Армирование фундамента под пресс

Обновлено: 27.04.2024

Добрый день! Прошу помощи конструкторов по армированию железобетонных конструкций. Необходимо сделать фундамент под насос "Насос ЦНС 180-297-массой 3670 кг"
1.подскажите подойдет армирование фундамента по приложенной схеме. (на оформление чертежа не обращайте внимание)
2. Для подъема фундамента данного типа подойдут петли влитые в тело фундамента диаметром 16 мм, (если есть узлы пришлите пж чертеж, фото)
"Насос ЦНС 180-297-массой 3670 кг"

----- добавлено через ~1 мин. -----
Ошибочка, фундамент монолитный))))

Для этого фундамента действительно не требуется рабочей арматуры, только конструктивная против усадочных трещин, думаю, можно как у вас - d12 но с шагом 200мм, и сверху ее добавить.

да, я бы тоже так сделал
болты - смотрите пособие и гост по анкерным болтам, или можно (проще и лучше) заложить щпильку на хим.анкер.
решение в шапке темы трудноосуществимо, надо же фиксировать их пространственное положение

"Тогда может сетку снизу вообще не стоит делать, а лучше сверху ее уложить?"
Помнится при СССР было нормой "класть конструктивную арматуру по открытым поверхностям, не соприкасающимся с грунтом"
где именно, не вспомнить. Сегодня Коллеги кладут везде. так им легче, и никто не в обиде. И помощь местной сталилитейной
кстати, отчего б не зафигачить на грунт и синтетическую? этим тоже надо жить

__________________
Если не видите ответа на заданный мне вопрос, то это не значит, что ответ не был опубликован.

Не совсем понял вы предлагаете не делать такую большую бетонную конструкцию? Насос в работе с двигателем постоянно круглые сутки 365 дней в году да и весом в 3,6 тн не слабовато ли будет под него заливать плиту толщиной 300 мм ?

----- добавлено через ~2 мин. -----

А шпильки М16 отлетят точно к чертям, в цеху агресивная воздушная среда сероводорода, они через пол года сгниют(

С учётом постоянной вибрации я бы всё же все грани заармировал сеткой. Можно не из д12, а из д4-6 какой-нибудь с шагом 100. Продаются уже готовые

Насос в работе с двигателем постоянно круглые сутки 365 дней в году да и весом в 3,6 тн не слабовато ли будет под него заливать плиту толщиной 300 мм ?

Тут определяющим будет основание под фундаментом. Просядет или не просядет. 300 мало, но и полтора метра выглядяд избыточными. Разве что для балласта. Или для выведения в нужную отметку.

Тогда М200 слабоват бетон. Не пожалейте на В30 хотя бы. И ещё покрытие ему можно какое-нибудь предусмотреть. Как и металлу.

Покрытие для металла предусмотренно, а вот для бетона нет! Что посоветуете?

----- добавлено через ~3 мин. -----
Касательно геометрических параметров, то информации особо не нашёл, только лишь предположения что вес фундамента должен быть больше веса насосного агрегата в 4-5 раз. Поэтому из этих предположений и планирую строить данный фундамент.

Да их полно. Позвоните в Зику, у них целая куча разных СикаГардов, СикаЛастиков и прочего. Или в Басф. Там тоже разных МастерСилов хватает. Да и вообще дефицита защитных покрытий на рынке не наблюдается - только деньги плати. Но для вашего объёма, не думаю, что будет проблемой купить 5 литров хорошего материала.

Имеет смысл пообщаться с производителем насосов. Они должны дать требования, предъявляемые к фундаменту.
Но они могут ограничиться общими фразами про прочность и горизонтальность в пределах 0,1 градуса например.
Тогда и возникнет вопрос расчёта.

Не совсем понял вы предлагаете не делать такую большую бетонную конструкцию? Насос в работе с двигателем постоянно круглые сутки 365 дней в году да и весом в 3,6 тн не слабовато ли будет под него заливать плиту толщиной 300 мм ?

300 мало, но и полтора метра выглядяд избыточными. Разве что для балласта. Или для выведения в нужную отметку.

Ну хорошо 300мм будет мало (я погорячился) с чем то я с вами согласен, хотя может быть если реально расчет провести то и этой толщины будет достаточно.

Касательно геометрических параметров, то информации особо не нашёл, только лишь предположения что вес фундамента должен быть больше веса насосного агрегата в 4-5 раз. Поэтому из этих предположений и планирую строить данный фундамент.

Вес фундамента должен быть больше чем насос но 4-5 раз как-то многовато, сделайте 0,4-0,5м и у вас фундамент будет весить допустим на 1т или 1,5тонны больше насоса но это потолок толщины такого фундамента, смысл 1.6м делать? По армированию как вы говорите фундамент под насосом будет постоянно в вибрации от двигателя, то нужно просто по всему сечению за армировать его, то есть верхняя/нижняя сетка из 12 шаг 150мм + пешки по боковым граням тоже из 12 ну или 10, и так сделать в двух направлениях фундаментной плиты. По сечению где ширина 1100мм, лучше вместо сетки и двух пешек по краям сделать такие две детали арматурные в виде клюшек которые между собой в нахлесте и создают обрамление граней бетона фундамента. 12 диаметра арматуры с головой тут хватит, так как этот насос через вот такие в основании двутавры или швеллеры которые обрамляют основание насоса не будут передавать на такую плиту большой площади, такой линейной нагрузки, и таких изгибающих моментов, да и фундамент на основании стоит а не в воздухе работает как балка там усилия копеечные, при которой бы этот фундамент трещал, но арматуры все таки надо дать по всем граням, чтобы перехватывать эти вибрации 365 дней в году (да и может быть под эти полосы из швеллеров или двутавров в основании может надо делать какие-то резиновые полосы уплотнители, чтобы прям на сам бетон не передавать удары вибрации). Да и если среда агрессивная то и бетон взять минимум В30 что в посте №10 советуют. Сделать гидроизоляцию всех поверхностей. По шпилькам если говорите что они отлетят или сгниют, так и ваши болты тогда тоже сгниют даже если они и заведены в бетон на 1.4м, что мешает верхушке сгнить (ничего), тоже как-то обработать. Если вы эти 6 болтов объедините через уголки в анкерный блок в двух направлениях, тогда это будет сплошная конструкция и дополнительная анкеровка через эти уголки объединения в теле бетона и ничего не вырвет уже, и проектное положение будет зафиксированное. Удачи.

Первоначально изучить и обеспечить требования СП 26.13330.
Затем СП 22.13330 и СП 63.13330.
А то форумчане понапишут всячину.

Тут у вас два варианта либо лить тумбу эту и армировать конструктивно 0,1% от площади сечения бетона, думаю по такому большому сечению бетона у вас также будет 12 арматура с шагом 150-200 по периметру (тогда как раз и есть смысл в экономии, чтобы сделать меньше толщину фундамента и использовать эту 12 арматуру по максимуму, чтобы не лить столько бетона). Это фундамент, он по любому изгибающие усилия воспринимает и нужно соблюдать конструктивные требования. Ну и второй вариант толщину такую подобрать чтобы у вас также получилось 12мм арматура но уже действительно работала в сечении бетонном от этих усилий которые будут создавать, но как я писал выше там усилия копеечные будут. Как правило инженеры такие фундаменты считают на коленке ну или тупо по запасу подбирают по логике и опыту.

Ну по основанию там ничего не должно проседать, если грамотно выполнить земляные работы, напряжения под подошвой от расчетных нагрузок не больше 0.3кгс/см2, просто нужно грамотно его подготовить, утрамбовать и по бетонной подготовке толщиной 80-100мм залить и все. Также там уже есть существующие фундаменты которые уже за все время работы так уплотнили этот грунт и упрочнили его, что просто сверху сделать песчано-гравийную смесь до определенной отметки, утрамбовать, уплотнить и заливать.

Предлагаю не делать.

Ну хорошо 300мм будет мало (я погорячился) с чем то я с вами согласен, хотя может быть если реально расчет провести то и этой толщины будет достаточно.

Вес фундамента должен быть больше чем насос но 4-5 раз как-то многовато, сделайте 0,4-0,5м и у вас фундамент будет весить допустим на 1т или 1,5тонны больше насоса но это потолок толщины такого фундамента, смысл 1.6м делать? По армированию как вы говорите фундамент под насосом будет постоянно в вибрации от двигателя, то нужно просто по всему сечению за армировать его, то есть верхняя/нижняя сетка из 12 шаг 150мм + пешки по боковым граням тоже из 12 ну или 10, и так сделать в двух направлениях фундаментной плиты. По сечению где ширина 1100мм, лучше вместо сетки и двух пешек по краям сделать такие две детали арматурные в виде клюшек которые между собой в нахлесте и создают обрамление граней бетона фундамента. 12 диаметра арматуры с головой тут хватит, так как этот насос через вот такие в основании двутавры или швеллеры которые обрамляют основание насоса не будут передавать на такую плиту большой площади, такой линейной нагрузки, и таких изгибающих моментов, да и фундамент на основании стоит а не в воздухе работает как балка там усилия копеечные, при которой бы этот фундамент трещал, но арматуры все таки надо дать по всем граням, чтобы перехватывать эти вибрации 365 дней в году (да и может быть под эти полосы из швеллеров или двутавров в основании может надо делать какие-то резиновые полосы уплотнители, чтобы прям на сам бетон не передавать удары вибрации). Да и если среда агрессивная то и бетон взять минимум В30 что в посте №10 советуют. Сделать гидроизоляцию всех поверхностей. По шпилькам если говорите что они отлетят или сгниют, так и ваши болты тогда тоже сгниют даже если они и заведены в бетон на 1.4м, что мешает верхушке сгнить (ничего), тоже как-то обработать. Если вы эти 6 болтов объедините через уголки в анкерный блок в двух направлениях, тогда это будет сплошная конструкция и дополнительная анкеровка через эти уголки объединения в теле бетона и ничего не вырвет уже, и проектное положение будет зафиксированное. Удачи.

----- добавлено через ~2 мин. -----

Тут у вас два варианта либо лить тумбу эту и армировать конструктивно 0,1% от площади сечения бетона, думаю по такому большому сечению бетона у вас также будет 12 арматура с шагом 150-200 по периметру (тогда как раз и есть смысл в экономии, чтобы сделать меньше толщину фундамента и использовать эту 12 арматуру по максимуму, чтобы не лить столько бетона). Это фундамент, он по любому изгибающие усилия воспринимает и нужно соблюдать конструктивные требования. Ну и второй вариант толщину такую подобрать чтобы у вас также получилось 12мм арматура но уже действительно работала в сечении бетонном от этих усилий которые будут создавать, но как я писал выше там усилия копеечные будут. Как правило инженеры такие фундаменты считают на коленке ну или тупо по запасу подбирают по логике и опыту.

Ну по основанию там ничего не должно проседать, если грамотно выполнить земляные работы, напряжения под подошвой от расчетных нагрузок не больше 0.3кгс/см2, просто нужно грамотно его подготовить, утрамбовать и по бетонной подготовке толщиной 80-100мм залить и все. Также там уже есть существующие фундаменты которые уже за все время работы так уплотнили этот грунт и упрочнили его, что просто сверху сделать песчано-гравийную смесь до определенной отметки, утрамбовать, уплотнить и заливать.

----- добавлено через ~5 мин. -----

Предлагаю не делать.

Ну хорошо 300мм будет мало (я погорячился) с чем то я с вами согласен, хотя может быть если реально расчет провести то и этой толщины будет достаточно.

Вес фундамента должен быть больше чем насос но 4-5 раз как-то многовато, сделайте 0,4-0,5м и у вас фундамент будет весить допустим на 1т или 1,5тонны больше насоса но это потолок толщины такого фундамента, смысл 1.6м делать? По армированию как вы говорите фундамент под насосом будет постоянно в вибрации от двигателя, то нужно просто по всему сечению за армировать его, то есть верхняя/нижняя сетка из 12 шаг 150мм + пешки по боковым граням тоже из 12 ну или 10, и так сделать в двух направлениях фундаментной плиты. По сечению где ширина 1100мм, лучше вместо сетки и двух пешек по краям сделать такие две детали арматурные в виде клюшек которые между собой в нахлесте и создают обрамление граней бетона фундамента. 12 диаметра арматуры с головой тут хватит, так как этот насос через вот такие в основании двутавры или швеллеры которые обрамляют основание насоса не будут передавать на такую плиту большой площади, такой линейной нагрузки, и таких изгибающих моментов, да и фундамент на основании стоит а не в воздухе работает как балка там усилия копеечные, при которой бы этот фундамент трещал, но арматуры все таки надо дать по всем граням, чтобы перехватывать эти вибрации 365 дней в году (да и может быть под эти полосы из швеллеров или двутавров в основании может надо делать какие-то резиновые полосы уплотнители, чтобы прям на сам бетон не передавать удары вибрации). Да и если среда агрессивная то и бетон взять минимум В30 что в посте №10 советуют. Сделать гидроизоляцию всех поверхностей. По шпилькам если говорите что они отлетят или сгниют, так и ваши болты тогда тоже сгниют даже если они и заведены в бетон на 1.4м, что мешает верхушке сгнить (ничего), тоже как-то обработать. Если вы эти 6 болтов объедините через уголки в анкерный блок в двух направлениях, тогда это будет сплошная конструкция и дополнительная анкеровка через эти уголки объединения в теле бетона и ничего не вырвет уже, и проектное положение будет зафиксированное. Удачи.

то есть верхняя/нижняя сетка из 12 шаг 150мм + пешки по боковым граням тоже из 12 ну или 10, и так сделать в двух направлениях фундаментной плиты. По сечению где ширина 1100мм, лучше вместо сетки и двух пешек по краям сделать такие две детали арматурные в виде клюшек которые между собой в нахлесте и создают обрамление граней бетона фундамента.
Можно какой нибудь простецк.эскиз для лучшего понимания.

Собственноручное производство железобетонного фундамента — наиболее ответственный из всех этапов строительства. Требуемая жёсткость и прочность обеспечивается закладной арматурой, поэтому сегодня мы устраним пробелы в понимании функций армирования и поясним методологию расчёта арматуры для фундамента.

Как правильно сделать расчёт арматуры и армировать фундамент

Как работает фундаментное армирование

Бетон обладает превосходной прочностью на сжатие. Это означает, что если бетонный брусок поместить под пресс, он начнёт разрушаться только под очень высоким давлением.

Реалии эксплуатации ЖБИ таковы, что нельзя точно предусмотреть, какие силы будут действовать в отдельно взятой точке массива. Всё потому, что конфигурация бетонного изделия значит не так много, как физико-механические характеристики основы, на которой это изделие установлено. А они почти всегда непредсказуемы.

Нагрузка в бетоне распределяется неравномерно. Максимальное напряжение приходится на точку опоры, при этом всегда действует правило рычага — сила возрастает пропорционально плечу воздействия. Если подвесить бетонную балку за оба края, воздействие на центр будет напрямую зависеть от длины балки.

Работа балки на изгиб

Схема работы балки на изгиб: a — бетонная балка; б — железобетонная балка; 1 — арматура

Также интересен характер и направление деформаций в разных точках. При изгибе одна сторона будет сжиматься, но это, как мы выяснили, не сулит больших неприятностей. Гораздо хуже, что с обратной стороны изделия бетон будет растягиваться, что при невысоких показателях упругости выльется в трещину и слом.

Главная задача арматуры — не позволить бетону растягиваться. Это достигается за счёт сил трения, которые передают нагрузку от бетонного слоя закладным элементам, имеющим модуль упругости гораздо выше, чем у бетона. И, конечно, арматура должна быть распределена максимально равномерно, чтобы каждый отдельный участок конструкции не имел слабых мест с плохой перевязкой. Иначе армирование теряет всякий смысл.

Чем укрепляют фундамент

Существует два типа арматуры. Рабочая арматура выполняет непосредственную функцию армирования — принимает на себя нагрузку в приложенной плоскости. Конструктивная арматура служит для упорядочивания линий рабочего армирования в слое бетона и получения дополнительных связей, если это необходимо.

Гладкая арматура

В качестве рабочей арматуры традиционно используется горячекатаные стержни периодического или гладкого профиля по ГОСТ 5781–82. Стальная арматура может быть свариваемой и несвариваемой, в зависимости от термомеханического укрепления и области использования.

Для фундамента в качестве рабочего армирования целесообразно применять именно периодический профиль, который обладает наивысшим показателем сцепления с окружающей массой. Вспомогательное армирование, напротив, выполняется гладкими стержнями, хотя это не категоричное правило.

Строительная арматура периодического профиля

Важен и материал, марка стали определяет класс арматуры. Наиболее востребованы для частного застройщика классы А400–А600: они наиболее широко распространены на строительных базах и не требуют специальных средств стыковки: весь каркас собирается вязкой. Всё чаще применяют композитную арматуру (ГОСТ 31938) из пластика, укреплённого углеродным и стекловолокном. Такая арматура значительно легче стальной и абсолютно не подвержена коррозии, а вот насколько это важно в рамках конкретного проекта — решать только вам.

Армирование фундамента стеклопластиковой арматурой

Основные параметры армирования

В каждом конкретном расчёте есть ряд ключевых значений, описанных в пособии к СНиП 2.03.01:

  1. Плотность закладки арматуры (коэффициент армирования). Определяется по поперечному срезу изделия как отношение суммы сечений арматурных стержней к сечению бетонной массы. Установленный нормами минимум — 0,05%, хотя коэффициент может увеличиваться по мере роста отношения длины сегмента к его высоте вплоть до 0,25%.
  2. Толщина стержней. При длине сегмента свыше 3-х метров используется арматура диаметром не менее 12 мм, более 6-ти метров — свыше 14 мм, а при протяжённости от 10-ти метров — 16 мм и более.
  3. Распределение армирования. Если фундамент имеет глубину около метра, то какую грань укреплять от растяжения: верхнюю или нижнюю? Что лучше — малое количество толстых стержней или много линий тонкой арматуры? На практике часто всю рабочую арматуру помещают у одной грани, разбивая на как можно большее число прутьев, не мешающих заливке бетона. Затем такой же пояс дублируется у противоположной грани.
  4. Коэффициент надёжности (переармирование) — прямо вытекающее из предыдущего пункта понятие. Прочность фундамента может быть намеренно завышена в 2 или 3 раза на случай непредвиденных изменений в геоморфологии региона или при отсутствии на момент строительства завершённого проекта.

Как правильно сделать расчёт арматуры и армировать фундамент

Последнее должно относиться к разряду исключений, но на практике так строится чуть ли не половина объектов ИЖС. Проблема в том, что без исчерпывающих проектных данных вы не имеете возможности точно установить вес здания, определить по нему достаточную площадь и глубину залегания, соответствующие опорной способности грунта, затем по нормативным пропорциям рассчитать линейные характеристики фундамента, а из них вывести оптимальные методы укрепления его структуры, адекватные расчётной нагрузке.

Конфигурация арматуры для НЗЛФ, ленты и плиты

Ленточные фундаменты, залегающие выше глубины промерзания, армируются каркасом прямоугольной формы. Между внешними рёбрами может располагаться неограниченное количество линий армирования, между которыми обязательно соблюдается нормативный просвет. Как правило, такие каркасы состоят из отдельно связанных модулей, длина которых удобна для транспортировки и установки. Конструктивная арматура здесь представлена П-образными или замкнутыми хомутами, опоясывающими прутья рабочего армирования каждые 0,6–1,1 метра.

Схема армирования ленточного фундамента

Армирование прямого участка ленточного фундамента: 1 — рабочая продольная арматура; 2 — конструктивная арматура (хомуты)

Заглубленные фундаменты укрепляются как и лента — каркасом. Линии армирования, как упоминалось, дублированы и сосредоточены у верхней и нижней граней. Дополнительно могут закладываться промежуточные линии, компенсирующие силы давления и пучения грунта, если того требует проект. Между собой армирование соединяется вертикальными прутьями. Это армирование выглядит как конструктивное, но оно же выполняет функцию рабочего, в значительной степени препятствуя скручивающим и боковым давящим деформациям.

Плита армируется наиболее просто: две арматурные сетки, каждая может состоять из нескольких слоёв. Разносятся сетки к верхней и нижней плоскости в соответствии с нормативным защитным слоём. Параметры арматурных сеток — табличные, прут и ячейка рассчитываются в зависимости от габаритов плиты. Что касается рёбер жёсткости под плитой, они формируются как и каркасы МЗЛФ, а затем скрепляются с сеткой плиты вертикальными прутьями конструктивной арматуры.

Армирование плиты фундамента

Вязка, установка и контроль

С линейными участками все просто, но ведь фундамент имеет повороты и пересечения. На них линии сходящихся каркасов соединяются гнутыми закладными элементами из арматуры того же сечения. Края устанавливаются с нахлёстом от 40 до почти 100 номинальных диаметров. Довольно распространена практика укрепления углов фундамента арматурными сетками 12х150х150 мм, особенно на слабых грунтах и в сейсмоопасных регионах.

Армирование примыканий и углов ленточного фундамента

Армирование примыканий и углов ленточного фундамента: 1 — рабочая продольная арматура; 2 — поперечная арматура; 3 — вертикальная арматура; 4 — Г-образные хомуты

Мы уже описывали преимущества вязки арматуры перед сваркой и настоятельно рекомендуем использовать только этот метод, если речь не идёт о фундаментах специального назначения.

Вязка арматуры фундамента

Каждый последующий сегмент каркаса устанавливается на дистанционных подкладках или кольцах, которые препятствуют нарушению защитных слоёв. Прутья на торцах связываются с нормативным перехлёстом, по 2–3 проволочных хомутах на каждом стыке.

Пластиковые подставки под арматуру

В итоге армирующий каркас должен быть сформирован таким образом, чтобы по нему спокойно могли передвигаться люди. Перед заливкой каркас тщательно проверяется на прочность скрепления. Если при заливке бетоном разойдутся перевязки линий, это чревато полной выбраковкой всей конструкции. Поэтому во время заливки и усадки нужно уделять особое внимание положению и целостности соединений арматуры.

В этой статье мы расскажем о разных видах армирования конструкций и откроем некоторые секреты профессии арматурщика. Также будут приведены упрощённые расчёты, описания документации, схемы армирования. В статье вы найдёте практические советы и рекомендации по ведению арматурных работ.

Арматурные работы. Советы профессионала, приёмы и секреты

Виды армирования

Армирование — неотъемлемая часть конструкции, материал которой предусматривает переход из жидкого состояния в твёрдое. Этот процесс называют схватыванием или твердением. По способам армирования различают:

  1. Дисперсное — добавление в жидкий раствор фибровых волокон или металлической стружки. Придаёт монолитному участку жёсткость и стойкость к истиранию. Применяют в устройстве полов, стяжек. Может применяться в комбинации со стержневым способом.
  2. Стержневое — в объём бетона или раствора включают систему стержней (сетку, каркас), которая распределяет нагрузку внутри конструкции. Применяют для несущих и отдельно стоящих элементов зданий.
  3. Слоевое (укрепление слоя) — в слой жидкого раствора или шпатлёвки включают сетку для придания стабильности отделочного слоя. Применяют при отделке и ремонте плоскостей.

В данной статье мы рассмотрим армирование конструкций при помощи каркаса и сеток.

Армирование конструкций

Отвердевший бетон выдерживает высокие нагрузки на сжатие — до 1000 кг/см 2 , но неустойчив на излом, разрыв и растяжение. При этом его производство — относительно недорогое.

Арматурный стержень воспринимает значительные нагрузки на растяжение, но неустойчив к сжатию и изгибу. К тому же стоимость производства высока, учитывая, что в неё входят расходы на добычу металла.

Поскольку любая несущая конструкция подвергается комбинированным нагрузкам, необходим материал, удовлетворяющий нескольким требованиям. Комбинация арматурных стержней и бетона даёт комбинацию их свойств. В результате получается железобетон, устойчивый к сжатию, изгибу и излому.

Арматурные работы. Советы профессионала, приёмы и секреты

Поскольку все ж/б изделия условно подразделяются на заводские и местного производства, арматура работает в них по-разному. Большинство заводских изделий производится с использованием предварительно напряжённой арматуры. Перед укладкой бетона в форму стержни предварительно растягивают (напрягают) специальным устройством. После отвердения напряжение в стержнях остаётся — арматура как бы «поджимает» весь элемент вдоль них, что значительно улучшает механические свойства детали. Например, балка или плита с предварительно напряжённой арматурой выдерживает большие нагрузки (+ 40–60%) на изгиб, чем обычные.

В высотных зданиях арматурный каркас служит основой всей конструкции. Стержни переходят из одного элемента в другой, что делает их взаимосвязанными между собой и придаёт требуемую жёсткость каркасу здания. Этот эффект даёт возможность возводить небоскрёбы на относительно малой площади.

Армирование СНиП

При строительстве ответственных зданий и сооружений расчёт сечения и количества стержней — один из основных. Нормы армирования регламентируются документами — СНиП 2.03.01–84 «Бетонные и железобетонные конструкции» и приложением к нему «Армирование элементов монолитных железобетонных зданий. Пособие по проектированию». В этих документах подробно описаны расчёты, допуски и требования к конструкциям, в которых применено армирование.

Условия эксплуатации и требования к самим стержням нормируются документом ГОСТ 10884–94 «Сталь для железобетонных конструкций».

Глубокие расчёты необходимы при строительстве крупных и сложных объектов — высотных зданий, мостов, башен, плотин. Для расчёта армирования конструкций в частном строительстве достаточно придерживаться основных правил, которые актуальны для всех случаев применения арматуры.

Сортамент арматуры

Ещё одним полезным документом является сортамент. В нём приведены все возможные характеристики арматурных изделий — вес погонного метра и зависимость его от диаметра, площадь сечения стержня и марки стали и многие другие. Эти данные необходимы при более сложных расчётах — монолитных перекрытий, резервуаров или зданий, имеющих более 3-х этажей.

Класс арматуры

Как правило, в частном порядке используют самые распространённые марки и диаметры стержней. Условно этот набор можно назвать «оптимальным разрядом». В него входят стержни диаметром от 6 до 18 мм. Классы арматуры оптимального разряда по ГОСТ 5781:

  1. А1 (А240). Гладкий прут Ø 6–12 мм — в бухтах (бобинах, мотках), 12–40 мм — в прутах (круг).
  2. А2 (А300). Имеет винтовые рёбра. Диаметр 10–12 мм — в бухтах, 12–40 мм — в прутах.
  3. А3 (А400). Поперечные рёбра расходятся «ёлочкой» от продольного ребра. Ø 6–12 мм — в бухтах, 12–40 мм — прутах.

Арматурные работы. Советы профессионала, приёмы и секреты

Другие марки встречаются редко — в основном на объектах с высокими требованиями, эти изделия изготавливают на заказ из более качественной стали.

Армирование бетона бывает только двух видов по конструкции — плоская сетка (может быть изогнута) или пространственный каркас. Сетку применяют для лежачих плит и стяжек, пространственный каркас — для объёмных элементов — балок, перемычек, армопояса, колонн, стен и др. При этом две сетки, устроенные на стабильном расстоянии друг от друга, уже представляют собой каркас (например, стеновой).

Расчёт армирования

Когда определена форма изделия (элемента) и его размер, дело остаётся за малым — определить диаметр и шаг ячейки каркаса. В строительстве с невысокими требованиями оптимально применить эффективную систему адаптированного расчёта. Принцип применения арматуры разного диаметра прост — чем больше нагрузки несёт элемент, тем толще необходимы стержни.

Показатели каркасов и сеток для разных конструкций:

Наименование элемента Марка арматуры Диаметр стержня, мм Шаг ячейки, мм Примечание
Подбетонка, отмостка А1, А2, А3 8 150–250 Ненагруженные участки
Лежачая плита, лежачая балка (армопояс) А2, А3 12–16 150–200 Не глубже 50 мм от верха плиты
Балка фундамента, висячая балка, висячая плита А3 16–18 100–160 В зависимости от наличия усилений и мест привязки, нагрузки
Колонна, упорная стенка А3 14–18 100–160 Зависит от приложенной нагрузки
Бортик А2, А3 12–16 120–160 Без существенной нагрузки
Стена здания А3 16 100–160 В зависимости от привязки

В адаптированном расчёте можно применить общий принцип — достаточный шаг ячейки будет равен диаметру стержня, умноженному на 10. В ответственных местах — примыкания и соединения элементов — следует добавлять усиления, т. е. устанавливать дополнительные стержни.

Схема армирования

Как правило, из железобетона устраивают два вида элементов — балки и плиты. В 80% случаев для выполнения каркаса любой сложности достаточно будет двух позиций:

  • рабочие стержни — пруты арматуры Ø 12–18 мм, устроенные вдоль конструкции;
  • распределительные (конструктивные) элементы — изделия из проволоки Ø 6–8 мм, которые распределяют в пространстве и фиксируют рабочие стержни с заданным шагом.

Разумеется, понадобится вязальная проволока.

Арматурные работы. Советы профессионала, приёмы и секреты

Схема армирования балки: 1 — армирование лежачих, фундаментных балок и армопояса; 2 — армирование висячих балок, фундамента; 3 — защитный слой 40 мм; 4 — вспомогательные рабочие стержни; 5 — основные рабочие стержни; 6 — хомут

Если балка предполагается висячая, все стержни в ней должны быть одинакового сечения (не менее 16 мм). Для лежачей балки вспомогательные стержни могут быть меньшего диаметра.

Арматурные работы. Советы профессионала, приёмы и секреты

Схема армирования плиты: 1 — лежачая плита; 2 — висячая плита; 3 — «лягушка»; 4 — распределительная арматура; 5 — рабочая арматура

Каркас висячей плиты представляет собой две зеркально расположенные сетки. Равное расстояние между ними удерживается с помощью ограничителей.

Станок для арматуры

Для того чтобы изготовить элементы типа «хомут» или «лягушка» потребуется специальное приспособление — гибочный станок. Если предполагается ощутимый объём бетонирования, начать следует именно с изготовления этого станка из подручного материала. Он представляет собой верстак на стальной раме, надёжно установленный в горизонтальном положении.

Чтобы собрать станок для арматуры на месте, вам понадобится подручный материал — обрезки металла, среди которых должны быть два уголка 40х40 или 45х45.

  1. Основной элемент станка — упор со втулкой. В середине верстака привариваем вертикально стержень длиной 8–10 мм и подбираем стальную трубку, которая свободно на него наденется.
  2. К трубке привариваем рычаг — лучше всего уголок горизонтальной полкой к трубке. Если уголка нет, тогда упор в 100 мм от приваренного стержня.
  3. К наружному краю рычага привариваем удобную ручку.
  4. Укладываем арматуру наибольшего диаметра (но не более 18 мм), которую необходимо гнуть параллельно длинному краю верстака.
  5. Привариваем к верстаку упор — лучше всего уголок.

Арматурные работы. Советы профессионала, приёмы и секреты

Станок может иметь произвольную конструкцию. Основная идея — сила прикладывается в трёх точках через рычаги.

В продаже часто можно встретить заводские ручные приспособления для загиба арматуры, но они редко выдерживают интенсивные нагрузки и предназначены для домашнего использования. Для больших объёмов можно приобрести электрический гибочный станок 220 или 380 В. При помощи электрического станка можно выгибать довольно сложные элементы, которые используют в том числе и в художественной ковке. Цена нового электрического гибочного станка до 40 мм начинается от 70 000 руб.

Арматурные работы. Советы профессионала, приёмы и секреты

Сварка арматуры

Самая распространённая ошибка при выполнении арматурных работ — применение электросварки для соединения элементов каркаса. Причины, по которым этого делать нельзя:

  1. Перегрев металла. При производстве арматуры классов А1, А2, А3 используется сталь с относительно высоким содержанием углерода. Это значит, что после нагрева она теряет до 50% свойств по прочности. Это особенно важно для соединений под углом.
  2. Неправильное распределение нагрузки. Жёстко зафиксированный (приваренный) участок стержня как бы вычленяется из него и работает отдельно от остальной его части. По этой причине возникают ненормальные напряжения, сосредоточенные в местах жёсткой фиксации (сварки) вместо того, чтобы распределяться по всей длине.
  3. Неправильно собранный каркас останется только выбросить (невозможно переделать).
  4. Опасность для других рабочих — возможно случайное поражение током.
  5. Затраты на электричество.

Арматурные работы. Советы профессионала, приёмы и секреты

Однако есть случаи, когда сварка не только незаменима, но и обязательно требуется:

  1. Установка закладных деталей (ЗД). ЗД — приоритетные элементы, на которых сосредотачивается большая нагрузка. Они ввариваются в каркас для лучшей передачи нагрузки на стержни.
  2. Сварка продольных стыков (перехлёстов). Перегретая арматура сохраняет до 70% свойств на растяжение. К тому же на перехлёсте она сдвоена. Сварка продольных стержней «в стык» лишена смысла.
  3. Крепление по месту к уже существующим ЗД или стальным элементам (при реконструкции зданий).

Вязка арматуры

Скрепление пересекающихся стержней между собой — кропотливая и трудоёмкая работа. Но её нельзя избежать при армировании конструкций. Для этого используют мягкую вязальную проволоку толщиной от 0,5 до 2,5 мм. Приспособление для работы — крючок арматурщика — каждый специалист подбирает себе сам. Есть небольшой ассортимент заводских моделей, но в подавляющем большинстве случаев крючок изготавливают на месте из прута проволоки Ø 8–12 мм. Для этого необходимо выгнуть его в удобной форме и заточить с одного конца. На обратном конце стержня крючка можно надеть пластиковую трубку. Также крюк можно установить в аккумуляторный шуруповёрт, что значительно облегчит работу.

Арматурные работы. Советы профессионала, приёмы и секреты

Для облегчения труда арматурщика есть развитые формы вязального крючка:

  1. Заводской арматурный крючок. Между ручкой и стержнем крюка установлен подшипник.
  2. Автоматический крюк. Вращается за счёт пружины в рукояти, соединённой с жалом.
  3. Вязальное устройство (пистолет). Операция автоматизирована, пистолет сам поджимает стержни и вяжет проволоку.

Арматурные работы. Советы профессионала, приёмы и секреты

При создании каркасов для разных элементов применяют разный шаг вязки. Чем более ответственный участок — тем плотнее будут расположены узлы.

Шаг узлов в разных каркасах:

Наименование элемента Шаг ячейки, мм Шаг узла, ячеек вдоль х ячеек поперёк
Подбетонка, отмостка 150–250 3 х 3
Лежачая плита, лежачая балка (армопояс) 150–200 2 х 3
Балка фундамента, висячая балка 100–160 каждое пересечение
Висячая плита (перекрытие, балкон) 100–160 2 х 2
Колонна, упорная стенка 100–160 2 х 2
Бортик 120–160 3 х 3
Стена здания 100–160 2 х 2

Арматурные работы часто сопряжены с установкой опалубки, которую часто смазывают маслом для облегчения демонтажа. Внимательно следите за тем, чтобы масло не попадало на стержни — это приведёт к отсутствию сцепления между бетоном и арматурой. Использование сильно окисленной арматуры категорически нежелательно.

Здравствуйте! Кто знает, подскажите пожалуйста, справедлив ли минимальный процент армирования, указанный в разделе Конструктивные требования СП, для массивных железобетонных фундаментов? Возникают споры и сомнения, какой же диаметр арматуры назначать для фундамента толщиной приметно 2м под ГПА, по минимальному проценту армирования получается 25 арматура с шагом 200мм, в СНиПе фундаменты с динамическими нагрузками указано просто-не менее d12. Уже весь и-нет перерыла в поисках литературы на эту тему, ничего не нахожу.

Проектирование гидротехнических сооружений

Раз фундамент массивный, армирование наверняка не расчётное? А если так - ставите д12 по СНиПу на фундаменты с динамическими нагрузками, обзываете это конструктивным армированием (проще говоря от растрескивания), а сам фундамент обзываете БЕТОННЫМ вместо железобетонного. Тогда на него требование о минимальном проценте армирования не распространяется.

Считали мы как то такой фундамент, 2х4х3, в НИИЖБе порекомендовали арматуру подбирать по СНиП гидротехнические сооружения , вообщем считать по напряжениям в бетоне, так и пришлось моделировать куб объемниками и вычислять напряжения.

Проектирование гидротехнических сооружений

Считали мы как то такой фундамент, 2х4х3, в НИИЖБе порекомендовали арматуру подбирать по СНиП гидротехнические сооружения , вообщем считать по напряжениям в бетоне, так и пришлось моделировать куб объемниками и вычислять напряжения.

ну и какие напряжения получились?
что-то мне кажется, что конструктивная арматура д12 с шагом 200х200 окажется в несколько раз толще, чем требуется по расчёту объёмниками

Учитывали конечно и конструктивную и расчетную, присутствовал и 16 диаметр насколько помню, от нагрузки зависит ведь тоже . Считали несколько лет назад, в микрофе, напряжения конечно не помню, все же не каждый день такое считаешь.

Проектирование гидротехнических сооружений

Учитывали конечно и конструктивную и расчетную, присутствовал и 16 диаметр насколько помню, от нагрузки зависит ведь тоже . Считали несколько лет назад, в микрофе, напряжения конечно не помню, все же не каждый день такое считаешь.

Это какие же должны быть нагрузки, чтобы в массивном бетонном блоке размерами 2х4х3м возникли такие усилия, чтоб арматура 16 по расчёту вылезла. На сжатие бетон такого сечения имеет совершенно невероятную несущую способность. Значит на изгиб? - Если 3х4 это длина и ширина, а 2м - толщина, то при арматуре д16 получается момент в сечении порядка 60-70тм должен быть. С 4м длины плиты, на упругом основании, такой момент получить не могу представить.
но если говорите что было - значит наверное возможно

Сергей Юрьевич
Обычно в таких случаях говорят, сказанул как в лужу п-л.
Они бы еще ВНИГовскую методику добавили, по охлаждению блоков.

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

Моменты были не помню какие, но большие. Помню только что на верх блока была установлена металическая подпорка под углом, которая передавала до 300т сдвигающей силы, для этого и были установлены на фундаментную плиту эти кубы из бетона с контрфорсами для равномерного распределения нагрузки по плите.

DDlis
Не шути так, для кубика 3х4м толщиной 2 м, больших моментов не будет, даже при нагрузке в 300 тн.

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

Ну армирование считал не я, помню только эту нагрузку. Может и процент армирования брали, давно было. Ну а если не просто разговаривать, а отвечать на четко поставленый вопрос, на который начал отвечать только Сергей Юрьевич, то могу сказать то что уже писал, ННИЖБ отослал к гидротехническому СНиПу считать по напряжениям, так же на всякий случай спросили у техсофта как искать арматуру в объемниках, считали в микрофе, тоже порекомендовали этот же СНиП , благо ребята там сидят грамотные, так что расчет по напряжениям и конечно как сказал Сергей Юрьевич, процент армирования.

Здравствуйте! Кто знает, подскажите пожалуйста, справедлив ли минимальный процент армирования, указанный в разделе Конструктивные требования СП, для массивных железобетонных фундаментов? Возникают споры и сомнения, какой же диаметр арматуры назначать для фундамента толщиной приметно 2м под ГПА, по минимальному проценту армирования получается 25 арматура с шагом 200мм, в СНиПе фундаменты с динамическими нагрузками указано просто-не менее d12. Уже весь и-нет перерыла в поисках литературы на эту тему, ничего не нахожу.

При проектировании массивных фундаментов оборудования пользуйтесь руководством по проектированию фундаментов оборудования, в котором указаны диаметры нижней сетки и верхней, диаметр верхней зависит от диаметра анкерных болтов.

Во наговорили-то.
Поверхности в любом случае надо армировать, хотя бы из предположения того, что сверху слона уронят или кто-нить молотком тюкнет. Так же температурка повлияет не в лучшую сторону.
Рабочее армирование, присоединяюсь к многим отписавшим, скорее всего не потребуется.

П.С. арматуру вообще то всегда подбирают по напряжениям, для тонкостенных элементов справедлива теория плоских сечений, на которой и основан СНИПовский расчет, и поэтому никто не заморачивается. НООООО. Это частный случай работы упругого тела, на котором жизнь не заканчивается.

Ну ну, а какая арматура обычно применяется, для армирования массивных блоков ГЭС?
Уж не та ли про которую Серега говорил?

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

Ну ну, а какая арматура обычно применяется, для армирования массивных блоков ГЭС?
Уж не та ли про которую Серега говорил?

А причем тут это? Проверка моих знаний? Так это пустое, то что там видел на одном чертеже для одного блока одной ГЭС для одного напора, вовсе не значит что все такие.

Ну я то по более видел.
Просто в основном для внутренних блоков и стен в основном шла однотипная арматура, конструктивная.

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

пытаюсь быть инженером

Ну я то по более видел.
Просто в основном для внутренних блоков и стен в основном шла однотипная арматура, конструктивная.

и снова,а как назначить эту конструктивную арматуру?
по СНиП, СП на железобетон (как то не понятно. )?
какое сечение бетонного элемента брать? какой процент армирования?

3.6. Расстояние в свету между арматурными стержнями по высоте и ширине сечения должно обеспечивать совместную работу арматуры с бетоном и назначаться с учетом удобства укладки и уплотнения бетонной смеси.

Расстояние в свету между стержнями для немассивных конструкций следует принимать в соответствии с требованиями СНиП 2.03.01-84.

В массивных железобетонных конструкциях расстояния в свету между стержнями рабочей арматуры по ширине сечения определяются крупностью заполнителя бетона, но не менее 2,5d где d — диаметр рабочей арматуры.

3.7. Толщину защитного слоя бетона следует принимать:

не менее 30 мм для рабочей арматуры и 20 мм для распределительной арматуры и хомутов в балках и плитах высотой до 1м, а также в колоннах с меньшей стороной до 1 м:

не менее 60 мм и не менее диаметра стержня для рабочей и распределительной арматуры массивных конструкций с минимальным размером сечения более 1 м.

Толщину защитного слоя бетона в железобетонных конструкциях морских гидротехнических сооружений необходимо принимать:

для рабочей арматуры стержневой — не менее: 50 мм:

для распределительной арматуры и хомутов — не менее 30 мм.

Для сборных железобетонных элeмeнтoв заводского изготовления при применении бетона класса по прочности на сжатие В15 и выше толщина защитного слоя может быть уменьшена на 10 мм против указанных выше величин.

При эксплуатации железобетонных конструкций в условиях агрессивной среды толщину защитного слоя необходимо назначать с учетом требований СНиП 2.03.11-85.

3.8. В массивных нетрещиностойких железобетонных плитах и стенах сечением высотой 60 см и более с коэффициентом армирования при надлежащем обосновании допускается многорядное расположение арматуры по сечению элемента, способствующее уменьшению максимальной ширины раскрытия трещин по высоте сечения.

3.9. Если стержни арматуры размещаются в два и более ряда, то диаметры стержней рядов должны отличаться друг от друга не более чем на 40 %.

3.10. Из условия долговечности гидротехнических сооружений без предварительного напряжения диаметр арматуры следует принимать для рабочей стержневой арматуры из горячекатаной стали не менее 10 мм, для спиралей и для каркасов и сеток вязаных или изготовленных с применением контактной сварки — не менее 6 мм.

3.11. Продольные стержни растянутой и сжатой арматуры должны быть заведены за нормальное или наклонное к продольной оси элемента сечение, где они не требуются по расчету, в соответствии с требованием СНиП 2.03.01-84.

3.12. Распределительную арматуру для элементов, работающих в одном направлении, следует назначать в размере не более 10% площади рабочей арматуры в месте наибольшего изгибающего момента.

3.13. При выполнении сварных соединений арматуры следует выполнять требования СНиП 2.03.01-84.

3.14. В конструкциях, рассчитываемых на выносливость, в одном сечении должно стыковаться, как правило, не более половины стержней растянутой рабочей арматуры. Применение стыков внахлестку (без сварки и со сваркой) для растянутой рабочей арматуры в этих конструкциях не допускается.

3.15. В изгибаемых элементах при высоте сечения более 700 мм у боковых граней следует устанавливать конструктивные продольные стержни. Расстояние между ними по высоте должно быть не более 400 мм, площадь поперечного сечения — не менее 0,1 % площади сечения бетона со следующими размерами: высота элемента равна расстоянию между стержнями, ширина — половине ширины элемента, но не более 200 мм.

3.16. У всех поверхностей железобетонных элементов, вблизи которых ставится продольная расчетная арматура, необходимо предусматривать также поперечную арматуру, охватывающую крайние продольные стержни. Расстояние между поперечными стержнями у каждой поверхности элемента должно быть не более 500 мм и не более удвоенной ширины грани элемента.

3.17. Во внецентренно сжатых линейных элементах, а также в сжатой зоне изгибаемых элементов при наличии учитываемой в расчете сжатой продольной арматуры необходимо устанавливать хомуты.

Расстояние между хомутами следует принимать в вязаных каркасах не более 15d, в сварных — не более 20d где d - наименьший диаметр сжатой продольной арматуры. В обоих случаях расстояние между хомутами должно быть не более 500 мм. Конструкция поперечной арматуры должна обеспечивать закрепление сжатых продольных стержней от бокового выпучивания в любом направлении. В местах стыковки рабочей арматуры внахлестку без сварки или если общее насыщение элемента продольной арматуры составляет более 3 % хомуты следует устанавливать на расстоянии не более 10d и не более 300 мм.

В массивных внецентренно сжатых элементах, рассчитанных без учета сжатой арматуры, расстояние между конструктивными поперечными связями (хомутами) допускается увеличивать до двух высот (ширин) элемента.

3.18. Расстояние между вертикальными поперечными стержнями в элементах, не имеющих отогнутой арматуры, и в случаях, когда поперечная арматура требуется по расчету, необходимо принимать:

а) на приопорных участках (не менее 1/4 пролета) при высоте сечения менее или равном 450 мм — не более h/2 и не более 150мм;

при высоте сечения более 2000 мм - не более 3/4h и не более 500 мм;

при высоте сечения, равной или более 2000 мм — не более h/З:

б) на остальной части пролета при высоте сечения 300—2000 мм — не более 3/4h м не более 500 мм;

при высоте сечения более 2000 мм — не более 3/4h.

3.19. В элементах, работающих на изгиб с кручением, вязаные хомуты должны быть замкнутыми с перепуском их концов на 30 диаметров хомута, а при сварных каркасах все поперечные стержни обоих направлений должны быть приварены к угловым продольным стержням, образуя замкнутый контур.

3.20. Отверстия в железобетонных элементах следует располагать в пределах ячеек арматурных сеток и каркасов.

Отверстия с размерами, превышающими размеры ячеек сеток, должны окаймляться дополнительной арматурой. Суммарная площадь ее сечения должна быть не менее сечения прерванной рабочей арматуры того же направления.

3.21. При проектировании сталежелезобетонных конструкций, в которых обеспечивается совместная работа арматуры и стальной оболочки, толщину последней следует принимать минимальной по условиям монтажа и транспортирования.

3.22. Арматура железобетонных конструкций должна предусматриваться в виде армоферм, армопакетов, сварных каркасов и сеток.

Типы армоконструкций следует назначать с учетом принятого способа производства работ. Они должны обеспечивать возможность механизированной подачи бетона и тщательной его проработки. Установку арматуры в железобетонных конструкциях необходимо производить индустриальными методами при максимальной экономии металла на конструктивные элементы для закрепления ее в блоке бетонирования.

Увеличение площади сечения арматуры, определенной расчетом на эксплуатационные нагрузки, для восприятия нагрузок строительного периода не допускается.

__________________
Работаю за еду.
Working for food.
Für Essen arbeiten.
العمل من أجل الغذاء
Працую за їжу.

Для правильного армирования фундамента частного дома необходимо выполнить расчет арматуры, её грамотную укладку и вязку. Неверный расчет приведет к повреждению фундамента или к лишним затратам. Обсудим армирование фундаментов различных конструкций и принцип расчета стальной арматуры, сопроводив схемами и сводными таблицами.

Армирование фундамента: расчет арматуры, укладка и вязка

Армирование фундамента требует проработки структуры каркаса из арматуры, выбора и расчета сечения, длины и массы профильного проката. Недостаточность арматуры ведет к снижению прочности и вероятному нарушению целостности здания, а её переизбыток — к неоправданно завышенным расходам на этот этап.

Что нужно знать об арматуре

При усилении бетонного основания используется два вида строительной арматуры:

  • класса A-I — гладкая;
  • класса A-III — ребристая.

Армирование фундамента: расчет арматуры, укладка и вязка

Гладкая арматура используется в ненагруженных зонах. Она только формирует каркас. Ребристая арматура, благодаря развитой поверхности, обеспечивает лучшую адгезию с бетоном. Такие прутки применяются для компенсации нагрузки. Поэтому диаметр такой арматуры, как правило, больше, чем у гладкой, в пределах того же фундамента.

Диаметр прутка зависит от типа почвы и массы сооружения.

Таблица № 1. Минимальные нормативные диаметры арматуры

Расположение и условия эксплуатации Минимальный размер Нормативный документ
Продольная арматура, длиной не более 3 м Ø 10 мм Приложение № 1 к пособию по проектированию «Армирование элементов монолитных железобетонных зданий», М. 2007
Продольная арматура, длиной более 3 м Ø 12 мм Приложение № 1 к пособию по проектированию «Армирование элементов монолитных железобетонных зданий», М. 2007
Конструктивная арматура в балках и плитах высотой более 700 мм Площадь сечения не менее 0,1% площади сечения бетона «Руководство по конструированию бетонных и железобетонных конструкций из тяжелого бетона (без предварительного напряжения)», М., Стройиздат, 1978
Поперечная арматура (хомуты) в вязаных каркасах внецентренно сжатых элементов Не менее 0,25 наибольшего диаметра продольной арматуры и не менее 6 мм «Бетонные и железобетонные конструкции без предварительного напряжения арматуры» СП 52-101-2003
Поперечная арматура (хомуты) в вязаных каркасах изгибаемых элементов Ø 6 мм «Бетонные и железобетонные конструкции без предварительного напряжения арматуры» СП 52-101-2003
Поперечная арматура (хомуты) в вязаных каркасах изгибаемых элементов при высоте менее 0,8 м Ø 6 мм «Руководство по конструированию бетонных и железобетонных конструкций из тяжелого бетона (без предварительного напряжения)», М., Стройиздат, 1978
более 0,8 м Ø 8 мм

Если предполагается строительство деревянной одноэтажной постройки на плотном грунте, можно принимать табличные значения диаметров арматуры. Если же дом массивный, а почвы пучинистые, диаметры продольной арматуры берутся в пределах 12–16 мм, в исключительных случаях — до 20 мм.

В расчетах вам пригодятся сведения об арматуре из ГОСТ-2590–2006.

Таблица № 2

Диаметр проката, мм Площадь поперечного сечения, см 2 Удельная теоретическая масса, кг/м Удельная длина, м/т
6 0,283 0,222 4504,50
8 0,503 0,395 2531,65
10 0,785 0,617 1620,75
12 1,131 0,888 1126,13
14 1,540 1,210 826,45
16 2,010 1,580 632,91
18 2,540 2,000 500,00
20 3,140 2,470 404,86
22 3,800 2,980 335,57

Расход арматуры при различных типах фундамента

Различные по конструкции фундаменты отличаются площадью, по которой распределяется нагрузка от строения. Для каждого вида расчет количества арматуры выполняется по своим требованиям. Для корректного сравнения расчет всех фундаментов проведём для следующих размеров дома:

  • ширина — 6 м;
  • длина — 8 м;
  • длина несущих стен — 14 м.

Расчет арматуры для плитного фундамента

Это самый материалоёмкий тип фундаментов. В бетоне располагают два уровня арматурных решеток, расположенных ниже верхней и выше нижней границы плиты на 50 мм. Шаг укладки зависит от воспринимаемых нагрузок. Для домов из камня/кирпича ячейка каркаса обычно составляет 200х200 мм. В точках пересечения арматуры верхний и нижний уровни каркаса связываются вертикально расположенными прутками.

Армирование фундамента: расчет арматуры, укладка и вязка

Арматурный каркас плитного фундамента

Произведем расчет арматуры для нашего эталонного дома (см. выше).

1. Горизонтальная арматура, Ø 14 мм, рифлёная.

  • 8000 мм / 200 мм + 1 = 41 шт. длиной 6 м.
  • 6000 мм / 200 мм + 1 = 31 шт. длиной 8 м.
  • Всего: (41 шт. х 6 м + 31 шт. х 8 м) х 2 = 988 м — на оба уровня.
  • Масса 1 пог. м прута Ø 14 мм — 1,21 кг.
  • Суммарная масса — 1195,5 кг.

2. Вертикальная арматура, Ø 8 мм, гладкая. Для толщины плиты 200 мм длина прутка составит 100 мм.

  • Количество пересечений горизонтальной арматуры: 31 х 41 = 1271 шт.
  • Общая длина: 0,1 м х 1271 шт. = 127,1 м.
  • Масса: 127,1 м х 0,395 кг/м = 50,2 кг.

3. В качестве вязальной обычно используют термообработанную проволоку Ø 1,2–1,4 мм. Так как место одного соединения, как правило, перевязывается два раза — сначала при укладке горизонтальных прутков, затем — вертикальных, общее количество проволоки удваивается. На одно соединение нужно ориентировочно 0,3 м тонкой проволоки.

  • 1271 шт. х 2 х 0,3 м = 762,6 м.
  • Удельная масса проволоки Ø 1,4 мм — 12,078 г/м.
  • Масса проволоки: (762,6 м х 12,078 г/м) / 1000 = 9,21 кг.

Так как тонкая проволока может порваться/затеряться, приобретать её нужно с запасом.

Общее количество материалов для армирования плитного каркаса приведено в таблице № 3.

Таблица № 3

Диаметр, мм Расчетная длина, м (без запаса) Расчетная масса, кг (без запаса)
14 988 1 195,5
8 127,1 50,2
1,4 381,3 9,2
ИТОГО: 1 254,9

Расчет арматуры ленточного фундамента

Ленточный фундамент — это железобетонные балки, расположенные под всеми несущими стенами. В нем присутствуют прямые участки, углы и «тройники». Расчет выполняется для прямых участков с небольшим запасом на усиление углов. Принимаем ширину ленты — 400 мм, глубину — 700 мм.

Армирование фундамента: расчет арматуры, укладка и вязка

Схематическое изображение прямого участка ленточного фундамента

Армирование фундамента: расчет арматуры, укладка и вязка

Место стыка несущих внутренней и наружной стен

Армирование фундамента: расчет арматуры, укладка и вязка

Наружный или внутренний угол наружных стен

Армирование ленточных фундаментов также двухуровневое. Для продольных участков используется пруток класса A-III, а для вертикальных и поперечных (хомутов) — пруток класса A-I. Сечение арматуры принимается для ленточных фундаментов несколько ниже, чем для плитных, при тех же условиях строительства.

Произведем расчет арматуры для выбранного в качестве примера эталонного здания (см. выше).

1. Горизонтальная продольная арматура, Ø 12 мм, рифленная. Для ширины ленты 400 мм достаточно уложить по два прута в каждом из двух уровней. Для более широкой ленты следует укладывать по 3 прута.

  • Протяженность всех лент: (8 м + 6 м) х 2 + 14 м = 42 м.
  • Общая длина арматуры: 42 м х 4 = 168 м.
  • Масса арматуры: 168 м х 0,888 кг = 149,2 кг.
  • С учетом усиления углов масса прутков составит 160 кг.

2. Вертикальная арматура Ø 8 мм, гладкая. Для глубины ленты 700 мм длина прутка составит 600 мм. Расстояние между вертикальными прутками по длине ленты принимаем 500 мм.

  • Количество прутков: 42 м / 0,5 + 1 = 85 шт.
  • Общая длина прутков: 85 шт. х 0,6 м = 51 м.
  • Масса прутков: 51 м х 0,395 кг/м = 20,1 кг.

3. Горизонтальная поперечная (хомут) арматура Ø 6 мм, гладкая. Для ширины ленты 400 мм длина прутка составит 300 мм. Расстояние между поперечными прутками по длине ленты принимаем 500 мм.

  • Количество прутков: 42 м / 0,5 + 1 = 85 шт.
  • Общая длина прутков: 85 шт. х 0,3 м = 25,5 м.
  • Масса прутков: 25,5 м х 0,222 кг/м = 5,7 кг.

4. Вязальная проволока. Расчет при увязке каждого соединения одной проволокой Ø 1,4 мм:

  • Количество узлов: 85 х 4 = 340 шт.
  • Общая длина: 340 шт. х 0,3 м = 102 м.
  • Общая масса: (102 м х 12,078 г/м) / 1000 = 1,23 кг.
  • При вязке узлов за два раза масса проволоки составит 2,5 кг.

Общее количество материалов для армирования ленточного каркаса приведено в таблице № 4.

Таблица № 4

Диаметр, мм Расчетная длина, м (без запаса) Расчетная масса, кг (без запаса)
12 180,2 160
8 51 20,1
6 25,5 5,7
1,4 104 2,5
ИТОГО: 188,3

Расход металлических элементов для столбчатого фундамента

Такой фундамент представляет собой опоры, нижняя часть которых находится ниже зоны промерзания, и опирающийся на них ленточный фундамент. Для глубины промерзания — 1,5 м, высота столбов составляет 1300 мм (см. рис.), т. е. их основание находится ниже уровня почвы на 1700 мм.

Армирование фундамента: расчет арматуры, укладка и вязка

Расположение арматуры в столбчатом фундаменте, вид сбоку: 1 — песчаная подушка; 2 — арматура Ø 12 мм; 3 — армирование сваи

Столбы устанавливаются в углах здания и вдоль ленты через каждые 2–2,5 м.

Выполним расчет количества прутьев для конфигурации дома, взятого в качестве примера (см. выше). Для этого нужно рассчитать количество арматуры для столбов и просуммировать с результатом расчета для ленточного фундамента.

В столбах нагружены только вертикальные прутки, горизонтальные служат для формирования каркаса. Столб диаметром 200 мм укрепляют четырьмя вертикальными арматурами. Количество столбов: 42 м / 2 м = 21 шт.

1. Вертикальная арматура Ø 12 мм, рифленная.

  • Общая длина арматуры: 21 шт. х 4 шт. х 1,3 м = 109,28 м.
  • Масса арматуры: 109,29 м х 0,888 кг = 97,0 кг.

2. Горизонтальная арматура Ø 6 мм, гладкая. Для перевязки нужно расположить горизонтальные хомуты на расстоянии не более 0,5 м. Для глубины 1,3 м достаточно трёх уровней перевязки. Вертикальные участки расположены друг от друга на расстоянии 100 мм. Длина каждого горизонтального отрезка — 130 мм.

  • Общая длина горизонтальных прутков: 21 шт. х 3 шт. х 4 шт. х 0,13 м = 32,76 м.
  • Масса прутков: 32,76 м х 0,222 кг/м = 7,3 кг.

3. Вязальная проволока. В каждом столбе три уровня горизонтальных прутков, которые обвязывают четыре вертикальных.

  • Длина вязальной проволоки в расчете на один столб: 3 шт. х 4 шт. х 0,3 м = 3,6 м.
  • Длина проволоки на все столбы: 3,6 м х 21 шт. = 75,6 м.
  • Общая масса: (75,6 м х 12,078 г/м) / 1000 = 0,9 кг.

Общее количество материалов для армирования столбчатого фундамента с учетом ленточного каркаса приведено в таблице № 5.

Таблица № 5

Диаметр, мм Расчетная длина, м (без запаса) Расчетная масса, кг (без запаса)
12 289,49 257
8 51 20,1
6 58,3 12,9
1,4 179,6 3,4
ИТОГО: 293,4

Способы и приёмы соединения арматуры

Для соединения перекрещивающихся прутов применяют сварку и вязание проволокой. Для фундаментов сварка не лучший способ монтажа, так как ослабляет конструкцию из-за нарушения структурной целостности и риска коррозии. Поэтому, как правило, армированный каркас «вяжут».

Это можно сделать вручную с помощью клещей или крючков, а также специальным пистолетом. С помощью клещей вяжут неотожженную проволоку большого диаметра.

Армирование фундамента: расчет арматуры, укладка и вязка

Приёмы ручной вязки арматуры с помощью клещей: 1 — вязка проволокой в пучках без подтягивания; 2 — вязка угловых узлов; 3 — двухрядный узел; 4 — крестовый узел; 5 — мертвый узел; 6 — скрепление стержней соединительным элементом; 7 — стержни; 8 — соединительный элемент; 9 — вид спереди; 10 — вид сзади

Для тонкой отожженной проволоки удобнее использовать крючки: простой или винтовой.

Видео: Наглядный урок вязки арматуры самодельным крючком

Армирование фундамента: расчет арматуры, укладка и вязка

Вязальный пистолет

Для больших объемов работ используют вязальный пистолет. Скорость вязки при этом гораздо выше традиционных способов, но появляется зависимость от источника питания. Кроме этого, именно для фундаментов пистолет может быть применен не везде — некоторые участки для него труднодоступны.

Читайте также: