Чем обусловлено уширение стакана фундамента в верхней части

Обновлено: 27.04.2024

По имеющимся размерам фундамента в плане, глубине заложения, размеру сечения колонн в плане подбирается конструкция фундамента.

Отметка верхнего обреза фундамента назначается на 0,15 м ниже условной отметки пола первого этажа, принимаемой за - 0,0. Высота фундамента дополнительно корректируется условием заделки колонны в стакан.

Глубина заделки колонны в стакан h3 принимается равной hk для центрально нагруженных квадратных фундаментов, а также для прямоугольных внецентренно нагруженных фундаментов с эксцентриситетом , е≤2hk. Для прямоугольных фундаментов с эксцентриситетом еk3≤1.4hk

Глубина заделки колонны в стакан дополнительно должна удовлетворять требованию заделки рабочей арматуры колонны, которая принимается равной:

для колонн прямоугольного сечения с рабочей арматурой класса A-II для проектной марки бетона В15 для бетона класса В15

для колонн с рабочей аркатурой класса А-Ш для бетона класса В15 для класса марки бетона В15

Глубина заделки двухветвевых колонн определяется из условия:

где - расстояние между наружными гранями ветвей колонны (м).

При глубине заделки двухветвевых колонн в фундамент принимается равной 1,2 м.

Под сборные двухветвевые колонны с расстоянием между наружными гранями ветвей колонны рекомендуется выполнять устройство отдельных стаканов под каждую ветвь с заделкой каждой ветви на величину .

Толщина стенок неармированного стакана поверху принимается не менее 0,75 глубины стакана и не менее 200 мм.

Толщина армированной стаканной части принимается по расчету согласно СНиП 2.03.01.-84, но не менее 200 мм.

Зазоры между стенками стакана и колонны должна приниматься равными 75 мм поверху и 50 мм понизу. Бетон для замоноличивания колонны в стакане фундамента принимается класса не менее В15.

Толщина дна стакана принимается по расчету на раскалывание, но не менее 200 мм.


В тех случаях, когда высота фундамента с учетом всех факторов (глубины заложения, отметки верха стакана, глубины стакана, толщины дна стакана) получается большой, то высоту фундамента следует увеличивать за счет подколонника. При этом фундамент по высоте разделяется на плитную часть и подколонник. Если размеры фундамента в плане не превышают соответственно , то фундамент конструируется с повышенной стаканной частью (подколонником). В остальных случаях фундамент выполняется без повышенной стаканной части (рис.3.3).

Рис. 3.3. Схема конструирования фундамента с повышенной стаканной частью (подколонником).

а - жёсткий фундамент; б - фундамент с подколонником.

Требуемая высота отдельно стоящего фундамента или его плитной части для фундаментов с повышенной стаканной частью вычисляется из условия прочности на продавливание по формуле:

а) для прямоугольных фундаментов

б) для квадратных в плане фундаментов

в) для круглых в плане фундаментов

Необходимая высота Н0 ленточных фундаментов устанавливается из условия прочности та срез:

В формулах (3.24) - (3.26) приняты обозначения:

- соответственно меньшая и большая сторона сечения колоны или подколонника ( );

- коэффициент, характеризующий отношение расчетного сопротивления бетона растяжению RР (по табл.13 СНиП 2.03.01.-84), к среднему давлению грунта под подошвой фундамента;

- коэффициент, характеризующий отношение ширины фундамента к меньшей стороне колонны (или подколонника );

- то же, площади фундамента F к площади сечения колонны FК

(или подколонника Fn).

За расчетную высоту фундамента или его плитной части, принимают большее значение, из вычисленных, то формулам (3.24.) - (3.26.) и корректируют его с учетом модульных размеров, кратных 300 мм.

Высоту ступеней рекомендуемся назначать равной 300, 450 и при большей высоте плитной части 600 мм (табл.3.3.). Вынос ступеней фундамента назначается из расчета их прочности на срез ина продавливание, рекомендуемся принимать по табл.З.4.




где - окончательные размеры подошвы фундамента.

- размер колонны (сооружения) понизу, м;

- высота фундамента, м;

- угол распределения напряжений в материале фундамента (или угол жесткости), принимаемый равным 45 0 для железобетонных и неармированных фундаментов при бетоне марки 200 и выше.


Рис. 3.3. Схема работы жесткого и гибкого фундаментов.


Рис. 3.4. Схема расчета фундамента на продавливание.

Если условие (3.27) выполняется, то фундамент является жестким и его армирование выполняется по минимальному проценту армирования (иногда конструктивно). Когда условие (3.27.) не выполняется, то фундамент считается либо фундаментом конечной жесткости, либо гибким, и тогда расчет его конструкции необходимо производить согласно СНиП 2.03.01-84 "Железобетонные конструкции" или по соответствующим учебникам и справочной литературе.

Для ленточных фундаментов вместо условия (3.27) - (3.28.) устанавливают показатель гибкости в продольном и поперечном направлениях, по значениям которого определяют вид фундамента:жесткий, конечной длины или бесконечно длинная полоса.

где - модуль деформации грунта основания, кН/м 2 ;

- полудлина ленточного фундамента (балки), м;

- модуль деформации бетона, кН/м 2 ;

- высота плитной части фундамента или балки, м;

Если - полоса или балка считается абсолютно жесткой и относится к категории жестких полос; при полосу рассчитывают как имеющую конечную жесткость и длину и относят к категории коротких; при - полосу считают бесконечно длинной и относят к категории длинных полос.

Для ленточных фундаментов, загруженных равномерно распределенной нагрузкой (стена здания) пределы имеют другие значения: при фундаменты относятся к категорий жестких полос, а при - к категории длинных полос.

Усилия в конструкциях указанных видов балок (полос) определяется методами Горбунова-Посадова (см. И.И.Горбунов-Посадов., Расчет конструкций на упругом основании M-I953 г.; М-1973 г.). По найденным усилиям фундамент рассчитывается по требованиям СНиП 2.03.01-83.

Показатель гибкости в поперечном направлении определяется по формуле:

где - модуль деформации грунта основания, кН/м 2 ;

- полудлина ленточного фундамента (балки), м;

- модуль деформации бетона, кН/м 2 ;

- полуширина ленточного фундамента;

При балки относятся к абсолютно жестким, и расчитывают­ся только в продольном направлении.

Высота фундамента проверяется из условия прочности его на продавливание по поверхности усеченной пирамиды, верхним основанием ко­торой является нижнее сечение колонны (или сооружения), а грани накло­нены под углом жесткости .

Расчет на продавливание центрально и внецентренно нагруженных стаканных фундаментов квадратных и прямоугольных в плане производит­ся на действие расчетной нормальной силы N, действующей в сечении колонны у обреза фундамента.

Проверка фундамента по прочности на действие только нормальной силы N производится:

а) на продавливание фундамента колонной от дна стакана;

б) на раскалывание фундамента колонной.

Проверка фундамента по прочности на продавливание колонной производится от дна стакана (рис. 3.4.) только для монтажных нагрузок по формуле:

где - расчетная нормальная сила в сечении колонны у обреза фундамента;

- рабочая высота дна стакана, принимаемая от дна стакана до плоскости расположения растянутой арматуры;

- размеры меньшей и большей сторон дна стакана;

Проверка фундамента по прочности на раскалывание от действия нормальной силы N производится из условий

где - коэффициент трения бетона по бетону, принимаемый равным 0,75;

k - коэффициент условий работы фундамента в грунте, принимаемый и равным 1,3 ;

- площади вертикальных сечений фундамента в плоскостях, проходящих по осям сечения колонны, параллельно соответственно сторонам l и b подошвы фундамента за вычетом стакана фундамента (рис. 3.5).


Рис. 3.5. Схема расчета фундамента по прочности на раскалывание

При расчёт ведётся по формуле (3.33).

При по формуле (3.34).

При расчете по формуле (3.33) величина не должна принимать­ся менее 0,4, а по формуле (3.34) величина не должна быть более 2,5. По результатам расчетов на продавливание и раскалывание принимается большая величина несущей способности фундамента.

Проверка на продавливание и раскалывание не производится при высоте фундамента от подошвы до дна стакана (рис. 3.6), соответствую­щей


Рис. 3.6. Схема фундамента при проверке на продавливание и раскалывание.

Высота фундамента без стакана (рис.3.7) проверяется из усло­вия прочности его на продавливание по поверхности усеченной пира­миды, верхним основанием которой является нижнее сечение колонны или сооружения, а грани наклонены под углом жесткости

Расчет на продавливание производится из условия

Отсюда необходимая высота

где F0 - площадь многоугольника a, b, c, d, e, g (рис.3.7), опре­деляемая по формуле:

Рис.3.7. Схема фундамента при определении его высоты без стакана из условия прочнос­ти на продавливание.

Высота ступеней (рис.3,8) назначаются в зависимости от полной высоты полной части фундамента в соответствии с табл. 3.3.

Высота ступеней плитной части фундамента

Высота плитной части фундамен­та h, см Высота ступени, см
h1 h2 h3
- _
-
-
-

Вынос нижней ступени фундамента можно определять по табл.3.4. (из условия прочности ступени на срез).

Вынос нижней ступени фундамента С1

Pг кПа Вынос ступени С1 при классах бетона
В12,5 В15 В20
2,5 h1 2,5 h1 2,5 h1
2,1 h1 2,4 h1 2,5 h1
1,9 h1 2,1 h1 2,5 h1
1,7 h1 1,9 h1 2,3 h1
1,6 h1 1,7 h1 2,1 h1
1,5 h1 1,6 h1 2.0 h1
1,4 h1 1,5 h1 1,9 h1

Минимальные размеры остальных ступеней в плане определяются после установления выноса нижней ступени С1 пересечениями ли­нии АВ (рис.3.8) с линиями, ограничивающими высоты ступеней.


Рис.3.8. Схема фундамента при определении размеров его ступеней.

3.2.5. Определение сечения арматуры по подошве фундамента

Сечение рабочей арматуры по подошве фундамента определяется, но расчета на изгиб консольного выступа фундамента в сечениях по грани колонны и по граням ступеней фундамента. Изгибающий момент возникает от реактивного давления грунта под подошвой фундамента.

Сечение арматуры параллельной стороне фундамента , в сечении по грани колонны 1-1 (рис.3.9) на 1 м ширины фундамента оп­ределяется по формуле

где hо - рабочая высота фундамента;

Rа - расчетное сопротивление арматуры;

М1-1 - изгибающий момент в сечении 1-1, определяется по форму­ле

По граням ступеней в сечениях 2-2 и 3-3 сечение арматуры на 1 м ширины фундамента и расчетные изгибающие моменты определяется по аналогичным формулам:

Давление на грунт P2 вычисляется по формуле (3.17).

Давление на грунт P3 определяется по формуле:

где К - коэффициент, вычисляемый для сечения 1-1 как для 2-2 а для сечения 3-3 -

Сечение арматуры, параллельной стороне b, в сечении по гра­ням колоны 4-4 на 1 м длины фундамента определяется по формуле

По граням ступеней в сечениях 5-5 и 6-6 Fb и М определяется по формулам:

Давление на грунт Р1 вычисляется по формуле (3.17).

Количество стержней и их диаметр определяется из условия принимаемого расстояния между стержнями.

Наиболее распространенными дефектами массивных опор являются выветривание, расстройство кладки, трещины, разрушение водосливных поверхностей, а также перемещения самих опор - осадки, сдвиги, крены. В процессе длительной эксплуатации поверхности опор подвергаются выветриванию. Этот процесс наиболее интенсивно протекает на участке изменения уровня воды. Основным признаком выветривания служит шелушение поверхности, отделение мелких плиток-лещадок. При наличии каменной облицовки сначала разрушаются швы. В уровне ледоходов наблюдаются повреждения в виде выбоин, расстройства и вывалов облицовочных камней, глубоких борозд. Расстройства в кладке мостовых опор, особенно старых, выполненных из бутовой кладки, иногда вызываются динамическим воздействием нагрузки.

Наиболее интенсивно кладка опор разрушается в зонах ледостава при первых подвижках льда и в уровне ледохода. Наблюдения за дефектами в подводной части мостовых опор обычно затруднены и требуют привлечения подводной кладки водолазов. Трещины в мостовых опорах по расположению и характеру развития весьма разнообразны. Они могут быть поверхностными, глубокими и даже сквозными. По внешнему виду трещин иногда можно определить причину их возникновения и развития. Например, значительные вертикальные трещины, имеющие большое раскрытие внизу и затухающие кверху, свидетельствует о возможной неравномерной осадке опор, недостаточной несущей способности основания.

Опасным дефектом опор являются также трещины, образующиеся как от усадки раствора и бетона, так и от силовых и температурных воздействий. Выветривание бетонной и каменной кладки наблюдается на многих опорах и особенно в зонах переменного уровня воды и ледохода. Основными признаками служат шелушение бетона, появление шероховатой поверхности, отслоение тонких площадок раствора, образование мелкой сетки трещин и истирание бетона. Опасным дефектом опор являются также трещины, образующиеся как от усадки раствора и бетона, так и от силовых и температурных воздействий.

В монолитных бетонных и железобетонных опорах трещины встречаются, как правило, редко, а в старых каменных опорах довольно часто. Трещины образуются под подферменными площадками, когда подвижные опорные части заклиниваются и пролетные строения не имеют возможности свободно перемещаться под влиянием температурных колебаний. От аналогичных причин могут появиться вертикальные трещины и в верхней части тела опоры. В устоях между обратной и передней стенками возникают трещины при большом увеличении горизонтального давления от переувлажнения слоя грунта засыпки. Образованию трещин в устоях и опорах способствуют также неравномерные осадки опор, а также силовые воздействия: навал судов, ледоход и пр.; в таких случаях трещины имеют большое раскрытие и в зависимости от характера деформаций здесь возникают вертикальные и наклонные трещины, образуемые в нижней части опор.

В результате неправильной установки опорных частей образуются наклонные трещины по краю опор, которые могут вызвать скол угла опоры.

Бетонные и железобетонные опоры из сборного и сборно-монолитного бетона могут иметь горизонтальные трещины по контакту сопряжения контурных блоков. Такие трещины неглубокие и появляются от усадки бетона и температурных воздействий. Неглубокие короткие трещины иногда возникают в самих блоках, при этом направление их бывает весьма неопределенным (горизонтальное и наклонное). По-видимому такие трещины могут появляться от температуры воздуха и замерзания воды между монтажными элементами и заполнением ядра. В колоннах опор вертикальные трещины образуются в местах сопряжения с массивной частью опоры, причем такие трещины развиваются больше в оболочках, заполненных бетоном, что вызвано разницей температурных деформаций заполнения и наружных контуров оболочки.

Содержание и ремонт опор мостов

В опорах железобетонных, бетонных и каменных мостов основное внимание уделяют наблюдению за состоянием кладки опор как в надводной, так и подводной частях, за положением опор и опорных частей, а также за чистотой сливов подферменных площадок и горизонтальных уступов опор.

При содержании опор нельзя допускать, чтобы на подферменных площадках и уступах застаивалась вода, скапливался мусор, грязь и прочие посторонние предметы, так как при наличии трещин в этих местах влага будет проникать в тело опоры и разрушать ее. Особенно это вредно для старых опор, где под влиянием атмосферных воздействий возникли глубокие трещины.

Нормальный водослив обеспечивается при гладкой поверхности подферменных площадок и наклонных уступов опор и при наличии на них уклонов в наружную сторону не менее 2%. Однако эти условия часто не выполняются, и вода застаивается на конструкции опор. В ряде случаев для отвода воды на горизонтальных поверхностях опор устраивают уклоны, применяя цементный раствор. Однако такое покрытие недолговечно, так как температурные деформации раствора и бетона под ним разные, в результате происходит растрескивание раствора или его отслоение, если нарушена технология ремонтных работ. В таких случаях надо очистить горизонтальные поверхности опоры от остатков раствора и мусора и устроить новые сливы.

В зависимости от характера развития трещин и причин их образования производят ремонт опор. Следует помнить, что трещины мелкие и неглубокие, вызванные усадкой бетона или температурными напряжениями, не оказывают существенного влияния на несущую способность конструкций, но при скоплении в них влаги и замораживании могут служить источником постепенного разрушения тела опор и снижения их долговечности. Поэтому такие трещины надо заделывать. Трещины силового характера и от механических повреждений опор устраняют немедленно, так как оби могут снизить несущую способность мостов.

Состояние всех опор определяют внешним осмотром и остукиванием ее поверхности. Такой осмотр позволяет обнаружить большинство дефектов. Скрытые дефекты могут быть обнаружены по ряду признаков. Так, например, выщелачивание раствора на облицовке опоры указывает на неисправность сливных площадок, трещин внутри кладки, пустоты между облицовкой и телом опоры; в устоях следы выщелачивания указывают на неудовлетворительное состояние дренажа и отсутствие или неисправность изоляции поверхности опоры, соприкасающейся с насыпью. Для определения глубины и характера распространения трещины в кладке в необходимых случаях надо вскрыть облицовку, а трещины проверить щупом. Сквозные трещины можно определить путем нагнетания в них подкрашенной жидкости. Обнаружить скрытые дефекты можно при помощи ультразвуковых и других акустических приборов, например, с помощью прибора УКЮП.

Осадки, крены и другие общие деформации опор выявляют систематическим инструментальным наблюдением. При длительных наблюдениях за положением опор целесообразно устанавливать (закладывать) на опорах марки и связывать их отметки с постоянным репером с помощью теодолитных или нивелирных ходов. Такие измерения надо выполнять регулярно с обязательной регистрацией полученных данных в журнале наблюдений или книге искусственных сооружений. Обнаруженные дефекты опор необходимо устранять. В наиболее короткие сроки надо устранять сколы, глубокие трещины, разрушения, а также общие деформации опор, т. е. дефекты, которые могут снизить несущую способность опор.

Способы усиления тела опор мостов и их фундаментов.

Разрушение ж/б опор мостов происходит в результате образования вертикальных трещин (от вторичного поля напряжений и потери устойчивости отдельных столбиков.).



Условие прочности внецентренного-сжатого элемента


При λh ≤ 14 = ;

N φ b Ab + Rsc As.tot)

Rb – сопротивление бетона сжатию;

Ab – площадь поперечного сечения стойки;

Rsc – расчетное сопротивление продольной арматуры сжатию;

As.tot – суммарный расход продольной арматуры;

φ – коэффициент продольного изгиба (коэффициент устойчивости).

Для увеличения коэффициент продольного изгиба (φ) необходимо уменьшить гибкость путем уменьшения расчетной длины сжатия или увеличить размеры поперечного сечения стойки.

В качестве примеров уменьшения гибкости стойки опоры возможны следующие схемы:

1) Обетонирование стойки в нижней части на уровне сопряжения с фундаментом. (ростверком);

2) Увеличить размеры поперечного сечения, например ж/б рубашкой. Этот метод трудоемкий, так как требуется усиление по всей высоте и сложно обеспечить совместную работу старого и нового бетонов. Возникают дефекты в виде усадочных трещин как по толщине рубашки так и по плоскостям сопряжений. Такое усилие малоэффективно с возможностью усиления до 10-15%.

Одним из способов усиления сжатых элементов является заключение стойки в обойму. Например в стальную обойму с поперечным обжатием или в обойму с применением высокопрочного композитного материала (холст из углеволокна).


N φ b Ab + Rsc As.tot + ΔAs Ry)

2- планка из полосовой стали с предварительным напряжением

3- обертывающая сетка

4- защитный слой бетона (торкретбето)

Возможно применение тиксотропных бетонов с нанесением вручную с помощью шпателя.

Обертывание стойки высокопрочными холстами на эпоксидном клее. При заключении стойки в обойму мы достигаем увеличение расчетного сопротивления сжатию: Rb * при фактической прочности Rb:

Фундаменты на естественном основании усиливаются путем их уширения.

Усиление свайного фундамента осуществляется путем забивки дополнительных свай и развитием ростверка.

Способы усиления фундаментов устоев:

1) Замена грунта насыпи на грунт с большим значением угла внутреннего трения.

2) Устройство в основании контрфорсов или распорных креплений в виде распорки и массивного упора, который заанкерен в грунте.

3) Добавление пролетов, что обеспечивает перекрытие неустойчивого грунтового участка.

4) Укрепление грунтового основания различными химическими способами, например, замораживание.

При уширении опор следует в максимальной степени использовать существующие конструкции и все возможности уширения без переустройства фундаментов или уширения свайных промежуточных опор, что упрощает и удешевляет работы по реконструкции моста. Максимальное использование возможности опор связано с учетом упрочнения грунтов от длительной эксплуатации при оценке несущей способности по грунту.

Схемы уширения опор могут быть отнесены к трем группам - уширение только ригеля (В), ригеля и тела опоры (Г) и уширение всей опоры, в том числе с фундаментом (Д).

При уширении по группе В наращиваемая часть ригеля (насадки) должна быть надежно соединена с существующей конструкцией. Причем она может бытьвыполнена из железобетона, предварительно напряженного железобетона плипрокатных стальных элементов. В качестве ориентира для выбора техническогорешения могут быть использованы схемы, представленные на рис. 3.1.


Рис. 3.1.Схемы уширения ригеля опор:

а - добавление железобетонныхблоков (с обжатием высокопрочной арматуры); б, г - уширение стальным прокатным профилем: в - уширение консоли с усилениемригеля над крайними спаями: д -уширение консоли с устройством кронштейна; 1 - железобетон; 2 -стальной профиль

Подкосы выполняют из металлических или железобетонных элементов. Для восприятия распора от подкосов уширенных стоечных или столбчатых опор к насадкам (сбоку - или снизу) при бетонируют охватывающие пояса, арматуру которых рассчитывают на полное горизонтальное усилие в насадке. Объединение бетонных массивов с телом опоры осуществляют железобетонными рубашками, охватывающими тело опор.

Уширение промежуточных опор с развитием тела и ригеля осуществляют, как правило, не более чем на 3 м в каждую сторону. При уширении массивной опоры более чем на 2 м в каждую сторону пристраиваемые железобетонные массивы поверху и понизу должны быть прикреплены охватывающими железобетонными поясами через 3- 4 м по высоте опоры. При значительном наклоне торцовых граней массивных опор допускается устройство приштрамбованных массивов только в верхней части опоры(рис. 3.3, а).


Рис. 3.2. Схемы уширения стоечных (а. б) и столбчатых (в) опор за счетразвития их тела


Рис. 3.3. Схемы уширения массивных опор за счет развития их тела на части высоты (а) ина всей высоте (б)

Безфундаментные устои уширяют добивкой свай с развитием в обе стороны ригеля и шкафной стенки (рис. 3.5). Причем сваи могут быть забиты как в заранее уширенные конуса, так и до отсыпки новой части конуса.

Массивные устои (устои с обратными стенками и открылками) уширяют путем забивки свай с двух сторон, развитием ригеля (устройством нового ригеля) или возведением с двух сторон Г-образных в плане пристроек.



Рис. 3.4. Схемы уширения промежуточных опор сразвитием фундамента опор:

а - одностороннее или двустороннее; б - двустороннее; в - одностороннее


Рис. 3.5.Схемы уширения устоев:

а - расширение насадки с объединением по сваям; б- забивка дополнительныхсвай в заранее уширенную насыпь; в -пристройка конструкций к массивным устоям

1 - существующий ригель (насадка); 2 - удаленный открылок; 3 -монолитные конструкции уширения; 4 - сборныеконструкции уширения; 5 - дополнительныесван

Уширение подошвы фундамента выполняют банкетами из бутовой кладки или из монолитного бетона и железобетона, банкетами балочного типа, а также с помощью монолитных и сборных железобетонных подушек.


Устройство банкет из бутовой кладки выполняется крайне редко из-за большой трудоемкости работ. Чаще всего применяют одно- и двусторонние банкеты из монолитного бетона и железобетона. Конструкция банкет зависит от способа их связи с существующим фундаментом и схем передачи нагрузки от сооружения на усиляемый фундамент.
Наибольшее распространение получили банкеты, где передача нагрузки от сооружения осуществляется с помощью опорных балок. Для этого в стене пробивают сквозные отверстия с шагом 1,5. 2 м. в которые перпендикулярно к стене устанавливают опорные балки из стального швеллера (двутавра) или железобетона. Нагрузка на банкеты передается через распределительные балки из швеллера или двутавра №16. 18, которые располагают вдоль стены.

Уширение подошвы фундамента

Работы выполняются в следующей последовательности:
• разбирают отмостку (при необходимости) и пол первого этажа;
• устраивают водосборные колодцы, ограждения;
• в пределах захватки (длина 1,5. 2 м) отрывают траншею с одной или обеих сторон фундамента;
• очищают боковые поверхности фундамента;
• устраивают основание под банкет из щебня толщиной 50. 100 мм путем втрамбовывания его в грунт;
• в теле фундамента просверливают отверстия (в шахматном порядке через 0,25. 0,35 м по высоте 1,2. 1,5 м по длине фундамента) и забивают в них анкерные стержни диаметром 16 мм;
• устанавливают опалубку и бетонируют банкет до отметки низа распределительных балок;
• после набора бетоном требуемой прочности (не менее 70% проектной) устраивают в стене "окна" и устанавливают в них опорные балки;
• монтируют распределительные балки и сваривают их с опорными балками;
• производят добетонирование банкета на высоту распределительных балок и заделку зазоров в "окнах"' для опорных балок. Допускается также и обетонированне опорных балок. Класс бетона - не менее В12,5.

Уширение подошвы фундамента Ростов

Увеличение площади опирания фундаментов может осуществляться с помощью сборных железобетонных отливов и стальных тяжей.

Работы выполняются в следующей последовательности:
• отрывают с обеих сторон фундамента траншею по захваткам длиной 1,5. 2,0 м;
• в теле фундамента сверлят сквозные отверстия;
• монтируют железобетонные отливы;
• устанавливают стальные тяжи;
• с помощью домкратов или клиньев выполняют разжатие отливов в их верхней части;
• укладывают бетонную смесь в зазор между существующим фундаментом и железобетонными отливами. В результате разжатия отливов они поворачиваются внизу во-круг своей нижней оси и дополнительно обжимают грунт основания.
К недостаткам этого способа следует отнести значительный объем земляных работ и большие затраты ручного труда.

При уширении подошвы фундамента путем подводки монолитных или сборных железобетонных плит из-под него в пределах захватки длиной 1,5. 2 м удаляют грунт.
Железобетонные плиты монтируют на подготовленное выровненное основание. Зазор между поверхностью плит и подошвой фундамента зачеканивают жестким цементно-песчаным раствором марки 100.
Процесс устройства монолитной железобетонной подушки менее трудоемок. Для этого на подготовленное основание укладывают арматурные сетки, устанавливают опалубку и укладывают бетонную смесь. Уплотнение бетонной смеси выполняют вибрированием. Для обеспечения надежного контакта укладываемой бетонной смеси с фундаментом бетонирование производят на 100. 150 мм выше отметки его подошвы. Класс бетона В12,5 и более.

Усиление фундаментов путем уширения подошвы предполагает увеличение опорной площади существующего фундамента за счет присоединения к его боковым граням дополнительных железобетонных или бетонных элементов. При уширении подошвы происходит перераспределение нагрузки на большей поверхности основания, что дает возможность повысить нагрузку на фундамент, снизить осадку, уменьшить вероятность потери несущей способности основания. Уширение подошвы также применяется для выравнивания эпюры контактных давлений, стабилизации крена фундамента.

Не рекомендуется производить увеличение площади подошвы фундамента на слабых, структурно-неустойчивых и водонасыщенных грунтах, а также при высоком уровне грунтовых вод.

Уширение подошвы фундамента осуществляют: при одно- и двухстороннем уширении - наращиванием, с трех и четырех сторон фундамента - при помощи железобетонных рубашек или обойм.

Наращивание для усиления ленточных фундаментов представляет собой железобетонные или бетонные, сборные (банкеты) или монолитные элементы, примыкающие к боковой грани фундамента. Наращивание устраивают вдоль всей длины фундамента либо под наиболее загруженными участками. Ширина подошвы наращивания принимается не менее 200 мм, отношение ширины наращивания к высоте не менее 1/5.

Обойма представляет собой конструктивный элемент усиления фундамента в виде монолитной железобетонной оболочки, охватывающей фундамент с четырех сторон. Применяется при усилении столбчатых фундаментов.

Совместная работа элементов уширения подошвы с усиливаемым фундаментом обеспечивается:

— устройством бетонных шпонок, выступов в углублениях существующего фундамента или несущих конструкций здания;

— устройством анкеров, заделанных в теле существующего фундамента;

— устройством сквозной арматуры;

— сваркой арматуры элементов уширения с оголенной арматурой усиливаемого фундамента;

— при помощи специальных опорных элементов: подкосов, разгружающих металлических или железобетонных балок.

Для обеспечения прочного сцепления между новым и старым бетоном поверхность существующего фундамента очищают от грунта, старой гидроизоляции, химических веществ, а также от рыхлого раствора, бетона, промывают и просушивают, выполняют насечку поверхности контакта. Устройство наращивания с выступами, заходящими в горизонтально пробитые штрабы стены (рис. 17.1, а), рекомендуется применять при толщине стен не менее 510 мм и при удовлетворительном их состоянии. Выступы наращивания заходят в стену на глубину не менее 120 мм. Допускается вдоль стены выступы делать прерывистыми. Длина одного выступа должна быть не менее 500 мм, разрыва - не более 500 мм.



Усиление ленточного фундамента может производиться железобетонным наращиванием с выступами в двух уровнях, (рис. 17.1, б). Выступы нижнего уровня подводят под частично разобранную подошву фундамента. Такое конструктивное решение применяют при низкой прочности материала фундамента, наличии значительных дефектов и повреждений.

Для обеспечения совместной работы усиливаемого фундамента и элементов усиления применяют арматурные стержни, устанавливаемые в сквозные отверстия в теле фундамента и стен (сквозные анкеры) (рис. 17.1, в), анкеры или дюбели из стержневой арматуры диаметром 12.20 мм. Анкеры заделывают в фундаменте цементным раствором на глубину не менее 150 мм. Дюбели с закаленным острым концом забивают в швы между камнями кладки на глубину не менее 100 мм.

Одновременно вместе с усилением фундамента может производиться его инъецирование. В этом случае вместо анкеров в отверстия, пробитые на глубину не менее 1/2 ширины фундамента, устанавливают инъекционные трубки (рис. 17.1, г), которые выводят за пределы опалубки. Инъецирование производят после схватывания бетона наращивания.

При усилении фундаментов уширением, основание дополнительных элементов должно быть подготовлено путем втрамбовывания щебня или гравия на глубину 50.60 мм. При наличии в основании слабофильтрующих водонасыщенных грунтов предусматривают песчано-гравийную подготовку толщиной не менее 100 мм.

Дополнительные элементы устраиваются из тяжелого бетона класса не ниже условного класса бетона усиливаемого фундамента и не ниже рекомендуемого [8] в зависимости от условий эксплуатации.

Для усиления столбчатого фундамента может применяться железобетонная обойма, подводимая под элементы перекрытия подвала (рис. 17.2, а).





Обеспечение совместной работы при усилении ленточных фундаментов наращиванием может быть выполнено с помощью продольных металлических балок (рис. 17.4, а). Такой способ обеспечения совместной работы рекомендуется использовать при отсутствии значительных поверхностных разрушений. Стальные балки в виде швеллеров стягивают болтами, установленными с шагом 500.750 мм. К полкам балок крепят плоские металлические зубья шириной не менее 50 мм, толщиной 10 мм, с шагом 250 мм. Зубья заводят в предварительно очищенные от раствора швы кладки. Глубина заделки зуба в стене принимается в зависимости от состояния кладки и должна быть не менее 30 мм.



Наращивание с обеспечением совместной работы с существующим фундаментом при помощи поперечных балок (рис. 17.5) применяют в случае значительного увеличения опорной площади (более 400 мм с каждой стороны). Балки изготавливают из прокатных профилей, площадь поперечного сечения которого определяется расчетом.

Опорные балки устанавливают с тем же шагом, что и подкосы при одностороннем наращивании, и замоноличивают мелкозернистым бетоном.

В случае если вылет свободной части наращивания превышает 0,9 h (где h - высота наращивания), в уровне подошвы фундамента устанавливают поперечную арматуру, заанкеренную в фундаменте. Если шаг балок в продольном направлении превышает 2h, то наращивание армируется в продольном направлении в верхней зоне.

При усилении столбчатых фундаментов под кирпичные столбы поперечные балки устанавливают в горизонтальных штрабах и стягивают болтами. Балки выполняют перекрестными из двух пар швеллеров, сваренных между собой. При устройстве элементов уширения ослабленную зону кирпичных столбов омоноличивают на высоту не менее 250 мм от края ослабления.



Крепление поперечной балки к железобетонной колонне выполняют путем ее приварки к оголенной арматуре колонны (рис. 17.6), аналогично опорным хомутам (см. тему 12). Наращиваемые части фундамента при бетонировании выводят выше ослабленной зоны колонны не менее чем на величину, равную большей стороне поперечного сечения колонны.



При усилении ленточных фундаментов в качестве поперечных балок могут использоваться железобетонные балки. Ширина балки назначается не менее 200 мм, высота в зоне заделки балки в стене не менее 300 мм.

По длине ленточного фундамента наращивание может быть выполнено переменного сечения (рис. 17.7). В этом случае подошва наращивания дополнительно армируется сварными сетками.

Увеличение нагрузки при надстройке зданий или изменение их функционального назначения, нарушения в сцеплении кладочных материалов, разрушение материала фундамента от действия агрессивных сред, деформации в связи с потерей прочности или при осадке оснований являются причинами, вызывающими необходимость ремонта или усиления фундаментов. В за­висимости от конструкции фундаментов, а также характера деформаций и причин, их вызывающих, применяются различные способы ремонта и усиления деформированных фундаментов. При проектировании усиления необходимо максимально использовать существующий фундамент, обеспечив его совместную работу с элементами усиления.

Основными методами восстановления и усиления фундаментов являются:

- укрепление кладки фундаментов без расширения подошвы;

- применение разгружающих конструкций;

- изменение конструктивной схемы фундамента.

Первый метод – хорошо известное нагнетание цементного раствора в трещины и пустоты фундамента под давлением до 1 МПа (рис.4.3) или штукатурка (может быть, торкретирование) поверхности фундамента по арматурной сетке, закрепляемой с помощью анкерных штырей, заделанных в тело укрепляемого фундамента. В последнем случае создается так называемая «рубашка» из крупнозернистого цементно-песчаного раствора.


Рис. 4.3. Усиление бутового фундамента методом

цементации: 1 – кирпичная стена;

2 – горизонтальная изоляция; 3 – бутовый фундамент;

4 – трубки для нагнетания цементного раствора

Метод усиления с помощью железобетонных обойм – устройство поперечных связей из арматурной стали или поперечных балок между обоймами (рис.4.4).

Усиление фундамента обоймами производят как для ленточных, так и столбчатых фундаментов. Бетонные обоймы применяют, когда требуется уширение фундаментов на 20-30 см. Минимальная толщина обоймы 80-150 мм, минимальная высота обоймы над усиливаемым фундаментом – 50 см. Для обоймы используют анкеры диаметром 20 мм, которые устанавливают с шагом 1-1,5 м. Между собой стенки соединяют анкерами, для чего в фундаментах просверливают сквозные отверстия в двух уровнях – у верха и низа обоймы. Работы по усилению ленточных фундаментов выполняют участками длиной 2-2,5 м.


Рис. 4.4. Усиление ленточного фундамента

с помощью железобетонной обоймы:

1 – существующий ленточный фундамент;

2 – железобетонная монолитная обойма; 3 - забивные костыли-анкеры, объединенные сварными арматурными

каркасами; 4 – сквозные анкеры

В качестве разгружающих конструкций могут быть применены жесткие пояса из металлического проката, размещенные в горизонтальных штрабах и обеспечивающие перераспределение нагрузок (рис. 4.5).

Передать нагрузки от здания на более прочные, ниже расположенные грунты можно «пересадкой здания» на выносные сваи с помощью системы балок и прогонов (рис.4.6).

При выполнении работ с двух сторон деформированного фундамента отрывают траншеи шириной 1,2-1,5 м, глубиной на 0,5 м меньше заложения фундаментов. Траншеи крепят надежными креплениями. В соответствии с проектом вдоль фундамента устраивают набивные или забивные бетонные или железобетонные сваи, по верху которых делают железобетонную обвязку (рандбалку).

После выполнения работ по устройству свай с обвязкой в фундаменте пробивают отверстия, в которые вставляют разгрузочные поперечные балки. Затем, после плотной заделки балок в отверстиях фундамента и схватывания раствора, в промежуток между низом поперечных балок и свайных обвязок забивают стальные клинья, образовавшиеся отверстия заделывают цементным раствором, чем обеспечивается передача давления всего здания на выносные сваи.


Рис. 4.5. Установка разгрузочных балок:

1 - металлическая балка; 2 – металлическая сетка;

3 – раствор; 4 - стяжной болт

При изменении конструктивной схемы фундамента может быть увеличена ширина подошвы фундамента, столбчатые фундаменты переустроены в ленточные, а ленточные – в плитные, применены «корневидные» сваи, устроены дополнительные (промежуточные) опоры или под фундаменты подведена фундаментная плита.


Рис. 4.6. Усиление ленточного фундамента передачей

нагрузки на выносные опоры: 1 – существующий фундамент; 2 – система разгрузочных и опорных металлических балок;




3 – монолитный железобетонный ростверк;

4 – буронабивные сваи

Уширение подошвы фундамента (рис. 4.7) заключается в прикладке банкетов (участков из монолитного бетона или из бутовой и кирпичной кладки) с одной (двух) сторон для ленточных и с двух (четырех) для столбчатых фундаментов. Усиление фундаментов производят до начала демонтажных и монтажных работ при капитальном ремонте здания. Грунт в необжатых зонах под местами уширения фундаментов уплотняют насыпкой слоя щебня толщиной 5-10 см с тщательным трамбованием, а прикладываемые участки с существующей кладкой фундаментов – путем пробивки в существующей кладке гнезд и перевязки новой и существующей кладок. Гнезда с размерами сторон 10-15 см пробивают в одном-двух уровнях по высоте с шагом 1-1,5 м.


Рис. 4.7. Усиление ленточного фундамента уширением

подошвы: 1 – существующий ленточный фундамент;

2 - железобетонная балка по вытрамбованной щебеночной подготовке

Для устройства уширения разрабатывается траншея по всей длине уширяемого участка на полную глубину заложения фундаментов. Гнезда в существующей кладке пробивают вручную скарпелью или с помощью отбойных молотков. Поверхности кладки очищают от земли металлическими щетками. Устройство и разборку опалубки, установку арматуры и бетонирование при уширении монолитным бетоном производят по технологии бетонных работ.

При подведении под существующий ленточный или столбчатый фундамент сборных или монолитных железобетонных подушек их укладывают без зазоров между ними или с зазорами. В зависимости от наличия и размеров зазоров разрабатываю траншеи или котлованы с одной стороны фундамента, а также выемки под существующим фундаментом. При заведении подушек с зазорами выемки устраивают одновременно через одну или две в зависимости от размеров зазоров. При заведении подушек сплошной лентой, без зазоров, выемки разрабатывают одновременно на участках длиной до 2 м через участки.

При передаче на фундамент дополнительных горизонтальных и вертикальных нагрузок эффективны буроинъекционные (корневидные) сваи, которые могут также просверливаться через существующий фундамент, используемый в этом случае как ростверк (рис. 4.8). Этот метод усиления хорош тем, что не требует разработки траншей и котлованов, не нарушает структуры оснований.


Рис. 4.8. Усиление фундамента с помощью корневидных свай: 1 – усиливаемый фундамент; 2 – корневидные сваи

Читайте также: