Зоны пластических деформаций под подошвой жесткого фундамента возникают

Обновлено: 17.04.2024

Пусть на поверхности грунта, обладающего структурной прочностью, установлен жесткий штамп, загружаемый нагрузкой N (рис. 6.1, а). Под действием этой нагрузки в массиве грунта происходят перемещения, величина которых будет возрастать по мере увеличения давления на основание. Вследствие развития в грунте дополнительных напряжений сверх ранее существовавших (от действия собственного веса грунта) он будет деформироваться. Интегральным выражением деформаций является осадка штампа S. При увеличении нагрузки осадка развивается в соответствии с кривой 1, приведенной на рис. 6.1, б.

На ней можно выделить четыре участка: ОА, АВ, ВС и СD. Участок ОА соответствует нагрузке, при которой возникающие в грунте под основной частью подошвы штампа напряжения не превышают структурную прочность грунта. При таких напряжениях развиваются преимущественно упругие осадки и осадки, связанные с затухающей ползучестью. Вследствие неравномерности распределения давления по подошве жесткого штампа напряжения под его отдельными частями (под краями), как правило, будут превышать рstr. Это приведет к перераспределению давления. Так как под основной частью штампа рstr, деформации будут возрастать примерно пропорционально изменению нагрузки. Эту фазу напряженного состояния грунтов в основании штампа называют фазой упругих деформаций, хотя одновременно с ними развиваются в небольших зонах пластические деформации и деформации уплотнения. Последнее обстоятельство приводит к тому, что в пределах и этой фазы между нагрузкой и осадкой нет строгой линейной зависимости.


Рис. 6.1. Схема испытания грунта штампом (а) и графики зависимости осадки штампа от нагрузки (б и в).

Когда давление под всей подошвой штампа превысит структурную прочность грунта, в основании станут развиваться деформации уплотнения, которые в пределах сравнительно небольших напряжений, возникающих обычно в основании сооружения, как показывают компрессионные испытания, можно принять линейно возрастающими с увеличением давления. Если бы в пределах изменения нагрузки, соответствующей участку АВ кривой 1 (см. рис. 6.1, б), деформации уплотнения развивались в одном и том же объеме, указанный участок кривой был бы прямолинейным. Однако это не так. При давлении, незначительно превышающем структурную прочность грунта, уплотнение развивается лишь в зоне, непосредственно примыкающей к подошве штампа. По мере увеличения нагрузки грунт будет уплотняться во все большей зоне, так как в пределах все большего объема напряжения σ будут превышать структурную прочность грунта. Одновременно в грунте под краями штампа, где происходит концентрация напряжений, будут развиваться пластические деформации (деформации сдвигов), усугубляя криволинейность участка АВ.

Тем не менее при сравнительно небольших давлениях, обычно возникающих под подошвой фундаментов сооружений, кривую 1 на участке АВ можно с некоторым приближением принять за прямую. Эту фазу напряженного состояния грунтов в основании называют фазой уплотнения и местных сдвигов.

При еще большем давлении зоны пластических деформаций, развиваясь в стороны, будут приводить к уплотнению грунтов и по сторонам от этих зон, вследствие чего радиус кривизны кривой 1 на участке ВС станет меньше. Этот участок соответствует значительному развитию местных сдвигов, поэтому фазу напряженного состояния в основании, соответствующую участку ВС, назовем фазой развития интенсивных деформаций сдвигов и уплотнения, в т. ч. по сторонам от зон пластических деформаций.

Наконец, при воздействии некоторой нагрузки N на сравнительно неглубоко заложенный фундамент произойдет резкая осадка его с выпором грунта из основания в стороны и вверх (см. далее рис. 8.1). На кривой осадок появится практически вертикальная линия СВ, соответствующая фазе выпора.

Таким образом, для грунтов, обладающих структурной прочностью, можно приближенно выделить четыре фазы напряженного состояния, в условиях которых последовательно преобладают деформации: 1) упругие; 2) уплотнения и местных сдвигов; 3) интенсивных местных сдвигов и уплотнения по сторонам от зон пластических деформаций; 4) выпирания.




Поскольку структурная прочность грунта под подошвой часто незначительна, зависимость между средним давлением штампа и его осадкой (при небольшом развитии пластических деформаций), а, следовательно, между напряжениями и деформациями, принято считать линейной.

При определении напряжений в массиве грунта используются законы механики для упругого сплошного тела.Насколько грунты удовлетворяют данным требованиям?

Действие вертикальной сосредоточенной силы, приложенной к поверхности линейно-деформируемого полупространства (задача Буссинеску 1885 г.)


Рассмотрим действие вертикальной сосредоточенной силы N, приложенной в точке О к горизонтальной плоскости, являющейся поверхностью линейно-деформируемого полупространства, простирающегося в бесконечность ниже этой плоскости (рис. 6.2, а). От действия силы N во всех точках полупространства возникает сложное напряженное состояние. В общем случае в каждой точке полупространства, несколько удаленной от точки О, в декартовой системе координат будет действовать шесть составляющих . Решение этой задачи было выполнено Буссинеском (1885 г.).

Пусть положение точки М1 (рис. 6.2, а) определяется полярными координатами R и β системы координат с началом в точке приложения силы N. Под действием силы N точка М1 переместится в направлении радиуса R на величину S1. Чем дальше от точки О будет расположена точка М1, тем меньше будет ее перемещение; при R =∞ перемещение точки М1 будет равно нулю. Следовательно S1 можно принять обратно пропорциональным R. В то же время при одном и том же значении R для различных величин угла β перемещения точек будут неодинаковы. Наибольшее перемещение получит точка, расположенная на оси z, т. е. при β = 0. С увеличением угла β перемещения по направлению радиуса R уменьшаются, и в случае β=90° (на поверхности грунта) при малых деформациях будут равны нулю. В связи с этим можно принять, что перемещение точки М1 по направлению радиуса, кроме зоны около точки приложения силы N, будет


где α1 — коэффициент пропорциональности.


Рис. 6.2. Схема к выводу формулы (6.1)

а — расположение точек М1 и М2 в полупространстве; б — распределение напряжений по волушаровой поверхности с радиусом R; в — напряжения, действующие в точке М1.

Эта зависимость удовлетворяет граничным условиям. Рассмотрим теперь точку М2 на продолжении радиуса R. Пусть точка М2 находится на расстоянии dR от точки М1. Руководствуясь записанным выражением, найдем перемещение точки М2 по направлению радиуса R:


В таком случае относительная деформация грунта на отрезке dR составит:


Пренебрегая величиной RdR, малой по сравнению с R 2 , и учитывая линейную зависимость между напряжениями и деформациями, найдем выражение для напряжений сжатия, действующих на площадки, перпендикулярные направлению радиуса R, без учета силы тяжести грунта:


(а)


Для нахождения произведения коэффициентов αα2 отсечем мысленно часть полупространства полушаровой поверхностью (рис. 6.2, б), имеющей центр в точке О и радиус R, и составим уравнение равновесия проекций на ось z всех сил, действующих на отсеченный элемент, для невесомой среды. В таком случае получим:


(б)

где dA — площадь кольца полушаровой поверхности при изменении угла β величину .

Подставив в уравнение (б) значение σR, определенное по выражению (а), и решив его, найдем произведение коэффициентов αα2. После подстановки значения αα2 в выражение (а) получим:


Напряжение σR действует на наклонную площадку dA. Рассматривая равновесие элементарной треугольной призмы (рис. 6.2, в), составим уравнение проекций всех сил на вертикальную ось:


Подставив в полученное уравнение значение σR, по выражению (в), найдем вертикальное напряжение, которое принимается с положительным знаком при сжатии:





Аналогично могут быть найдены остальные пять компонентов напряжения в точке М1.

Подставляя в формулу (6.1) значение коэффициента К, найденного по табл. 6.1, определяют вертикальное сжимающее напряжение σZ, развивающееся в грунтах при действии сосредоточенной силы.


Определение напряжений σZ в массиве грунта от действия нескольких сосредоточенных сил (принцип Сен-Венана – принцип независимости действия сил)

Если к поверхности изотропного линейно-деформируемого полупространства приложено несколько сил (P1, P2, P3 на рис. 6.3), то при прямой пропорциональности между напряжениями и деформациями можно использовать принцип суперпозиции и найти значение σZ в любой точке М простым суммированием:

где Ki определяется в зависимости от соотношения ri/z, причем координата z постоянна для данной точки М.

Определение напряжений σZ при действии любой распределенной нагрузки (метод элементарного суммирования)

Пусть к поверхности изотропного линейно-деформируемого полупространства в пределах площади А приложено распределенное давление (рис. 6.4, а). Загруженную площадь можно разбить на небольшие прямоугольники со сторонами bi и li более сложные фигуры по ее контуру. С некоторым приближением давление, распределенное в пределах i-го прямоугольника, можно заменить равнодействующей N1, приложенной в центре тяжести этого давления. Вертикальное сжимающее напряжение от действия силы Ni составит .

Определив величину от нагрузки каждой из небольших фигур, на которые разбита площадь А, и произведя суммирование этих напряжений, определим напряжение σZ от действия распределенной местной нагрузки:


где Кi — коэффициент зависит от отношения ri/z и берется по табл. 6.1.

Точность расчета увеличивается с уменьшением bi и li.


Рис. 6.4. Схемы к расчету действия любой распределенной нагрузки

Определение σZ – под центром прямоугольной площадки загружения при равномерной нагрузке

Если закон распределенная давления по поверхности изотропного линейно-деформируемого полупространства известен, то элементарное суммирование можно заменить интегрированием. При равномерно распределенном давлении после интегрирования по прямоугольной площади загружения значения σZ для точек, расположенных под центром прямоугольной площади загружения (рис. 6.4, б), будут


где α – коэффициент, принимаемый по табл. 6.2;

р – равномерно распределенное давление.

При определении напряжения σZ на глубине z под центром площади загружения значение α принимают в зависимости от величин и (где l – длинная сторона прямоугольной площади загружения; b – ее ширина).

При нахождении σZ под угловыми точками прямоугольной площади загружения (например, под точкой С на рис. 6.4, б) значения α, также можно принимать по табл. 6.2 в зависимости от величин и . В этом случае . Напряжение под угловыми точками определяют по формуле


Рис. 6.4. Схемы к расчету действия равномерно-распределенного давления в пределах прямоугольной площадки загружения.

Под большими напряжениями возникают пластические деформации (происходит перераспределение напряжений) так как материал в этом месте будет обладать большей податливостью. Эпюра напряжений под штампом начнет изменяться (почти до треугольной эпюры).

Как же развиваются при этом зоны сдвигов, зоны пластических деформаций?

Зоны пластических деформаций возникают в крайних точках нагрузки. Затем увеличиваем нагрузку Р, оставляя q–const,–зоны пластических деформаций t будут развиваться.

Возникает момент, когда при дальнейшем нагружении зоны пластических деформаций сольются в одной точке. При этом напряженном состоянии грунта преобладают боковые смещения частиц и формируются непрерывные поверхности скольжения, в результате толща грунта теряет устойчивость. (II фаза на графике). (Выпор грунта).

Поверхность скольжения.

В зависимости от глубины заложения фундамента различают несколько основных случаев с характерными поверхностями скольжения.

а) Фундаменты мелкого заложения

б) Фундаменты средней глубины заложения.

в) Фундамент глубокого заложения

1 С увеличением несущая способность грунта увеличивается.

2 Для фундаментов мелкого заложения требуется больший коэффициент запаса –поэтому они рассчитываются по I-му предельному состоянию (устойчивости), а фундаменты глубокого заложения по II-му предельному состоянию (деформациям).

Таким образом, при возрастании нагрузки на грунт необходимо различать, по крайней мере, две характерные ее величины, при достижении которых резко меняется поведение грунта: первую, соответствующую началу перехода фазы уплотнения в фазу сдвигов ( т. е. в фазу зарождения и развития зон предельного напряженного состояния), и вторую, когда исчерпывается несущая способность грунтового основания, заканчивается формирование жесткого ядра и наблюдается полное развитие зон предельного равновесия, при котором даже весьма незначительное увеличение нагрузки приводит грунт к потере прочности и устойчивости или к развитию прогрессирующего течения.

Если нагрузка передается на грунт жестким фундаментом, то при симметричном загружении осадка поверхности грунта под ним будет равномерной. Это повлечет за собой неравномерное распределение давления по подошве фундамента, обусловливаемое неравномерностью деформации поверхности грунта вокруг фундамента. Теоретическое решение этой задачи для абсолютно жесткого круглого штампа, выполненное Буссинеском, приводит к выражению

рρ – давление по подошве круглого фундамента на расстоянии ρ от его центра при ρ

r – радиус подошвы фундамента

рm – среднее давление по подошве фундамента


57. Предельное напряжение состояний массива грунта . Фазы работы грунтового основания.

Предельное напряженное состоянием массива грунта, такое при котором малейшее добавочное силовое воздействие или малейшее уменьшение прочности грунта может привести к нарушению существующего равновесия – к потере устойчивости массива: возникновению в нем поверхности скольжения, развитию различных сдвиговых деформаций и нарушению природной структуры. Обычно нарушение равновесия приводит к выпору грунта из под фундамента, что сопровождается большой осадкой. Т.к. это не допустимо для большинства сооружений важно правильно определить максимальную возможную нагрузку на грунтовое основание.

Различают 3 фазы работы грунтового основания:


1 фаза. Осадки пропорциональны давлению сдвиговых деформаций в массиве. Эта фаза ограничивается Рнк (рассматривается по 2 группе предельных состояний по деформациям)

2 фаза. Фаза сдвигов – в массиве в отдельных точках появляются сдвиговые (пластические) деформации, которые с увеличением нагрузки растут а в конце фазы определяемом конечным критическим давлением – Ркк сдвиговые деформации сливаются, образуя поверхности скольжения в этот момент начинается потеря устойчивости всего массива.

3 фаза. Фаза сплошных сдвигов – характеризуется наличием сплошных поверхностей скольжения – полная потеря устойчивости основания (расчет по 1 группе предельных состояний на прочность занимается определением Ркк для данного массива).

58. Определение начального критического давления.

Условия равновесия внутри массива под нагрузкой.

Выражения для главных напряжений в любой точке любого сечения массива:

При zmax=0 (zmax – максимальная глубина границы области предельного равновесия), т.е. при отсутствии зон предельного равновесия, получаем теоретическое значение начального критического давления Рн.к.

Рн.к.= (π(γ*h+с* ctgφ)/ ctgφ+φ-π/2)+γ*h-формула Пузыревского

59. Определение конечного критического давления.

При работе фундамента во II и III фазах возможно опрокидывание фундамента из-за появления сплошных поверхностей скольжения. При этом будет происходить сдвиг слоев грунта по плоскостям скольжения и выпор грунта на поверхность:


На основании опытных данных К.Терцаги предложил схему деформируемого грунта и на ее основе получил формулу:

Где, Nγ;Nq;Nc - коэффициенты, зависящие от φ и определяются по таблицам;

b1 - полуширина фундамента;

q= γН - боковая пригрузка;

С -удельное сцепление.

Наиболее полное решение получено в 1952 году В.В.Соколовским для случая плоской задачи при. действии на поверхности нагрузки, наклоненной под углом б к вертикали, изменяющейся по закону трапеции:

Рк.к = Аγх + Bq+ Сс

где, А, В, С - коэффициенты зависящие от φ и

60. Расчет осадок оснований

Различают два вида осадок:

1. Конечная осадка - осадка, рассчитываемая на основе модели линейно-деформируемого полупространства, когда все давление воспринимается скелетом грунта.

2. Осадка во времени - осадка, рассчитываемая на основе теории

фильтрационной консолидации (уплотнения)

Расчет конечных осадок.

Существует выражения для определения относительной вертикальной деформации при трехосном напряженном состоянии (теория упругости):

Для вычисления осадки полупространства необходимо проинтегрировать последнее выражение

S=(Интеграл от 0 до ∞) εz dz

В случае сосредоточенной силы, приложенной к полупространству:


где, Р - сосредоточенная сила;Е - модуль деформации; μ- коэффициент Пуассона;

r – расстояние от точки А до места приложения нагрузки

В случае равномерно распределенной нагрузки пользуются методом перехода к элементарным сосредоточенным силам и интегрированию по всех площади загружения. В результате получают формулу для определения осадки полупространства:

где, q - распределенная нагрузка;

ω- коэффициент, зависящий от формы загруженной площади и местоположения

Для жесткого штампа наше решение принимает вид формулы Шлейхера:

p- давление на подошву фундамента

b- диаметр или сторона фундамента;

E0-модуль деформации грунта;

Этой формулой можно пользоваться для определения осадки основания фундамента в ограниченных случаях.

61. Метод расчета осадок оснований по СНиП

В СНиПе предусмотрен другой метод расчета осадок оснований. Он основан на схеме работы грунта при невозможности бокового расширения. Это дает возможность выразить напряжения по осям X и Y через σz

Тогда выражение для вычисления деформаций единичного обьема грунта основания примет вид:

Задача расчета осадки основания сводиться к вычислению интеграла.

СНиП предусматривает вычисление интеграла численным методом путем разбиения грунтовой толщи основания на отдельные элементарные слои толциной hi и при этом вводятся следующие допущения:

1. Каждый элементарный слой имеет постоянные Е0 и μ0

2. Напряжение в элементарном слое постоянно по глубине и равно полусумме верхнего и нижнего напряжений

3. Имеется граница сжмаемой толщи на глубине, где σzp=0.2σzq (где σzq напряжение от собственного веса грунта)

62. Алгоритм расчета осадки основания фундамента

1. Основание разбивается на элементарные слои толщиной; где hi

2. Строиться эпюра нарпяжений от собственного веса грунта σzq

3. Строиться эпюра напряжений от внешней нагрузки σzp

4. Устанавливается граница сжимаемой толщи.

5. Определяетсяя напряжение в каждом элементарном слое:

6. Рассчитывается осадка каждого элементарного слоя: Si=βσzpihi/Ei

7. Вычисляется конечная осадка основания фундамента, как сумма осадок
всех элементарных слоев, входящих в границу сжимаемой толщи.



64. Понятие о расчете осадок во времени

При наблюдении за осадками оснований фундаментов был получен график развития осадок во времени.

Вводиться понятие степени консолидации: U=St/SKOH

Конечная осадка рассчитывается методом СНиП.

Степень консолидации определяется решением дифференциального уравнения одномерной фильтрации:

U=1-16(1-2/π)e -N /π 2 +(1+2/(3π))e -9N /9+…

Физический смысл степени консолидации выражает величина показателя N:

Где, kФ ~ коэффициент фильтрации, [см/год]

m0 – коэффициент относительной сжимаемости слоя; [см 2 /кг]

h - толщина сжимаемого слоя; [см]

γω - удельный вес воды

Устойчивость откосов

Откосом называется искусственно созданная наклонная поверхность, ограничивающая естественный грунтовый массив или насыпь.

Устойчивость откосов зависит от:

- прочности грунтов под откосом и в его основании, причем характеристики прочности могут изменяться со временем;

- удельного веса грунтов под откосом и в его основании;

- нагрузок на поверхности откоса;

- фильтрации воды через откос;

- положения уровня воды, насыщающей грунт в теле откоса.

Разрушение откоса может происходить внезапно и носить характер обвала или оплыва, а также проявляться в виде длительного оползания, что особенно характерно для глинистых грунтов. В ряде случаев грунты оснований под откосом являются менее прочными, чем грунты в теле откоса. Тогда становится возможным их выдавливание из-под откоса, с обрушением всего откоса или его части.

Предельно устойчивым называется откос, под которым в каждой точке грунт находится в предельно напряженном состоянии. Теоретически предельно устойчивый откос из сыпучего грунта - песка имеет прямолинейный контур с углом наклона к горизонту, равным углу внутреннего трения.

Виды деформаций зданий и сооружений

Прогноз величины деформаций оснований на стадии проектирования сооружения позволяет выбрать наиболее правильные конструктивные решения фундаментов и надземных частей зданий и сооружений. Осадки оснований оказывают решающее влияние на прочность и устойчивость подземных конструкций.

Осадкой называется медленная и сравнительно небольшая деформация , происходящая в результате уплотнения грунта под действием нагрузок и сопротивляющаяся коренным изменениям его структуры.

При равномерных осадках основания подошва фундамента в любой моент времени опускается на одинаковую величину. Такие осадки не вызывают перераспределения усилий в конструкциях, но затрудняют нормальную эксплуатацию.

При неравномерных осадках основания подошва фундамента опускается на разную величину, вызывая перераспределение усилий и деформаций в надземных частях зданий и сооружений. Такие осадки ухудшают эксплуатацию оборудования, изменяют условия устойчивости сооружений, вызывают перенапряжения в отдельных конструкциях и элементах.

В зависимости от характера развития неравномерных осадок и от жесткости здания или сооружения возникают следующие виды деформаций.

Прогиб и выгиб возникают в протяженных зданиях и сооружениях , не обладающих большей жесткостью.

В случае развития прогиба ( рис. 7.1,а ) наиболее опасная зона растяжения находится в нижней части здания или сооружения, выгибе (см. рис. 7.1,6), — наоборот, в верхней части сооружения.

Рис. 7.1. Схема прогиба (а) и выгиба (б) сооружения

Относительный прогиб или выгиб (ƒ/L) здания или сооружения оценивается отношением стрелы прогиба или выгиба к длине прогнувшейся части здания и кривизной изгибаемого участка ( рис. 7.2 ) и определяется по формуле (по пособию к СНиП, 1986; СНиП 2.02.01—83):

где S1 и S3 — осадки в краях фундамента; S2 — наибольшая или наименьшая осадка фундамента; L — длина фундамента.

Рис. 7.2. Относительный прогиб или выгиб сооружения

Крен (наклон) — поворот фундамента относительно горизонтальной оси, проявляющийся при несимметричной загрузке основания. Наибольшую опасность данный вид деформации представляет для высоких сооружений — дымовых труб, узких зданий повышенной этажности и др., т.е. характерен для жестких сооружений.

Крен рассматривается как разность абсолютных осадок двух точек фундаментов, отнесенных к расстоянию между ними ( рис. 7.3 ), и определяется по формуле

где S1 и S2 — осадки крайних точек сплошного фундамента или двух фундаментов.

Рис. 7.3. Крен сооружения

Перекос зданий и сооружений характерен при резком проявлении неравномерности осадок на участке небольшой протяженности при сохранении относительной вертикальности несущих конструкций ( рис. 7.4 ).

Кручение возникает при неодинаковом крене здания или сооружения по длине, при этом происходит развитие крена в двух сечениях сооружения в разные стороны ( рис. 7.5 ).
Горизонтальные перемещения фундаментов зданий или сооружений возникают при действии на основания горизонтальных нагрузок ( рис. 7.6 ). Например, устои мостов (рис. 7.6,а), гидротехнические сооружения (рис.7.6,б), они возможны при развитии оползней и при выполнении подземных выработок.

Рис. 7.4. Перекос сооружения

Рис. 7.5. Кручение сооружения

Рис. 7.6. Схема горизонтального перемещения устоя моста (а) и гидротехнического сооружения (б)

Фазы напряженного состояния грунта

При возведении здания или сооружения наблюдается постоянное возрастание давления по подошве фундаментов. При таком характере воздействия в грунтовом основании, как и во всяком твердом теле, возникает напряженно-деформирующее состояние (НДС), которое адекватно интенсивности приложенной внешней нагрузки, причем возникает оно не только в точках контакта подошвы фундамента сооружения и грунта основания, но и на значительной глубине.

Распределение напряжений как под подошвой фундамента , так и на значительной глубине необходимо знать, так как прочность и устойчивость сооружений зависит от сопротивления (R) грунта, не только примыкающей к подошве, но и глубоколежащего.

При деформации грунтов под нагрузкой Н.М. Герсеванов выделил три фазы НДС:

I — фаза нормального уплотнения;
II — фаза сдвигов;
III — фаза выпирания грунта.

Зависимость вертикальных перемещений фундамента от действующего давления по его подошве изображена на рис. 6.5.

Рис. 6.5. Зависимость осадки 5 от давления Р (график Н.М. Герсеванова)

На графике (см. рис. 6.5 ) участок оа соответствует фазе уплотнения (I), при которой осадка пропорциональна приложенной нагрузке. Эта фаза обусловлена вертикальным перемещением частиц грунта вниз Р≤P сr,1 (P сr,1 ≈Р проп. ) ( рис. 6.6,а ).

Из-за концентрации напряжений под краями фундамента в начале фазы сдвигов (II) происходит разрушение грунта в локальных областях, т.е. происходят местные потери устойчивости. По мере роста внешней нагрузки нарушается линейная зависимость между осадкой и давлением. График S = ƒ(P) ( см. рис. 6.5 ) на участке аб характеризуется значительной кривизной. При дальнейшем возрастании давления под подошвой фундамента формируется уплотненное ядро и при малейшем увеличении внешней нагрузки приведет к исчерпанию несущей способности. На рис. 6.5,б такое давление соответствует точке б , являющейся переходной от второй к третьей фазе НДС.

Рис. 6.6. Фазы НДС в основании фундамента при возрастании давления по подошве: а — уплотнение; б, в — сдвиг; г — выпор грунта

Давление, соответствующее началу появления областей пластических деформаций (сдвигов и разрушения грунта) под краями фундамента, называется начальным, или первым критическим, давлением ( P cr,1 ).

Начальное критическое давление определяется по формуле Н.П. Пузыревского:

где γ — удельный вес грунта основания; φ — угол внутреннего трения; d — глубина заложения подошвы фундамента; с — удельное сцепление.

Во второй фазе под краями фундамента формируются области пластических деформаций (разрушения грунта), которые развиваются в сторону и в глубину (см. рис. 6.6,б), P cr,1 < Р < R.

Согласно СНиП 2.02.01—83 наибольшая глубина развития области пластических деформаций под краями фундамента не должна превышать z max = 0,25b. Среднее давление под подошвой фундамента, при котором под его краями в основании формируются области пластических деформаций на глубину z max = 0,25b, приравнивается к расчетному сопротивлению (см. рис. 6.6,e) Р = R .

При дальнейшем увеличении давления по подошве фундамента Р > R области (зоны) локального разрушения грунта развиваются в ширину и в глубину основания, при этом под подошвой фундамента формируется уплотненное ядро в виде клина (см. рис. 6.6,г). В определенный момент времени краевые области разрушения грунта основания смыкаются на глубине и в результате расклинивающего действия уплотненного ядра устанавливается такое состояние, при котором малейшее увеличение нагрузки приводит к потере несущей способности.

Таким образом, давление, соответствующее исчерпанию несущей способности грунта основания, называется предельным, или вторым критическим давлением ( P cr,2 ).
Второе критическое давление определяется по формуле

где q — интенсивность боковой пригрузки.

Рассмотрим два примера, как влияет прочность нижележащего слоя на прочность и устойчивость сооружения.
Если в основании находятся слабые грунты, под покровом более устойчивых, то опасность нарушения устойчивости повышается с увеличением ширины фундамента ( рис. 6.7 ).


Рис. 6.7 . Влияние ширины фундамента на прочность и устойчивость сооружения: а — при пластических деформациях; б — при выпоре грунта

Таким образом, если в основании находятся плотные грунты под покровом слабых, то опасность нарушения устойчивости понижается с увеличением ширины фундамента ( рис. 6.8 ).

Если из массива грунта, находящегося под действием какой-либо нагрузки, выделить кубик ( рис. 6.9 ), то на него будут действовать вертикальные и горизонтальные нормальные напряжения σ х , σ у , σ z и три пары касательных напряжений — τ xу и τ ух , τ xz и τ zx , τ yz и τ zy .

Читайте также: