим образом.

Ответ: рис.

Если карта зеркально симметрична приведённой в ответе, и/или повёрнута на некоторый угол, это не является ошибкой. Задачу также можно было начинать решать с построения начальной карты для любой другой рестриктазы.

Структура гена и его действие через продукт

Подавляющее большинство генов проявляют свою функцию через кодируемый ими белок (структурные гены). В ходе процесса трансляции согласно последовательности оснований нуклеиновых кислот в соответствии с генетическим кодом образуется последовательность аминокислот. Генетический код обладает следующими свойствами:

  1. Триплетность – каждая аминокислота кодируется последовательностью из трех нуклеотидов
  2. Однозначность – каждый триплет кодирует одну аминокислоту либо сигнал конца трансляции
  3. Вырожденность – большинству аминокислот соответствует несколько разных триплетов
  4. Знаки препинания отсутствуют внутри гена и обязательно встречаются в конце его последовательности
  5. Универсальность – одинаковые триплеты кодируют одинаковые аминокислоты у различных форм жизни

Проще всего отслеживать те белки, которые катализируют какую-то химическую реакцию. Например, изучая мутантные клетки, не способные к синтезу какого-либо вещества, можно установить последовательность химических реакций в метаболическом пути. В олимпиадной практике это может выглядеть как задача про тест на синтрофизм. Рассмотрим такую задачу, предложенную на теоретическом туре B международной олимпиады по биологии 2014 года .

Три мутантных штамма бактерий TrpB-, TrpE- и TrpD-, дефективные по одной из ступеней пути биосинтеза триптофана, были нанесены штрихами на чашку Петри (см. рисунок ниже). В среде была ограниченная концентрация триптофана, позволившая вырасти тонким штрихам, прежде чем триптофан в среде кончился. Но некоторые фрагменты штрихов продолжили свой рост и стали толще. В ходе синтеза триптофана происходит превращение хоризмата в антранилат, индол, и, в конце концов, триптофан.

Установите истинность следующих утверждений:

  1. Из результатов следует, что промежуточные соединения активно секретируются клетками культуры
  2. У TrpD- мутация в ферменте, катализирующем превращения индола в триптофан
  3. TrpE- способен синтезировать триптофан, если в среде есть антранилат или индол
  4. Индол будет накапливаться в среде, в которой TrpB- клетки расположены в непосредственной близости от TrpD-

Решение: Тест на синтрофизм основан на том, что мутация с утратой функции влечет за собой прекращение дальнейшего использования промежуточного метаболита, занимающего место в цепи биосинтеза непосредственно перед блокированной стадией. В результате промежуточный метаболит накапливается в мутантной клетке и может выделяться в ростовую среду. Такие мутантные клетки способны поддерживать с помощью выделяемого ими метаболита рост других мутантных клеток, у которых блокированы более ранние этапы данной цепи биосинтеза. Лимитированное количество конечного продукта пути биосинтеза, в данном случае триптофана, необходимо для поддержания слабого роста штрихов мутантных клеток, позволяющего им выделять в среду диффундирующие метаболиты. Обильный рост на концах штрихов клеток TrpD и TrpE объясняется тем, что они получают необходимый для их роста метаболит от клеток TrpB, а клетки TrpE еще и от TrpD. Поскольку клетки TrpB поддерживают рост TrpD и TrpE, ген TrpB занимает место в процессе биосинтеза триптофана после TrpD и TrpE. Клетки TrpD поддерживают рост TrpE, следовательно, ген TrpD расположен после гена TrpE. Порядок генов в контроле процесса биосинтеза триптофана:

Теперь рассмотрим истинность утверждений:

  1. Из результатов следует, что промежуточные соединения активно секретируются из клеток. Неверно , так как эксперимент не был связан с активным транспортом.
  2. У TrpD- мутация в ферменте, катализирующем превращения индола в триптофан. Неверно , так как у TrpD мутация в ферменте, превращающем антранилат в индол.
  3. TrpE- способен синтезировать триптофан, если в среде есть антранилат или индол. Верно , так как у него нарушена более ранняя стадия биосинтетического пути.
  4. Индол будет накапливаться в среде, в которой TrpB- клетки расположены в непосредственной близости от TrpD-. Неверно . Хотя TrpB- клетки выделяют в окружающую среду именно индол, он не будет накапливаться, так как TrpD способен синтезировать триптофан из индола и будет его потреблять из среды.

Скрещивание при условии отсутствия взаимосвязи генов

В этом разделе рассматриваются случаи, когда признак кодируется одним геном, гены не входят в группы сцепления, а их продукты никак не взаимодействуют друг с другом. Но тем не менее, кажущаяся простота таких задач может негативно отразиться на способности их решать, если не помнить о следующих сложностях:

  1. Полное/неполное доминирование. В случае если фенотип гетерозиготы совпадает с фенотипом доминантной гомозигиты, аллельные гены взаимодействуют по принципу полного доминирования. В случае неполного доминирования фенотип гетерозиготы не совпадает с фенотипами гомозигот и представляет собой среднее (промежуточное) между доминантным и рецессивным фенотипом.
  2. Пенетратность – отношение частоты проявления фенотипа к частоте генотипа
  3. Плейотропизм – множественный эффект генов за счет многообразия ролей продукта. Пример: синдром Морфана. Мутация в гене фибриллина-1 приводит к развитию паучьих пальцев, сдвигу хрусталика и пролапсу сердечных клапанов у носителя.
  4. Множественный аллелизм – наличие двух и более вариантов аллеля у гена
  5. Кодоминирование – формирование у гетерозиготы фенотипа, отличного от фенотипа гомозигот, в результате присутствия продуктов обоих аллелей. Например, четвертая группа крови у людей возникает из-за присутствия на поверхности эритроцитов обоих вариантов антигенов
  6. Сверхдоминирование – гетерозиготы обычно более сильные и лучше приспособлены по сравнению с обеими гомозиготами. В качестве примера можно привести серповидноклеточную анемию у человека в регионах с сильной угрозой малярии. Рецессивные гомозиготы по этому признаку погибают в детстве, а в эритроцитах гетерозигот плазмодию размножаться труднее, чем в нормальных. Доминантные гомозиготы имеют обычные эритроциты.

Еще нужно обращать внимание на то, заданы ли генотипы в задаче прямо или косвенно. Проиллюстрируем это на примере задачи из регионального этапа ВОШ по биологии 16/17 учебного года

У собак часто встречается рецессивная глухота, не сцепленная с полом. Признак определяется одним геном. Вы завели пару собак с нормальным слухом, при этом, несмотря на то что все их родители имели нормальный слух, и у самца, и у самки были сибсы (братья и сёстры) с глухотой. Какова вероятность рождения глухого щенка у этой пары?

Чтобы найти вероятность рождения глухого щенка, для начала определим генотипы родителей и старшего поколения. Так как у родителей есть глухие сибсы (рецессивные гомозиготы), а всё старшее поколение здорово, оба родителя этой пары собак гетерозиготны. Так как исходная пара здорова, то при таком фенотипе для каждого из них существует вероятность того, что они гетерозиготны, которая равна 2/3, и 1/3 – что они доминантные гомозиготы. Щенок будет глухим, только если он родиться от гетерозиготных родителей (вероятность того, что пара гетерозиготна, равна 4/9) и получит от каждого рецессивный ген (вероятность 1/4). Следовательно, итоговая вероятность искомого события 1/9.

Задача из заключительного этапа ВОШ по биологии 14/15

В попытках вывести чистую линию коротконогих кур селекционер десять поколений скрещивал коротконогих кур друг с другом, но при этом всегда около трети цыплят имели обычные ноги и примерно две трети - короткие ноги. Это связано с тем, что:

  1. ген коротконогости находится на Х-хромосоме и проявляется у самцов; Неверно , так как про пол ничего не сказано. Отношение полов у кур 1:1
  2. ген коротконогости летален в гомозиготе и проявляется у гетерозигот; Верно , пример плейотропного действия гена.
  3. ген коротконогости по-разному проявляет себя у самцов и самок; Неверно , соотношение полов у кур 1:1, про пол потомков ничего не сказано.
  4. коротконогость связана с несколькими независимо наследуемыми генами. Неверно , расщепление при нескольких независимых генах не такое простое.

Взаимодействие неаллельных генов

Множество биологических процессов состоит из нескольких стадий. Кроме того, в геноме могут присутствовать регуляторные элементы, влияющие на возможность проявления признака. Традиционно к неаллельным взаимодействиям относят следующие явления:

  1. Комплементарность – признак формируется при сочетании продуктов доминантных аллелей. Пример задания из заключительного этапа ВОШ по биологии 14/15 .

В школьной лаборатории учащиеся старших классов проводили изучение синтеза пигмента в лепестках некоторого вида растений. Для эксперимента использовали два сорта, обладающие цветками с белыми венчиками. Сначала ребята измельчали лепестки, после чего изготавливали экстракты. При смешивании полученных растворов первоначально бесцветная жидкость со временем приобретала пурпурный оттенок. Ознакомьтесь со схемой эксперимента. Известно, что за признак отвечают два гена. Какое расщепление следует ожидать в F2 в случае скрещивания растений сорта №1 и сорта №2 друг с другом? Считайте, что оба сорта являются чистыми линиями (т.е. гомозиготны по всем генам).

Чешский исследователь Грегор Мендель (1822–1884) считается основателем генетики, так как он первым, еще до того как оформилась эта наука, сформулировал основные законы наследования. Многие ученые до Менделя, в том числе выдающийся немецкий гибридизатор XVIII в. И. Кельрейтер, отмечали, что при скрещивании растений, принадлежащих к различным разновидностям, в гибридном потомстве наблюдается большая изменчивость. Однако объяснить сложное расщепление и, тем более, свести его к точным формулам никто не сумел из-за отсутствия научного метода гибридологического анализа.

Именно благодаря разработке гибридологического метода Менделю удалось избежать трудностей, запутавших более ранних исследователей. О результатах своей работы Г. Мендель доложил в 1865 г. на заседании Общества естествоиспытателей в г. Брюнна. Сама работа под названием “Опыты над растительными гибридами” была позже напечатана в “Трудах” этого общества, но не получила надлежащей оценки современников и оставалась забытой в течение 35 лет.

Будучи монахом, свои классические опыты по скрещиванию различных сортов гороха Г. Мендель проводил в монастырском саду в г. Брюнна. Он отобрал 22 сорта гороха, которые имели четкие альтернативные различия по семи признакам: семена желтые и зеленые, гладкие и морщинистые, цветки красные и белые, растения высокие и низкие и т.д. Важным условием гибридологического метода было обязательное использование в качестве родителей чистых, т.е. не расщепляющихся по изучаемым признакам форм.

Большую роль в успехе исследований Менделя сыграл удачный выбор объекта. Горох посевной — самоопылитель. Для получения гибридов первого поколения Мендель кастрировал цветки материнского растения (удалял пыльники) и производил искусственное опыление пестиков пыльцой мужского родителя. При получении гибридов второго поколения эта процедура уже была не нужна: он просто оставлял гибриды F1 самоопыляться, что делало эксперимент менее трудоемким. Растения гороха размножались исключительно половым способом, так что ни какие отклонения не могли исказить результаты опыта. И, наконец, у гороха Мендель обнаружил достаточное для анализа количество пар ярко контрастирующих (альтернативных) и легко различимых пар признаков.

Мендель начал анализ с самого простого типа скрещивания — моногибридного, при котором у родительских особей имеются различия по одной паре признаков. Первой закономерностью наследования, обнаруженной Менделем, было то, что все гибриды первого поколения имели одинаковый фенотип и наследовали признак одного из родителей. Этот признак Мендель назвал доминантным. Альтернативный ему признак другого родителя, не проявившийся у гибридов, был назван рецессивным. Открытая закономерность получила названия I закона Менделя, или закона единообразия гибридов I-го поколения. В ходе анализа второго поколения была установлена вторая закономерность: расщепление гибридов на два фенотипических класса (с доминантным признаком и с рецессивным признаком) в определенных числовых отношениях. Путем подсчета количества особей в каждом фенотипическом классе Мендель установил, что расщепление в моногибридном скрещивании соответствует формуле 3 : 1 (на три растения с доминантным признаком, одно — с рецессивным). Эта закономерность получила название II закона Менделя, или закона расщепления. Открытые закономерности проявлялись при анализе всех семи пар признаков, на основании чего автор пришел к выводу об их универсальности. При самоопылении гибридов F2 Мендель получил следующие результаты. Растения с белыми цветами давали потомство только с белыми цветками. Растения с красными цветками вели себя по-разному. Лишь третья часть их давала единообразное потомство с красными цветами. Потомство остальных расщеплялось в отношении красной и белой окраски в соотношении 3 : 1.

Ниже приведена схема наследования окраски цветков гороха, иллюстрирующая I и II законы Менделя.

Схема наследования красной и белой окраски цветков у гороха

Схема наследования красной и белой окраски цветков у гороха

При попытке объяснить цитологические основы открытых закономерностей Мендель сформулировал представление о дискретных наследственных задатках, содержащихся в гаметах и определяющих развитие парных альтернативных признаков. Каждая гамета несет по одному наследственному задатку, т.е. является “чистой”. После оплодотворения зигота получает два наследственных задатка (один — от матери, другой — от отца), которые не смешиваются и в дальнейшем при образовании гибридом гамет также попадают в разные гаметы. Эта гипотеза Менделя получила название правила “чистоты гамет”. От комбинации наследственных задатков в зиготе зависит то, каким признаком будет обладать гибрид. Задаток, определяющий развитие доминантного признака, Мендель обозначал заглавной буквой (А), а рецессивный — прописной (а). Сочетание АА и Аа в зиготе определяет развитие у гибрида доминантного признака. Рецессивный признак проявляется только при комбинации аа.

В 1902 г. В. Бетсон предложил обозначить явление парности признаков термином “аллеломорфизм”, а сами признаки, соответственно, “аллеломорфными”. По его же предложению, организмы, содержащие одинаковые наследственные задатки, стали называть гомозиготными, а содержащие разные задатки — гетерозиготными. Позже, термин “аллеломорфизм” был заменен более кратким термином “аллелизм” (Иогансен, 1926), а наследственные задатки (гены), отвечающие за развитие альтернативных признаков были названы “аллельными”.

Гибридологический анализ предусматривает реципрокное скрещивание родительских форм, т.е. использования одной и той же особи сначала в качестве материнского родителя (прямое скрещивание), а затем в качестве отцовского (обратное скрещивание). Если в обоих скрещиваниях получаются одинаковые результаты, соответствующие законам Менделя, то это говорит о том, что анализируемый признак определяется аутосомным геном. В противном случае имеет место сцепление признака с полом, обусловленное локализацией гена в половой хромосоме.

Схема реципрокного моногибридного скрещивания

Схема реципрокного моногибридного скрещивания


Буквенные обозначения: Р — родительская особь, F — гибридная особь, ♀ и ♂ — женская или мужская особь (или гамета),
заглавная буква (А) — доминантный наследственный задаток (ген), строчная буква (а) — рецессивный ген.

Среди гибридов второго поколения с желтой окраской семян есть как доминантные гомозиготы, так и гетерозиготы. Для определения конкретного генотипа гибрида Мендель предложил проводить скрещивание гибрида с гомозиготной рецессивной формой. Оно получило название анализирующего. При скрещивании гетерозиготы (Аа) с линией анализатором (аа) наблюдается расщепление и по генотипу, и по фенотипу в соотношении 1 : 1.

Схема анализирующего скрещивания

Если гомозиготной рецессивной формой является один из родителей, то анализирующее скрещивание одновременно становится беккроссом — возвратным скрещиванием гибрида с родительской формой. Потомство от такого скрещивания обозначают Fb.

Закономерности, обнаруженные Менделем при анализе моногибридного скрещивания, проявлялись также и в дигибридном скрещивании, в котором родители различались по двум парам альтернативных признаков (например, желтая и зеленая окраска семян, гладкая и морщинистая форма). Однако количество фенотипических классов в F2 возрастало вдвое, а формула расщепления по фенотипу была 9 : 3 : 3 : 1 (на 9 особей с двумя доминантными признаками, по три особи — с одним доминантным и одним рецессивным признаком и одна особь с двумя рецессивными признаками).

Для облегчения анализа расщепления в F2 английский генетик Р. Пеннет предложил его графическое изображение в виде решетки, которую стали называть по его имени (решеткой Пеннета). Слева по вертикали в ней располагаются женские гаметы гибрида F1, справа — мужские. Во внутренние квадраты решетки вписываются сочетания генов, возникающие при их слиянии, и соответствующий каждому генотипу фенотип. Если гаметы располагать в решетке в той последовательности, какая представлена на схеме, то в решетке можно заметить порядок в расположении генотипов: по одной диагонали располагаются все гомозиготы, по другой — гетерозиготы по двум генам (дигетерозиготы). Все остальные клетки заняты моногетерозиготами (гетерозиготами по одному гену).

Расщепление в F2 можно представить, используя фенотипические радикалы, т.е. указывая не весь генотип, а только гены, которые определяют фенотип. Эта запись выглядит следующим образом:

Расщепление в F2

Черточки в радикалах означают, что вторые аллельные гены могут быть как доминантными, так и рецессивными, фенотип при этом будет одинаковым.

Схема дигибридного скрещивания
(решетка Пеннета)

Схема дигибридного скрещивания (решетка Пеннета)

Общее количество генотипов F2 в решетке Пеннета — 16, но разных — 9, так как некоторые генотипы повторяются. Частота разных генотипов описывается правилом:

В F2 дигибридного скрещивания все гомозиготы встречаются один раз, моногетерозиготы — два раза и дигетерозиготы — четыре раза. В решетке Пеннета представлены 4 гомозиготы, 8 моногетерозигот и 4 дигетерозиготы.

Расщепление по генотипу соответствует следующей формуле:

1ААВВ : 2ААВb : 1ААbb : 2АаВВ : 4АаВb : 2Ааbb : 1ааВВ : 2ааВb : 1ааbb.

Сокращенно - 1 : 2 : 1 : 2 : 4 : 2 : 1 : 2 : 1.

Среди гибридов F2 только два генотипа повторяют генотипы родительских форм: ААВВ и ааbb; в остальных произошла перекомбинация родительских генов. Она привела к появлению двух новых фенотипических классов: желтых морщинистых семян и зеленых гладких.

Проведя анализ результатов дигибридного скрещивания по каждой паре признаков отдельно, Мендель установил третью закономерность: независимый характер наследования разных пар признаков (III закон Менделя). Независимость выражается в том, что расщепление по каждой паре признаков соответствует формуле моногибридного скрещивания 3 : 1. Таким образом, дигибридное скрещивание можно представить как два одновременно идущих моногибридных.

Как было установлено позже, независимый тип наследования обусловлен локализацией генов в разных парах гомологичных хромосом. Цитологическую основу менделевского расщепления составляет поведение хромосом в процессе клеточного деления и последующее слияние гамет во время оплодотворения. В профазе I редукционного деления мейоза гомологичные хромосомы коньюгируют, а затем в анафазе I расходятся к разным полюсам, благодаря чему аллельные гены не могут попасть в одну гамету. Негомологичные хромосомы при расхождении свободно комбинируются друг с другом и отходят к полюсам в разных сочетаниях. Этим обусловлена генетическая неоднородность половых клеток, а после их слияния в процессе оплодотворения — генетическая неоднородность зигот, и как следствие, генотипическое и фенотипическое разнообразие потомства.

Независимое наследование разных пар признаков позволяет легко рассчитывать формулы расщепления в ди- и полигибридных скрещиваниях, так как в их основе лежат простые формулы моногибридного скрещивания. При расчете используется закон вероятности (вероятность встречаемости двух и более явлений одновременно равна произведению их вероятностей). Дигибридное скрещивание можно разложить на два, тригибридное — на три независимых моногибридных скрещивания, в каждом из которых вероятность проявления двух разных признаков в F2 равна 3 : 1. Следовательно, формула расщепления по фенотипу в F2 дигибридного скрещивания будет:

(3 : 1) 2 = 9 : 3 : 3 : 1,

тригибридного (3 : 1) 3 = 27 : 9 : 9 : 9 : 3 : 3 : 3 : 1 и т.д.

Число фенотипов в F2 полигибридного скрещивания равно 2 n , где n — число пар признаков, по которым различаются родительские особи.

Формулы расчета других характеристик гибридов представлены в таблице 1.

Таблица 1. Количественные закономерности расщепленияв гибридном потомстве
при различных типах скрещиваний

Расщепление по фенотипу в F2

Проявление закономерностей наследования, открытых Менделем, возможно только при определенных условиях (не зависящих от экспериментатора). Ими являются:

  1. Равновероятное образование гибридом всех сортов гамет.
  2. Всевозможное сочетание гамет в процессе оплодотворения.
  3. Одинаковая жизнеспособность всех сортов зигот.

Если эти условия не реализуются, то характер расщепления в гибридном потомстве изменяется.

Первое условие может быть нарушено по причине нежизнеспособности того или иного типа гамет, возможной вследствие различных причин, например, негативного действия другого гена, проявляющегося на гаметическом уровне.

Второе условие нарушается в случае селективного оплодотворения, при котором наблюдается предпочтительное слияние определенных сортов гамет. При этом гамета с одним и тем же геном может вести себя в процессе оплодотворения по-разному, в зависимости от того является ли она женской или мужской.

Третье условие обычно нарушается, если доминантный ген имеет в гомозиготном состоянии летальный эффект. В этом случае в F2 моногибридного скрещивания в результате гибели доминантных гомозигот АА вместо расщепления 3 : 1 наблюдается расщепление 2 : 1. Примером таких генов являются: ген платиновой окраски меха у лисиц, ген серой окраски шерсти у овец породы ширази. (Подробнее в следующей лекции.)

Причиной отклонения от менделевских формул расщепления может также стать неполное проявление признака. Степень проявления действия генов в фенотипе обозначается термином экспрессивность. У некоторых генов она является нестабильной и сильно зависит от внешних условий. Примером может служить рецессивный ген черной окраски тела у дрозофилы (мутация ebony), экспрессивность которого зависит от температуры, вследствие чего особи гетерозиготные по этому гену могут иметь темную окраску.

Открытие Менделем законов наследования более чем на три десятилетия опередило развитие генетики. Опубликованный автором труд “Опыт работы с растительными гибридами” не был понят и по достоинству оценен современниками, в том числе Ч. Дарвиным. Основная причина этого заключается в том, что к моменту публикации работы Менделя еще не были открыты хромосомы и не был описан процесс деления клеток, составляющий, как было сказано выше, цитологическую основу менделевских закономерностей. Кроме того, сам Мендель усомнился в универсальности открытых им закономерностей, когда по совету К. Негели стал проверять полученные результаты на другом объекте — ястребинке. Не зная о том, что ястребинка размножается партеногенетически и, следовательно, у нее нельзя получить гибридов, Мендель был совершенно обескуражен итогами опытов, никак не вписывавшимися в рамки его законов. Под влиянием неудачи он забросил свои исследования.

Признание пришло к Менделю в самом начале ХХ в., когда в 1900 г. три исследователя — Г. де Фриз, К. Корренс и Э. Чермак — независимо друг от друга опубликовали результаты своих исследований, воспроизводящих эксперименты Менделя, и подтвердили правильность его выводов. Поскольку к этому времени был полностью описан митоз, почти полностью мейоз (его полное описание завершилось в 1905 г.), а также процесс оплодотворения, ученые смогли связать поведение менделевских наследственных факторов с поведением хромосом в процессе клеточного деления. Переоткрытие законов Менделя и стало отправной точкой для развития генетики.

Первое десятилетие ХХ в. стало периодом триумфального шествия менделизма. Закономерности, открытые Менделем, были подтверждены при изучении различных признаков как на растительных, так и на животных объектах. Возникло представление об универсальности законов Менделя. Вместе с тем стали накапливаться факты, которые не укладывались в рамки этих законов. Но именно гибридологический метод позволил выяснить природу этих отклонений и подтвердить правильность выводов Менделя.

Все пары признаков, которые были использованы Менделем, наследовались по типу полного доминирования. В этом случае рецессивный ген в гетерозиготе не действует, и фенотип гетерозиготы определяется исключительно доминантным геном. Однако большое число признаков у растений и животных наследуются по типу неполного доминирования. В этом случае гибрид F1 полностью не воспроизводит признак того или другого родителя. Выражение признака является промежуточным, с большим или меньшим уклонением в ту или другую сторону.

Примером неполного доминирования может быть промежуточная розовая окраска цветков у гибридов ночной красавицы, полученных при скрещивании растений с доминантной красной и рецессивной белой окраской (см. схему).

Схема неполного доминирования при наследовании окраски цветков у ночной красавицы

Схема неполного доминирования при наследовании окраски цветков

Как видно из схемы, в скрещивании действует закон единообразия гибридов первого поколения. Все гибриды имеют одинаковую окраску — розовую — в результате неполного доминирования гена А. Во втором поколении разные генотипы имеют ту же частоту, что и в опыте Менделя, а изменяется только формула расщепления по фенотипу. Она совпадает с формулой расщепления по генотипу — 1 : 2 : 1, так как каждому генотипу соответствует свой признак. Это обстоятельство облегчает проведение анализа, так как отпадает надобность в анализирующем скрещивании.

Существует еще один тип поведения аллельных генов в гетерозиготе. Он называется кодоминированием и описан при изучении наследования групп крови у человека и ряда домашних животных. В этом случае у гибрида, в генотипе которого присутствуют оба аллельных гена, в равной мере проявляются оба альтернативных признака. Кодоминирование наблюдается при наследовании групп крови системы А, В, 0 у человека. У людей с группой АВ (IV группа) в крови присутствуют два разных антигена, синтез которых контролируется двумя аллельными генами.

Похожие материалы по теме "Законы Менделя":

Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы":


Генетика человека и такие фундаментальные дисциплины, как анатомия, физиология, биохимия, составляют основу современной медицины. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость.

Наследственность и изменчивость у человека являются предметом изучения генетики человека на всех уровнях его организации: молекулярном, клеточном, организменном, популяционном. Генетика человека своими успехами в значительной мере обязана медицинской генетике - науке, изучающей роль наследственности в патологии человека. Прикладной раздел медицинской генетики - это клиническая генетика, которая использует достижения медицинской генетики, генетики человека и общей генетики в решении клинических проблем, возникающих у людей.

Генетика представляет собой одну из наиболее сложных дисциплин современного естествознания. Чтобы разобраться в ней глубоко, в своей работе я рассмотрю основные этапы развития генетики, виды генетики, достижения генетики в современной медицине и т.д.

1. История развития генетики

Генетика – это наука, изучающая закономерности наследственности и изменчивости, а также обеспечивающие их биологические механизмы.

Первый научный шаг в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 г. опубликовал статью «Опыты над растительными гибридами», заложившую основы современной генетики.

До открытий Менделя признавалась теория так называемой слитной наследственности. Суть этой теории состояла в том, что при оплодотворении мужское и женское «начало» перемешивались, «как краски в стакане воды», давая начало новому организму. Мендель показал, что наследственные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособленных) единиц. Эти единицы, представленные у особей парами (аллелями), остаются дискретными и передаются последующим поколениям в мужских и женских гаметах, каждая из которых содержит по одной единице из каждой пары. В 1909 г. датский ботаник-селекционер В. Иогансен назвал их «генами», а в 1912 г. американский генетик Т. Г. Морган показал, что они находятся в хромосомах.

Официальной датой рождения генетики считают 1900 год. Тогда были опубликованы данные Г. де Фриза, К. Корренса и К.Чермака, переоткрывших закономерности наследования признаков, установленные Г.Менделем. Первые десятилетия 20-го века оказались плодотворными в развитии основных положений и направлений генетики. Было сформулировано представление о мутациях, популяциях и чистых линиях организмов, хромосомная теория наследственности, открыт закон гомологических рядов, получены данные о возникновении наследственных изменений под действием рентгеновских лучей, была начата разработка основ генетики популяций организмов.

В 1953 году в международном научном журнале была напечатана статья биологов Джеймса Уотсона и Френсиса Крика о строении дезоксирибонуклеиновой кислоты – ДНК.

Структура ДНК оказалась совершенно необычной: её молекулы имеют огромную по молекулярным масштабам длину и состоят из двух нитей, сплетённых между собой в двойную спираль. Каждую из нитей можно сравнить с длинной нитью бус. У белков "бусинами" являются аминокислоты двадцати различных типов. У ДНК – всего четыре типа "бусин", и зовутся они нуклеотидами. "Бусины" двух нитей двойной спирали ДНК связаны между собой и строго друг другу соответствуют. В ДНК напротив нуклеотида аденина находится тимин, напротив цитозина – гуанин. При таком построении двойной спирали каждая из цепей содержит сведения о строении другой. Зная строение одной цепи, всегда можно восстановить другую.

Получаются две двойные спирали – точные копии их предшественницы. Это свойство точно копировать себя имеет ключевое значение для жизни на Земле.

2. Генетика и медицина

2.1 Методы исследования

В генетике основным методом исследования является генетический анализ, который проводится на всех уровнях организации живого (от молекулярного до популяционного). В зависимости от цели исследования "видоизменяется" в частные методы - гибридологический, популяционный, мутационный, рекомбинационный, цитогенетический и др.

Гибридологический метод позволяет установить закономерности наследования отдельных признаков и свойств организма путем проведения серии прямых или возвратных скрещиваний в ряде поколений. Закономерности наследования признаков и свойств у человека устанавливают, используя генеалогический метод (анализ родословных). Законы наследования признака в популяциях определяют с помощью популяционного метода, или популяционного анализа.

Цитогенетический метод, объединивший принципы цитологического и генетического анализа, применяют при изучении закономерностей материальной преемственности в поколениях отдельных клеток и организмов и "анатомии" материальных носителей наследственности.

Феногенетический анализ позволяет изучать действие гена и проявления генов в индивидуальном развитии организма. Для этого используют такие приемы, как пересадка генетически различных тканей, клеточных ядер или отдельных генов из одной клетки в другую, а также исследование так химер - экспериментально полученных многоклеточных организмов, состоящих из генетически различных клеток, исходно принадлежащих разным индивидуумам.

Мутационный и рекомбинационный анализ используют при изучении тонкой организации и функции генетического материала, структуры различных ДНК, их изменений, механизмов функционирования и обмена генами при скрещивании. Интенсивно развивается метод молекулярного генетического анализа.

2.2 Интерес медицины

С развитием генетики стало возможным применение её методов в исследовании неизлечимых ранее болезней, патологий и т.д. Что начало привлекать немалый интерес со стороны ученых, работающих в области медицины. Известно несколько тысяч генетических заболеваний, которые почти на 100% зависят от генотипа особи. К наиболее страшным из них относятся: кислотный фиброз поджелудочной железы, фенилкетонурия, галактоземия, различные формы кретинизма, гемоглобинопатии, а также синдромы Дауна, Тернера, Кляйнфельтера. Кроме того, существуют заболевания, которые зависят и от генотипа, и от среды: ишемическая болезнь, сахарный диабет, ревматоидные заболевания, язвенные болезни желудка и двенадцатиперстной кишки, многие онкологические заболевания, шизофрения и другие заболевания психики.

Исторически интерес медицины к генетике формировался первоначально в связи с наблюдениями за наследуемыми патологическими (болезненными) признаками. Во второй половине 19-го века английский биолог Ф.Гальтон выделил как самостоятельный предмет исследования «наследственность человека». Он же предложил ряд специальных методов генетического анализа: генеалогический, близнецовый, статистический. Изучение закономерностей наследования нормальных и патологических признаков и сейчас занимает ведущее место в генетике человека.

2.3 Генетика человека

Генетика человека (human genetics) – это особый раздел генетики, который изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Из направлений генетики человека наиболее интенсивно развиваются цитогенетика, биохимическая генетика, иммуногенетика, генетика высшей нервной деятельности, физиологическая генетика.

Генетика человека является теоретической основой современной медицины и современного здравоохранения. Её подразделяют на антропогенетику, изучающую закономерности наследственности и изменчивости нормальных признаков человеческого организма, демографическую генетику (генетика народонаселения), экологическая генетику (учение о генетических аспектах взаимоотношений человека с окружающей средой) и генетику медицинскую, которая изучает наследственные патологии (болезни, дефекты, уродства и др.).

Наиболее важной областью генетики человека является медицинская генетика. Медицинская генетика помогает понять взаимодействие биологических и факторов среды в патологии человека. Иногда ее рассматривают не как раздел генетики человека, а как самостоятельную область общей генетики.

2.4 Медицинская генетика

Медицинская генетика изучает явления наследственности и изменчивости в различных популяциях людей, особенности проявления и развития нормальных (физических, творческих, интеллектуальных способностей) и патологических признаков, зависимость заболеваний от генетической предопределенности и условий окружающей среды, в том числе от социальных условий жизни. А также разрабатывает системы диагностики, лечения, профилактики и реабилитации, больных наследственными болезнями и диспансеризации их семей, изучает роль и механизмы наследственной предрасположенности при заболеваниях человека.

Формирование медицинской генетики началось в 30-е гг. XX века, когда стали появляться факты, подтверждающие, что наследование признаков у человека подчиняется тем же закономерностям, что и у других живых организмов.

Задачей медицинской генетики является выявление, изучение, профилактика и лечение наследственных болезней, а также разработка путей предотвращения воздействия факторов среды на наследственность человека.

Основным разделом медицинской генетики является клиническая генетика, которая изучает этиологию и патогенез наследственных болезней, изменчивость клинических проявлений и течения наследственной патологии и болезней, характеризующихся наследственным предрасположением, в зависимости от влияния генетических факторов и факторов окружающей среды, а также разрабатывает методы диагностики, лечения и профилактики этих болезней. Клиническая генетика включает в себя нейрогенетику, дерматогенетику (изучающую наследственные заболевания кожи — генодерматозы), офтальмогенетику, фармакогенетику (изучающую наследственно обусловленные реакции организма на лекарственные средства). Медицинская генетика связана со всеми разделами современной клинической медицины и другими областями медицины и здравоохранения, в том числе, с биохимией, физиологией, морфологией, общей патологией, иммунологией.

Существенными достижениями в области клинической генетики явились расшифровка биохимической и молекулярно-генетической природы большого числа моногенных наследственных болезней и разработка на этой основе точных методов диагностики.

Применение методов генетической инженерии позволило точно выяснить характер перестроек в структуре мутантных генов для целого ряда наследственных болезней, в т.ч. талассемий (a,b, d, g), миопатий Дюшенна и Беккера, гемофилии А и В, фенилкетонурии; исследования в этой области осуществляются так интенсивно, что любые данные быстро становятся устаревшими. В области генетики мультифакториальных заболеваний, к которым относятся ишемическая болезнь сердца, психозы, сахарный диабет, язвенная болезнь, большинство изолированных пороков развития, по-видимому, некоторые инфекционные заболевания (туберкулез, лепра, ревматизм), интенсивно развиваются теоретические исследования в области особого направления медицинской генетики - генетической эпидемиологии. Не менее важным в генетике мультифакториальных заболеваний является также выяснение значимости факторов окружающей среды, в том числе социальных, а также их взаимодействия с генетическими факторами для развития широко распространенных заболеваний.

Знание основ медицинской генетики позволяют врачам понимать механизмы индивидуального течения болезни и выбирать соответствующие методы лечения. На основе медико-генетических знаний приобретаются навыки диагностики наследственных болезней, а также появляется умение направлять пациентов и членов их семей на медико-генетическое консультирование для первичной и вторичной профилактики наследственной патологии. Приобретение медико-генетических знаний способствует формированию чётких ориентиров в восприятии новых медико-биологических открытий, что для врачебной профессии необходимо в полной мере, поскольку прогресс науки быстро и глубоко изменяет клиническую практику.

Несмотря на успехи в лечении ряда наследственных болезней существенная роль в борьбе с ними принадлежит профилактике, которая осуществляется в двух направлениях: предупреждение появления новых мутаций и распространения мутаций, унаследованных от предыдущих поколений. Профилактика болезней, возникающих в результате спонтанных мутаций в зародышевых клетках здоровых родителей, пока затруднена. Наибольшее значение для профилактики проявления патологических мутаций, унаследованных от предыдущих поколений, имеет медико-генетическое консультирование.

Эффективное внедрение научных достижений медицинской генетики в практическое здравоохранение может осуществляться только на основе подготовки квалифицированных кадров. Во многих странах, в том числе в США, Канаде, ФРГ, сложилась система подготовки кадров по медицинской генетике, в которой особое место отведено 2—4-летнему постдипломному обучению врачей, заканчивающемуся экзаменами и выдачей соответствующего сертификата. Кроме того, в большинстве случаев в рамках подготовки специалистов по медицинской генетике предусматривается специализация по цитогенетике и клинической генетике. В перечень медицинских специальностей в России введены специальности врача-генетика и врача лаборанта-генетика, подготовка которых осуществляется на кафедрах медицинской генетики в медицинских вузах и институтах усовершенствования врачей.

Развитие генетики до наших дней – это непрерывно расширяющийся фронт исследований. В этой области сделано уже очень много, и с каждым днем передний край науки приближается к цели – разгадки природы гена. К настоящему времени установлен целый ряд явлений, характеризующих природу гена. Во-первых, ген в хромосоме обладает свойством самовоспроизводится (авторепродукции); во-вторых, он способен мутационно изменяться; в-третьих, он связан с определенной химической структуры дезоксирибонуклеиновой кислоты – ДНК; в-четвертых, он контролирует синтез аминокислот и их последовательностей в белковой молекулы. В связи с последними исследованиями формируется новое представление о гене как функциональной системе, а действие гена на определение признаков рассматривается в целостной системе генов – генотипе.

Раскрывающиеся перспективы синтеза живого вещества привлекают огромное внимание генетиков, биохимиков, физиков и других специалистов.

Генетика очень важна для решения многих медицинских вопросов, связанных прежде всего с различными наследственными болезнями нервной системы (эпилепсия, шизофрения), эндокринной системы (кретинизм), крови (гемофилия, некоторые анемии), а также существованием целого ряда тяжелых дефектов в строении человека: короткопалость, мышечная атрофия и другие. С помощью новейших цитологических методов, цитогенетических в частности, производят широкие исследования генетических причин различного рода заболеваний, благодаря чему существует новый раздел медицины - медицинская цитогенетика.

Разделы генетики, связанные с изучением действия мутагенов на клетку (такие как радиационная генетика), имеют прямое отношение к профилактической медицине.

Особую роль генетика стала играть в фармацевтической промышленности с развитием генетики микроорганизмов и генной инженерии. Несомненно, многое остается неизученным, например, процесс возникновения мутаций или причины появления злокачественных опухолей. Именно своей важностью для решения многих проблем человека вызвана острая необходимость в дальнейшем развитии генетика. Тем более что каждый человек ответственен за наследственное благополучие своих детей, при этом важным фактором является его биологическое образование, так как знания в области аномалии, физиологии, генетики предостерегут человека от совершения ошибок.

1). Баранов В.С., Горбунова В.Н.//Введение в молекулярную диагностику и генотерапию наследственных заболеваний. //Спб.: Специальная литература, 1997.

2). Медицинская генетика. // Под ред. Бочкова Н.П. - М.: Мастерство, 2001

3). Орехова. В.А., Лажковская Т.А., Шейбак М.П.//Медицинская генетика. - Минск: Высшая школа, 1999

4). Айала Ф., Кайгер Дж// Современная генетика. В 3-х томах. - М.: Мир, 1987

5). Н. Н. Приходченко, Т. П. Шкурат “Основы генетики человека”, Ростов- на-Дону, 1997 г.

Читайте также: