Вид фундамента трубы зависит от условий

Обновлено: 01.05.2024

Все полимерные трубы имеют свой класс жёсткости, который указывает какую именно нагрузку способно выдержать то или иное изделие. Значение данного параметра принято исчислять с шагом в степенях числа два. То есть класс жёсткости (SN) у полимерных труб может равняться 2, 4, 8 и т.д.

  • SN 2 – трубы с таким классом жёсткости могут располагаться на глубине от 1 м и более, но они не предназначены для эксплуатации в условиях нагрузок от транспортных средств;
  • SN 4 – такие изделия могут закладываться на глубину от 1 м и больше. Рассчитаны на использование в местах, где планируется движение легкового автотранспорта;
  • SN 8 – также могут укладываться на расстоянии от 1 м и больше от поверхности земли, но по сравнению с трубами предыдущего класса, способны ещё выдерживать нагрузки от грузовых машин.

При определении глубины заложения учитывается степень уплотнения почвы.

SN8, SN10, SN16, SN24. Что это такое?

Кольцевая жесткость — способность трубы сохранять круглую форму, несмотря на давление грунта и нагрузку на поверхность грунта (например, при проезде транспортного средства). Чем выше класс кольцевой жесткости трубы (SN) тем выше способность трубы выдерживать нагрузку.

Помимо жесткости к полимерным трубам стандартом предъявляется и другое обязательное требование: гибкость. Труба должна быть не только жесткой в соответствии со своим классом, но и деформироваться без разрушения не менее, чем на 30 %. После 30 % деформации труба должна из состояния эллипса вернуться в свое исходное состояние (принять форму круга).

Фото: испытание трубы на кольцевую жесткость и гибкость в лаборатории завода-изготовителя.

Как увеличить кольцевую жёсткость

Для увеличения данного показателя следует:

  • Использовать материалы с более высоким модулем упругости. Если нужно выбрать, какой материал использовать, например, ПВХ либо полиэтилен, то стоит отдать предпочтение поливинилхлориду;
  • Повысить модуль инерции стенки трубопроводного изделия. Этого можно добиться разными способами. Толщина стенок может быть увеличена не только традиционным путём, но и за счёт применения профилированных (ребристых) конструкций.

ЧИТАТЬ ТАКЖЕ: Полиэтиленовые Трубы Из Какого Материала

Как повысить кольцевую жесткость?

  1. Выбирать материал, который имеет больший модуль упругости. Так, поливинилхлорид или полипропилен имеют больший Е, чем полиэтилен.
  2. Выбирать материал с более толстой стенкой или профилированной. Так, наличие гофры помогает повысить модуль инерции.

И если в первом случае происходит существенное удорожание труб, за счет выбора более дорогого материала, то гофрированная поверхность или двухслойные трубы – действительно практикующийся вариант, позволяющий достичь экономии материала в 2,5-3 раза.

Жёсткость труб из разных материалов

Номинальный диаметр трубSN 2SN 4SN 8
Толщина стенки мм.Вес 1п/м (кг)Толщина стенки мм.Вес 1п/м (кг)Толщина стенки мм.Вес 1п/м (кг)
1102.71.463.41.813.21.74
1603.22.564.03.144.93.69
2003.93.874.94.845.95.77
2255.56.026.97.44
2504.96.086.27.697.38.98
3156.29.757.712.09.714.3
4007.815.89.819.511.723.2
5009.824.712.330.914.636.2
63015.448.718.458.2

Трубы ПП двухслойные, гофрированные

Трубы ПП для наружной канализацииРазмер L, ммde, мм внешнийDN, мм внутреннийВес 1 кг/м SN4, SN 8
110×6000110930.6
160×60001371601.3
200×60002272002.3; 2,7
250х60002822503,5
300х60003403004,4; 5,1
400х60004534007,2; 9,0
500х590056750010,95; 14,5
600х590068060015,8; 20,5
800х585090680026,04; 32,5
1000х58501135100040,6
Тип технической трубыЗначение, кН/м2
Тип «Л» (SDR33)
Тип «СЛ» (SDR26)3
Тип «ОС» (SDR21)5
Тип «С» (SDR17,6)8
Тип «с+» (SDR17)8
Тип «СТ» (SDR13,6)18
Тип «Т» (SDR11)32

Трубы корсис (двухслойные, профилированные)

Наружный диаметр ммВнутренний диаметр ммТолщина стенки вн. слоя ммВысота гофра ммТолщина стенки гофра по жесткостиШаг гофра ммШирина выступа гофра ммРасчетная масса 1м трубы (кг)
SN-6SN8SN-6SN8
110931.18.750.512.68.60.91.0
1391.2110.512.68.60.91.0
2001761.4130.70.816.5121.82.5
2502161.7150.8137232.93.7
3152711.92111.542274.65.7
4003432.32611.849307.08.7
5004272.8331.11.9583812.013.2
6305353.3451.11.9754717.720.3
8006784.1611.72.7895624.533.1
10008515751.82.8986040.551.7
12001030585231108056.066.9
Внутренний диаметр, ммМаксимальный внешний диаметр, (мм) для труб с кольцевой жесткостьюВнутренний диаметр, ммМаксимальный внешний диаметр, (мм) для труб с кольцевой жесткостью
Номинальное значениеПредельное отклонениеSN2SN4SN6Номинальное значениеПредельное отклонениеSN2
600-186486566723600-803864
80085887489638004080
1000-6010721094112040004296
12001288131413444200-1004512
140015041532156844004728
160017181752179246004944
180019341970201648005160
200021502190224050005376
24002576262826885200-1205592
255027422794286254005806
300032223286336456006022
3200-80343658006234
3400365060006450

ЧИТАТЬ ТАКЖЕ: какой коэффициент расширения полипропиленовых труб

Гибкие гофрированные трубы для дренажа

Дренажная труба — основной элемент для организации закрытых дренажных систем. Избыток воды попадает в дренажную трубу через мелкие отверстия (перфорацию) в ее стенках. Ранее для устройства закрытых дренажных систем использовали керамические или асбестоцементные трубы. Перед укладкой в них делались пропилы или сверлились дыры. Такие трубы имели существенные недостатки как при монтаже, так и при эксплуатации. В настоящее время растущей популярностью пользуются пластиковые дренажные трубы.

Характеристики

ПВД (полиэтилен высокого давления)

Сфера применения

Дренажные трубы, класс SN8 Дренажные системы в зонах с большими статистическими и динамическими нагрузками (автомобильные и железные дороги, аэродромы, промышленные объекты); защита зданий и сооружений от подтопления грунтовыми водами (дренаж фундаментов, подвалов и т. п.). Дренажные трубы, класс SN6 Защита зданий и сооружений от подтопления грунтовыми водами (дренаж фундаментов, подвалов, цокольных этажей и т. п.); организация дренажных систем на профессиональных спортивных площадках (футбольные поля, гольф-поля и т. д.); мелиорация полей, пахотных земель, садовых и дачных участков. Дренажные трубы, класс SN4 Отведение грунтовых, дождевых и паводковых вод с полей, пахотных земель, с садовых и дачных участков, где отсутствует движение автотранспорта.

Отличительные особенности Дренажные системы имеют следующие отличительные черты: • материал «полиэтилен» — химически стоек к агрессивным средам; • конструкция — одностенные и двустенные (наружный слой — гофрированный, внутренний слой — гладкий); • гладкая внутренняя поверхность из ПВД обладает водоотталкивающими свойствами (существенно увеличивается пропускная способность и уменьшается отложение ила, песка, извести); • широкий диапазон эксплуатационных температур: от -40 до +90 °С; • поставляются в бухтах — простота транспортировки и монтажа; • малый вес — простота транспортировки и монтажа; • три класса жесткости (кольцевая жесткость) — SN8, SN6 и SN4; Дренажные трубы, класс SN8: • повышенная прочность труб (устойчивы к максимальным нагрузкам); • глубина заложения — до 6 метров. Дренажные трубы, класс SN6: • высокая прочность труб (устойчивы к внешним нагрузкам); • глубина заложения — до 4 метров. Дренажные трубы, класс SN4 • глубина заложения — до 2 метров; • одностенные (гофрированная внутренняя поверхность); • не рекомендуется использовать для защиты зданий и сооружений из-за недостаточной устойчивости к внешним нагрузкам. Используйте дренажные трубы ДКС с классом жесткости SN6 или SN8.

Преимущества

Надежность: • срок службы более 50 лет; • высокая стойкость при прокладке в подвижных грунтах; • химическая стойкость труб к агрессивным средам.

Легкость монтажа: • широкий выбор аксессуаров; • отсутствует необходимость использования специализированного оборудования для монтажа; • гибкость и эластичность даже при низких температурах; • высокая скорость монтажа (длина в бухте от 35 до 50 м).

Безопасность и экологичность: • не выделяют в окружающую среду токсичных веществ; • не оказывают вредного воздействия на организм человека.

Как правильно выбрать материал трубы с учётом кольцевой жесткости

Выбор труб по кольцевой жёсткости в первую очередь зависит от условий эксплуатации канализационной коммуникации и возможных нагрузок. Так, например, безнапорные поливинилхлоридные трубы D = 110-200 мм с SN 2 получили широкое распространение для создания канализационных систем в частном секторе, но они не подходят для использования в промышленных и коммунальных целях. В этом случае оптимальным вариантом станут полипропиленовые 2-слойные гофрированные трубы D = 300 мм и больше с SN 8 или SN 16.

По показателям кольцевой жёсткости трубы из полиэтилена проигрывают аналогичным изделиям из полипропилена. Ввиду невысокой кольцевой жёсткости ПЭ трубопроводы нельзя сильно заглублять, поскольку под воздействием давления со стороны грунта произойдёт деформация труб.

Что такое кольцевая жесткость труб, и на что она влияет?

Давайте познакомимся с одним из базовых идентификаторов, на который стоит обращать внимание при выборе канализационных труб. Это кольцевая жесткость: согласно EN, а также ДСТУ Б В.2.5-32:2007 стандарта, по ней определяется и сфера применения, и условия монтажа труб. Обозначается она как S HTMLR/HTML и измеряется в мега Паскалях или килоньютонах на метр.

Значения этого показателя имеют шаг в степенях числа 2 – в геометрической прогрессии 2, 4, 8 и т.д.

Кольцевая жесткость измеряется пропорционально обычной, интерпретируется по формуле:

Где Е – это модуль упругости, тоже измеряемый в мега Паскалях, l – момент инерции, Dm – диаметр трубы. Так, для труб полипропиленовых с гладкой внутренней поверхностью формула представляется с уже известным моментом инерции, равным 12.

Вывод : чем тоньше труба, тем меньше кольцевая жесткость (при сравнении равных диаметров).

Расчёт кольцевой жёсткости трубы

Расчётные данные кольцевой жёсткости труб получают экспериментально при испытаниях изделий на специальных стендах. При этом выбирается отрезок трубы и определяется нагрузка и деформация, которая соответствует деформации примерно 4% тестируемого изделия. Испытаниям подвергаются три экземпляра из партии, определяется среднеарифметическое число, которое округляется до наиболее близкого минимального стандартного показателя. То есть от класса жёсткости зависит, какая номинальная нагрузка может приходится на единицу площади изделия в случае 4-процентной деформации сечения по вертикали, не учитывая отпора сбоку.

Для определения SN применяется формула:

E0 – модуль упругости материала, из которого изготовлено изделие; I – момент инерции стенки изделия; d – диаметр, который измеряется в месте центра тяжести стенки изделия, и равен:

di – внутренний диаметр изделия; y – расстояние до центра тяжести стенки изделия.

Кольцевая жесткость и вес труб КОРСИС ПЛЮС: выбор экономичного профиля

Метод навивки используется для производства труб специальной конструкции, в том числе труб переменного диаметра и/или переменной толщины стенки; труб с профилированной стенкой и различным материалом слоев; эластичных шлангов, армированных спиральным несущим каркасом, и других. Преимущества технологии навивки в основном заключаются в той легкости, с какой однотипные технологические приемы и оснастка могут обеспечить производство изделий, многообразных по конструкции и габаритам.


Оснастка для производства труб КОРСИС ПЛЮС

Так, изображенная на рис. 1 оснастка, несмотря на свою сложность, позволяет в считанные минуты перейти от производства трубы диаметром 600 мм к производству трубы диаметром 2000 (3000) мм. При этом одна труба может иметь гладкую стенку практически любой толщины, а следующая за ней – стенку, специальным образом спрофилированную.

Оголовки водопропускных труб.Оголовки выполняют двоякую роль: во-первых, они служат для обеспечения сопряжения тела трубы с насыпью, а во-вторых — для создания благоприятных условий протекания воды. Оголовки труб могут быть портальными, раструбными, воротниковыми и обтекаемыми (рис. 16).

Наиболее широкое распространение в настоящее время получили портальные и раструбные оголовки. Портальные оголовки (рис 16, а)

более просты в изготовлении, но не обеспечивают плавного протекания воды, вследствие чего их применяют при малых расходах и небольших скоростях течения для труб с отверстием 0,5 — 0,75 м.

Раструбные оголовки (рис. 16, б), состоящие из портальной стенки и двух открылков, развернутых в плане относительно продольной оси трубы под углом 20-30°, обеспечивают более благоприятные условия протекания воды и широко применяются как в безнапорных, так и в напорных трубах. Для того чтобы более полно использовать поперечное сечение трубы при пропуске водного потока, у входного оголовка иногда устраивают конические (в круглых трубах) или повышенные (в прямоугольных трубах) звенья.

У воротникового оголовка (рис. 16, в) крайнее звено трубы срезано по полости откоса и окаймлено поясом-воротником.

Обтекаемый оголовок (рис. 16, г) имеет форму усеченного конуса или пирамиды. Этот оголовок обеспечивает наиболее благоприятные условия протекания воды, но сложен в изготовлении.


Рис. 16. Типы оголовков водопропускных труб:

а - портальный; б - раструбный; в - воротниковый; г - обтекаемый

В практике дорожного строительства находят применение трубы без оголовков. Принципиальная возможность такого конструктивного решения может быть аргументирована следующими соображениями. Расчеты показывают, что пропускная способность безоголовочных труб при безнапорном режиме по сравнению с трубами, имеющими раструбные оголовки без конического звена, меньше лишь на 6 — 9 %. Это подтверждается также гидравлическими данными типового проекта круглых гофрированных труб, которые, как известно, не имеют оголовков.

Еcли же принять во внимание точность определения расчетных расходов, которая, по данным профессоров А.В. Огниевского и Л.Л. Соколовского, составляет 30 — 50 %, то можно считать, что по пропускной способности трубы без оголовков мало отличаются от типовых труб, имеющих специальные оголовки. В случае применения безоголовочных труб из длинномерных звеньев, о чем речь будет идти дальше, их роль как подпорного элемента автоматически исключается, так как концевые звенья защемляются насыпью.


Русло водотока у входного и выходного оголовков, а также откосы насыпи около трубы укрепляют от возможного размыва каменной отмосткой, сборными слабо армированными железобетонными плитами, устраивают покрытие из цементобетона или асфальтобетона по слою щебеночной (гравийной) подготовки.

Фундаменты труб.Типовыми проектами рекомендуются два типа водопропускных труб: бесфундаментные и фундаментные. Выбор типа фундамента для труб зависит прежде всего от инженерно-геологических условий, а также от отверстия трубы. В бесфундаментных трубах звенья опираются на естественное грунтовое основание (рис. 17,а) либо на специальную грунтовую подушку из щебеночно-песчаной или гравийно-песчаной смеси (рис. 17,б). Трубы этого типа применяют при крупнообломочных и плотных песчаных грунтах (не пылеватых), а также при твердых и полутвердых глинистых грунтах.

При грунтах всех наименований, имеющих условное расчетное сопротивление не ниже давления под подошвой фундамента от действующих внешних нагрузок, звенья труб непосредственно опираются на специальные жесткие фундаменты из сборных железобетонных элементов или из монолитного бетона (рис. 17, в, г). Эти фундаменты применяют также при скальном основании.

При проектировании водопропускных труб в сложных инженерно-геологических условиях заключение о необходимости устройства специальных фундаментов и выбор конструктивного решения


Рис. 17. Типы фундаментов труб:

а - естественное грунтовое основание; б - искусственная грунтовая подушка; в - фундамент из сборных железобетонных элементов; г - фундамент из монолитного бетона

должны быть сделаны для каждого конкретного случая отдельно. Так, при слабых или неустойчивых грунтах (биогенных, текуче - пластичных глинистых, многолетнемерзлых) часто прибегают к применению свайных фундаментов.

В данной статье будут рассмотрены водопропускные трубы, их основные особенности, строительство котлована и фундамента, а также конструкции, используемые для строительства водопропускных труб.

Трубы водопропускные для автомобильных дорог – это искусственные сооружения, пропускающие под дорожными насыпями небольшие постоянные или действующие периодически водотоки.

водопропускные трубы

В ряде случаев такие трубы могут также играть роль тоннельных путепроводов или скотопрогонов.

В процессе проектирования дороги, особенно в случаях, когда насыпь имеет небольшую высоту, чаще всего встает выбор между одним из двух возможных типов сооружения – труба или малый мост.

Труба водопропускная является предпочтительным вариантов в случае незначительных отличий технико-экономических показателей данных сооружений по следующим причинам:

  • Водопропускная труба не вызывает нарушения непрерывности как земляного полотна, так и верхнего строения данного пути;
  • Эксплуатация и ремонт водопропускных труб обходятся дешевле, чем в случае малого моста;
  • В случае, когда засыпка над трубой имеет высоту, превышающую 2 м, снижается влияние временных нагрузок на сооружение и практически исчезает с увеличением данной высоты.

Особенности водопропускных труб

В зависимости от материала тела трубы различают следующие типы труб:

  • Водопропускные трубы железобетонные;
  • Полимерные;
  • Бетонные;
  • Металлические.

Кроме того, трубы водопропускные железобетонные и другие различаются по следующим параметрам:

  • Форма поперечного сечения: прямоугольные, круглые и овоидальные;
  • Количество очков в сечении: одно-, двух- и многоочковые;
  • Работа поперечного сечения: напорные, работающие по всей длине полным сечением, и полунапорные, работающие полным сечением около входного оголовка и неполным – на остальном протяжении трубы.

трубы водопропускные для автомобильных дорог

Железобетонные водопропускные трубы также имеют следующие значения диаметров отверстий:

  • В случае, если длина водопропускной (редко канализационной) трубы не превышает 30 м, диаметр отверстия должен составлять как минимум 1 метр;
  • При длине до 15 м – минимум 50 см в случае устройства в пределах быстроточной трубы;
  • Устройство водопропускных труб для внутрихозяйственных дорог допускает диаметр отверстия в 50 см при длине трубы, не превышающей 10 метров.

Важно: засыпка над плитами или звеньями труб до нижнего уровня одежды дороги должна иметь толщину не менее 50 сантиметров.

Трубы железобетонные водопропускные и автодорожные мосты (средние и малые) могут располагаться на участках автодорог, профиль и план которых принят для дорог данной категории. Трубы обычно оборудуются в безнапорном режиме, исключением могут быть напорный или полунапорный режим с целью пропускать расчетный расход воды.

Кроме того, запрещается строить трубы водопропускные в случае наличия ледохода или наледей, а при устройстве на ручьях и реках, где имеются нерестилища рыб, обустройство труб требует разрешения рыбнадзорной инспекции.

О строительстве водопропускных труб

строительство водопропускных труб

Расчет водопропускных труб при строительстве включает в себя также следующие нюансы:

  • Бровка земляного полотна в местах подхода к трубе должна возвышаться относительно расчетного уровня воды как минимум на 50 сантиметров, а в случае работающих в полунапорном и полунапорном режиме труб – как минимум на 1 метр;
  • Оголовки водопропускных труб должны включать в себя портальную стенку и два откосных крыла, которые заглубляют в грунт на 25 сантиметров ниже глубины его промерзания и устанавливают на основание из щебенки, толщина которого составляет 10 сантиметров.

Важно: естественный грунт, расположенный ниже глубины замерзания, заменяют на песчано-гравийную смесь.

труба водопропускная

В соответствии с несущей способностью труб их классифицируют на три группы:

  1. Первая группа – расчетная высота засыпки грунтом составляет 2 метра;
  2. Вторая – 4 метра;
  3. Третья – 6 метров.

Важно: в зависимости от условий конкретного строительства при переходе через водоток или другие препятствие допустимо применение труб, имеющих другую расчетную высоту засыпания грунтом.

Котлованы для водопропускных труб

устройство водопропускных труб

При разработке котлованов под фундаменты для водопропускных труб чаще всего не предусматривают крепление. Устойчивость стенок такого котлована невозможно обеспечить только в условиях водонасыщенного грунта со значительным притоком воды – в таком случае осуществляют разработку грунта, защищая его креплением.

Кроме того, крепление котлована предусмотрено в случае строительства трубы, расположенной на небольшом расстоянии от эксплуатируемых сооружений – в таком случае крепление обеспечивает устойчивость этих сооружений.

Различные характеристики котлована зависят от целого ряда факторов:

  • Технологию разработки и очертание котлована проектируют в соответствии с конструкцией и фундаментом трубы, а также – видом и состоянием грунтов основания;
  • При назначении крутизны откосов учитывают глубину котлована и характеристики разрабатываемого грунта;
  • В случае нанесения гидроизоляционного слоя на конструкцию трубы или выполнения других работ, предусматривающих пребывание в котловане людей, расстояние вертикальная стенка котлована должна находиться на расстоянии минимум в 70 см от боковой поверхности фундамента;

Важно: если подобные работы не планируются, данную величину можно уменьшить до 10 см.

железобетонные трубы водопропускные

Железобетонные трубы водопропускные

В любом случае размеры котлована должны быть увязаны с возможностями используемого землеройного оборудования. Кроме того, при строительстве котлована следует предотвратить его заполнение грунтовыми и поверхностными водами, для чего по периметру котлована отсыпаются грунтовые валики.

В случае сооружения трубы на месте постоянного водотока производят строительство запруд либо при помощи канав русло отводят в сторону.

Удаление воды, проникающей в котлован, может осуществляться двумя способами:

  1. В низовой части котлована устраивают выпуск в канаву для отведения воды, что чаще всего применяется в случае строительства косогорных труб.
  2. Обеспечивают водоотлив механизированный. Для этого низовую часть котлована оборудуют ограждаемым приямком, вода из которого откачивается с помощью насоса.

Важно: приямок должен быть расположен вне контура фундамента, чтобы обеспечивать водоотведение на протяжении всех фундаментных работ, включая засыпку пазух.

По мере того, как котлован углубляются, ограждения приямка также опускают.

Фундамент

трубы железобетонные водопропускные

Осуществляя строительство водопропускных труб, монтаж фундамента из сборных элементов для водопропускной трубы выполняют следующим образом:

  1. Производят укладку блоков фундаментов оголовков, доводя до подошвы фундамента самой трубы.
  2. Производят засыпание пазух фундаментов оголовков до равного уровня.
  3. Выполняют засыпку пазух оголовочных фундаментов грунтом местным.
  4. Места сопряжений фундаментов с разной глубиной заложения засыпают смесью песка и гравия или песка и щебня.
  5. Смесь уплотняют послойно и заливают раствором цемента.
  6. Производят одновременную укладку фундаментов оголовков и посекционный монтаж фундамента трубы.

Важно: монтаж выполняют последовательно с места, где находится выходной оголовок водопропускной трубы, двигаясь в направлении входного оголовка. При многорядной кладке выполняют перевязку швов.

Процесс обустройства монолитного фундамента включает в себя следующие операции:

  • Изготовление и установка опалубки;
  • Приготовление или доставка в готовом виде бетонной смеси;
  • Укладка бетонной смеси;
  • Уход за уложенным бетоном;
  • Демонтаж опалубки;
  • Засыпка пазух.

Полезно: фундамент имеет несложные очертания, поэтому для изготовления опалубки можно применять обычные инвентарные щиты.

В случае обустройство сборно-монолитного фундамента подготавливают подушку или основание, куда затем в межсекционные швы устанавливается опалубка.

Промежутки между находящейся в швах опалубкой и сборными элементами заполняют смесью бетона. В регионах со слабым грунтом используются также свайные фундаменты.

После того, как устройство фундамента и засыпка пазух завершены, начинают монтаж сборных оголовков и непосредственно тела трубы.

Для монтажа сборных труб используют самоходные краны, определяя их грузоподъемность в соответствии с массой блоков оголовков, тела трубы и фундамента, учитывая возможный вылет стрелы крана. Порядок монтажа зависит от условий местности и того, какая конструкция выбрана для оголовочного участка трубы.

Конструкции водопропускных труб

расчет водопропускных труб

Как уже было сказано, водопропускными называют гидротехнические сооружения водопропускного типа в виде искусственной структуры гражданского или промышленного назначения.

Подобные конструкции обычно сооружают непосредственно на естественном или искусственном водоеме, либо на небольшом отдалении от него. Чаще всего водопропускные сооружения выполняются в виде водопропускной трубы, расположенной над автомобильной дорогой.

Кроме того, водопропускные железобетонные трубы могут использоваться для корректировки или изменения русел малых речек.

Строительство таких сооружений чаще всего сегодня выполняется с использованием металлических гофрированных конструкций (МГК), применяемых для следующих объектов:

  • Трубы водопропускные в полотне железных и автомобильных дорог в качестве альтернативы для труб из бетонных колец;
  • Сооружения водопропускные, укрепляющие и изменяющие русла рек;
  • Альтернатива мостам с одним пролетом в виде арочных сооружений;
  • Мосты многопролетные, пролет которых достигает 18 м, в качестве альтернативы мостам из бетона или металла.

Сборные гофрированные металлические конструкции

водопропускные трубы для автомобильных дорог

Металлические гофрированные сборные конструкции (СМГК) имеют более низкую стоимость при строительстве водопропускных сооружений по сравнению с железобетоном, а также имеют целый ряд преимуществ перед конструкциями других типов:

  • Адаптивность, позволяющая благодаря различным поперечным сечениям труб подобрать для условий конкретного строительства наиболее подходящий вариант;
  • Низкий вес облегчает транспортировку листов СМГК, а их упаковка в паллеты существенно уменьшает занимаемое листами пространство;
  • Простота монтажа, позволяющая выполнять строительство трубы при помощи листов СМГК без специальных навыков и квалификации;
  • Высокая прочность и гибкость конструкции, обеспечиваемые при использовании совместно с засыпным грунтом. Кроме того, это обеспечивает большую, чем у конструкций из бетона, сейсмостойкость;
  • Длительный срок службы, достигающий 80-100 лет, как показывает многолетняя практика применения таких конструкций;
  • Низкая стоимость, позволяющая снизить затраты при использовании СМГК на 30-50% по сравнению с применением других материалов;
  • Возможность строительства водопропускных труб СМГК в условиях любого климата.

Габионные конструкции водопропускных труб

ремонт водопропускных труб

Широкой популярностью при строительстве водоотводных и водопропускных труб и сооружений, а также — при строительстве стабилизирующих и удерживающих сооружений, подпорных стен и локальных очистных дорожно-мостовых сооружений, пользуется также применение габионных конструкций.

В готовом виде такое сооружение представляет собой укрепленную габионами водопропускную трубу необходимого диаметра.

Габионы получили столь широкое распространение благодаря целому ряду положительных характеристик:

  • Гибкость, прочность и сопротивление нагрузкам;
  • Стойкость к негативным воздействиям влаги и атмосферных осадков;
  • Способность дренирования, не требующая дополнительно затрат на монтаж обратного фильтра и дренажной системы;
  • Возможность использования с сооружениями других типов;
  • Простота монтажа и эксплуатации конструкции;
  • Низкие временные строительные и эксплуатационные расходы;
  • Экологическая безопасность и эстетичный внешний вид;
  • Надежность и долговечность эксплуатации.

Вот и все, что хотелось рассказать о том, что собой представляют водопропускные трубы для автомобильных дорог. Следует дополнительно заметить, что строительство данных сооружений (как и монтаж канализационных труб или установке металлопластиковых труб своими руками) требует особой тщательности и соблюдения требований и норм строительства и безопасности, поскольку их нарушение может вызвать не только повреждение или разрушение самой трубы, но и дороги, под которой данная труба пролегает.


Для пропуска воды с верхней части автомобильных дорог на нижнюю используются водопропускные сооружения. К ним относятся водопропускные трубы, мосты, водоотводы. Последние используются для пропуска под дорожным полотном различных каналов.

Водопропускные трубы используются в тех случаях, когда необходимо пропустить под дорогой небольшие водоотводы (ручьи, слив воды после дождя или таяния снега и так далее). Пропуск воды посредством труб может осуществляться постоянно или периодически. Через такие сооружения иногда организуют проход скота или проезд транспорта.

водопропускные трубы

Устройство водопропускных труб не требует сужения проезжей части и изменения типа покрытия дороги. Над конструкцией устраивается засыпка. Толщина слоя насыпанного грунта снижает давление на сооружение от автомобилей и смягчает их влияние.

Использование труб для пропуска воды имеет свои преимущества:

  • Установка труб проходит без повреждения земляного полотна.
  • Монтаж труб обходится дешевле, чем строительство моста.
  • При толщине слоя засыпки более 2 м влияние на сооружение временных нагрузок от проезжающего транспорта сводится к минимуму.

Элементы оголовка водопропускных труб

Строительство автомагистралей и железных дорог не обходится без железобетонных откосных стенок. С их помощью укрепляются обочины и устанавливаются водопропускные трубы.

Основными конструктивными элементами, из которых состоят водопропускные трубы, являются:

  • тело трубы, состоящее из звеньев и предназначенное для восприятия внешних нагрузок, образования необходимого отверстия и защиты содержимого трубы;
  • фундамент, представляющий собой массивную плиту;
  • входной и выходной оголовки, располагающиеся у концов трубы. Оголовки осуществляют сопряжение трубы с откосами земляного полотна и обеспечивают благоприятные условия для беспрерывного пропуска воды через трубу.

Откосные стенки, или откосные крылья (открылки), изготавливаемые согласно регламенту серии 3.501-59, замененной на серию 3.501.1-144, относят к базовым деталям оголовка железобетонных труб. Вместе с портальной стенкой они используются для пропуска водных потоков через железобетонные водопропускные сооружения.

Оголовки водопропускных труб бывают портальными, раструбными, воротниковыми и обтекаемыми.

Наиболее широкое распространение получили раструбные оголовки, состоящие из одной портальной и двух откосных стенок. Раструбные оголовки применяются как для прямоугольных, так и для круглых труб.

Откосное крыло — это прямоугольная железобетонная плита со скошенным краем. Наклон грани совпадает с наклоном дорожной насыпи. На одной из вертикальных граней предусмотрен конструкционный вырез для сопоставления с портальной плитой. Открылки присоединяются к лицевой поверхности портальной стенки с двух сторон, создавая при этом воронку.

Откосные крылья выпускают в двух исполнениях: правое и левое. Они выполняют как укрепительную, так и направляющую функцию: обеспечивают движение водного потока в трубопровод. Защитная функция заключается в удержании грунта по краям дорожной насыпи и предотвращении закупоривания просвета трубы. Водопропускные сооружения способствуют долговременной эксплуатации дорожного полотна.

Откосные и портальные стенки для труб ЗК, ЗП, ЗКП представляют собой массивные блоки прямоугольной формы с отверстием для стыкуемых звеньев. Портальные стенки крепятся к звеньям труб на концах трубопроводов. Способные выдерживать большие нагрузки, они применяются для защиты выхода водопропускной трубы от обрушения на него грунта, откосные крылья в свою очередь предотвращают обрушение почвы по торцевым сторонам конструкции. Если стенки представляют собой единое изделие, то откосные крылья могут подразделяться на цельные и сборные.

При изготовлении откосных стенок используется тяжелый бетон M250 — класса не ниже В30 морозостойкостью F200 и водонепроницаемостью W6. Производятся откосные стенки из тяжелого бетона класса не ниже В30. Для придания изделию большей прочности и надежности осуществляется армирование с помощью высококачественной стали. Стальные стержни свариваются в специальные стальные сетки и каркасы. Конструкция откосных и портальных стенок также предусматривает наличие специальных закладных изделий, которые служат для стыковки с фундаментами труб.

Для облегчения монтажа, процессов погрузки и разгрузки предусмотрено наличие специальных монтажных петель, изготовленных из стали.

Размеры труб

Диаметр водопропускной трубы зависит от ее длины:

  • Если длина трубы не превышает 2-3 м и высота насыпи менее 7,5 м, то отверстие трубы выбирают равное 100-150 см.
  • Для насыпи до 1,5 м диаметр должен составлять 75 см.
  • Трубы в пределах съездов имеют 50 см в диаметре.


Под дорогами 2-4 категорий допускается использовать водопропускные трубы с диаметром 100 см и длиной до 30 м. Если диаметр равен 75 см, то длина трубы не должна быть более 15 м.

Виды оголовков

Есть несколько типов оголовков. Отличия заключаются в материале изделия и режиме эксплуатации, а базис их конструкции остается неизменным.

  • Наиболее востребованными являются чугунные и стальные оголовки. Для неглубоких скважин такие крышки изготавливаются из пластика.
  • При проектировании конструкции изделия предусмотрена весовая нагрузка оборудования, устанавливаемого в процессе эксплуатации скважины. Свойства пластика позволяют выдержать нагрузку до 200 кг, а метала – до 500 кг.
  • Кроме того, выбор материала определяется глубиной скважины. Если ее глубина не превышает 50 м, то минимальный вес оборудования составляет 100 кг. В случае глубоких скважин необходимо использовать мощный глубинный насос, а также стальной трос и провода, длина которых может составить десятки и сотни метров. Вес такого комплексного оборудования иногда бывает больше 250 кг.

Маркировка

Обозначение оголовка содержит ряд букв и цифр, указывающих на его параметры.

Например, ОС-152-32П (или ОС-152/32П), где:

  • ОС – оголовок скважинный;
  • 152 –диаметр обсадной трубы в мм;
  • 32 – диаметр переходника для подсоединения водозаборной трубы;
  • П – материал оголовка (пластик), если «П» отсутствует, значит, оголовок выполнен из металла.

Некоторые оголовки могут быть рассчитаны для нескольких диаметров обсадных труб. В этом случае указывается диапазон размеров. Оголовок, имеющий обозначения ОС 140-160/32П, подходит для труб диаметром 140…160 мм.

Монтаж оголовка

Монтаж оголовка на обсадную трубу особой сложности не представляет. Нет необходимости в сварочных работах и прочих сложных операциях. И все же прежде чем приступать к установке, желательно познакомиться с последовательностью и характером работы.

  • Прежде всего, нужно подготовить край обсадной трубы. Ее торец должен быть строго перпендикулярен оси, на нем не должно быть заусенцев. Если труба металлическая, для предохранения от коррозии ее желательно прогрунтовать и покрасить подходящей краской для металла. Обрезать (если потребуется) и зачищать трубу лучше всего болгаркой с соответствующим материалу трубы кругом.
  • На трубу надевается фланец буртиком вниз, затем уплотнительное кольцо. Если оно надевается и продвигается по трубе с трудом, ее можно аккуратно смазать маслом или автолом.
  • Теперь нужно прикрепить к крышке все элементы. Трос для подвешивания насоса крепится одним концом к карабину, который прикреплен к рым-болту, завернутому в крышку снизу, другим – к насосу. Его, кстати, желательно приобретать в исполнении, защищенном от коррозии, – т.е. покрытым пластиком.
  • Электропитающий кабель пропускается через предназначенный для него ввод в крышке. Зажим кабельного ввода нужно ослабить, чтобы провод легко скользил в отверстии. Один конец шланга прикрепляем к насосу, второй – к штуцеру, установленному в центре крышки.
  • Насос нужно опускать в скважину, держа его за трос. Как только он опустится на нужную глубину, и трос натянется, крышка аккуратно устанавливается на обсадную трубу. Уплотнительное кольцо подтягивается вверх к крышке и поджимается фланцем. При этом нужно проследить, чтобы отверстия на крышке и фланце совпали.
  • Теперь необходимо установить соединительные болты в отверстия фланца и крышки и равномерно со всех сторон затянуть их. При этом кольцо попадет в канавку на крышке и немного расплющится, плотно герметизируя зазор между трубой и крышкой.

Внимание: Не нужно чрезмерно затягивать болты. Это может привести к повреждению резинового кольца и разгерметизации. В то же время кольцо должно быть достаточно сильно зажато, чтобы не было возможности снять оголовок руками без ослабления болтов.



Подключение оголовка к системе водоснабжения

В заключение выбирается провисание электрокабеля, который фиксируется специальным зажимом на вводе. Подключаются трубы к переходнику, и проверяется правильность сборки.

Классификация

Водопропускные трубы классифицируются по нескольким параметрам.

В зависимости от материала, из которого они изготовлены:

  • Бетонные.
  • Полимерные (из полимербетона, поливинилхлорида и полиэтилена).
  • Железобетонные.
  • Каменные.
  • Металлические.
  • Стеклопластиковые.

Выделяют несколько разновидностей труб в зависимости от формы поперечного сечения:

  • Круглые.
  • Арочные.
  • Эллиптические.
  • Прямоугольные.
  • Трапецеидальные.
  • Овоидальные.
  • Треугольные.

устройство водопропускных труб

По принципу работы сечения:

  • Безнапорные.
  • Напорные.
  • Полунапорные.

В поперечном сечении труб может быть одно, два или несколько очков.

Минимальные размеры труб на автомобильных дорогах

Требования к размерам труб на автомобильных дорогах приведены в СП 35.13330.2011 Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84. Согласно п.5.13 СП 35.13330.2011 отверстие (и высоту в свету) труб следует назначать, как правило, не менее, м:

  • 1,0 — при длине трубы (или при расстоянии между смотровыми колодцами в междупутье на станциях) до 20 м;
  • 1,25 — при длине трубы 20 м и более.

Отверстия труб на автомобильных дорогах ниже II категории допускается принимать равными, м:

  • 1,0 — при длине трубы до 30 м;
  • 0,75 — при длине трубы до 15 м;
  • 0,5 — на съездах при устройстве в пределах трубы быстротока (уклон 10‰ и более) и ограждений на входе.

В обоснованных случаях на улицах и дорогах местного значения, а также в районах орошаемого земледелия, в поселках и сельских населенных пунктах на автомобильных дорогах ниже II-с категории допускается применение труб отверстием 0,5 м при длине трубы до 15 м, устройство в пределах трубы быстротока (уклон 10‰ и более) и ограждения на входе.

Отверстия труб на внутрихозяйственных автомобильных дорогах при длине трубы 10 м и менее допускается принимать 0,5 м.

Отверстия труб на железных дорогах общей сети и автомобильных дорогах общего пользования в районах со средней температурой наружного воздуха наиболее холодной пятидневки ниже минус 40 °С (с обеспеченностью 0,92 по СП 131.13330) следует назначать не менее 1,5 м независимо от длины трубы.

Отверстия труб и малых мостов допускается увеличивать для использования их в качестве пешеходных переходов, скотопрогонов и для пропуска сельскохозяйственных машин с обеспечением соответствующих габаритов.

Согласно п.5.14 СП 35.13330.2011 для водопропускных труб следует, как правило, предусматривать безнапорный режим работы. Допускается предусматривать полунапорный и напорный режимы работы водопропускных труб, располагаемых на железных дорогах общей сети, для пропуска только наибольшего расхода, на всех остальных дорогах — расчетного расхода по 5.25. При этом под оголовками и звеньями следует предусматривать фундаменты, а при необходимости — также противофильтрационные экраны. При напорном режиме следует предусматривать специальные входные оголовки и обеспечивать водонепроницаемость швов между торцами звеньев и секциями фундаментов, надежное укрепление русла, устойчивость насыпи против напора и фильтрации воды.

Для труб, расположенных в районах со средней температурой наружного воздуха наиболее холодной пятидневки ниже минус 40 °С, не допускается предусматривать полунапорный и напорный режимы работы, за исключением случаев расположения труб на скальных грунтах.

Согласно п.5.15 СП 35.13330.2011 водопропускные трубы, как правило, следует проектировать с входными и выходными оголовками, форма и размеры которых обеспечивают принятые в расчетах условия протекания воды и устойчивость насыпи, окружающей трубу.

Металлические гофрированные трубы допускается проектировать без устройства оголовков. При этом нижняя часть несрезаемой трубы должна выступать из насыпи на уровне ее подошвы не менее чем на 0,2 м, а сечение трубы со срезанным концом должно выступать из тела насыпи не менее чем на 0,5 м.

Согласно п.5.16 СП 35.13330.2011 применять трубы не допускается при наличии ледохода и карчехода, а также, как правило, в местах возможного возникновения селей и образования наледи.

В местах возможного образования наледи в виде исключения может быть допущено применение прямоугольных железобетонных труб (шириной не менее 3 м и высотой не менее 2 м) в комплексе с постоянными противоналедными сооружениями.

При этом боковые стенки трубы должны быть массивными бетонными.

Для пропуска селевых потоков следует предусматривать однопролетные мосты отверстиями не менее 4 м или селеспуски с минимальным стеснением потока.

Для средней части труб разработаны три типа фундаментов (см. рис.2):

1 – гравийно-песчаная подушка;

3 – монолитный фундамент;

Тип фундамента выбирается при проектировании в зависимости от местных инженерно-геологических условий: уровня грунтовых вод, гидрологического режима работы сооружения, наличия материалов.

Первый тип - звенья труб опираются на спрофилированную подушку толщиной 0.3м из щебеночно-песчаной или ПГС, которая укладывается на тщательно уплотненный естественный грунт.

Второй тип – сборные фундаменты из лекальных ж/б блоков, устанавливаемых на спланированный уплотненный естественный грунт по щебеночной подготовке толщиной 10см. В местах стыковки секций труб между собой и оголовков устраиваются монолитные участки фундаментов.

Третий тип - бетонные монолитные фундаменты толщиной 30см. Класс бетона 320.


Глубина заложения фундаментов в средней части двухочковых труб назначается без учета глубины промерзания.

Конструкция оголовков состоит из портальной стенки и 2-х откосных крыльев, заглубленных в грунт и установленных на щебеночную подготовку толщиной 10 см.

Естественный грунт под оголовком заменяют гравийно-песчаной смесью на расчетную глубину промерзания с запасом 0,25м. Размеры портальной стенки не зависят от глубины промерзания и определены из условий обеспечения надежного опирания и противодействия сдвигу.

Элементы оголовков запроектированы аналогично серии 3.501.1. – 144 с корректировкой размеров применительно к форме звеньев труб.

Длина берм над входным и выходным оголовками устанавливаются в зависимости от крутизны откоса насыпи, но не менее 0,8м. Укрепление русла и откосов выполняют в соответствии с типовым проектом 5.01-0-46.

К проектированию принят монолитный фундамент.

Земляное полотно отсыпается из грунта – песок средней крупности. Для проектируемой двухочковой трубы, диаметром 1,25 м, принимаем монолитный фундамент типа 3 (см. рис.3,4), при этом допускается высота насыпи до 20 м.



2.3.Расчет размеров укрепления русла

Определяем ширину растекания потока по формуле:


Bрас= , (2.6)


где n=0.78+0.36lg, (2.7)


- отверстие одноочковой трубы (1,25м);

z – длина укрепления, отсчитываемая от конца оголовка (2,8 м);

Де- эквивалентный диаметр, для круглых многоочковых труб:


, (2.8)


м;


(2.9)


- ширина в конце оголовка (=4,57 м);

- эталонный расход (=6,65 м 3 /с);


сбросной расход (Qc=2,9 м 3 /с).

lg=0.91;


м.

Ширина в конце укрепления N=Bраст+3=6,28+3=9,28 м.

Расчетная глубина размыва в конце укрепления при ограниченном времени прохождения паводка находится по формуле:


, (2.10)

dгр – средний диаметр частиц лога (dгр=0,0025 м);

Кс – коэффициент снижения глубины размыва за счет ограниченного времени прохождения паводка (Кс=0,7).


м.

Расчетная глубина размыва при наличии в ковше размыва каменной наброски рассчитывается по формуле:


, (2.11)

где dн - средний расчетный диаметр камня наброски (dн =0,3м);

Wк – удельный расход камня;


Минимальная ширина предохранительного откоса:


, (2.13)

где К1 – коэффициент, определяемый по табл. 4,3 [2] , ( К1=0,62).


м.

Длину укрепления z на входе для круглых труб принимаем равной , ширину

Выбор типа укрепления производят по скорости течения воды на выходе из трубы, увеличиной в 1.2 раза, в зависимости от глубины воды на выходе.


, (2.14)

где k и n – эмпирические коэффициенты (k=0.75, n=0.5);

ПQ – безразмерный параметр расхода;

d- отверстие одноочковой трубы (1,25м).


, (2.15)

где Q – сбросной или расчетный расход (принимаем равным Qс=2,9 м 3 /с).


Тогда глубина воды на выходе равна:


Скорость течения воды на выходе из трубы определяем по таблице 4.5 [1] – Vвых=3,0 м/с.

При расчетной глубине на выходе hвых=0,6 м и расчетной скорости течения воды на выходе Vвых=3.6 м/с возможен следующий вид укрепления: каменная наброска слоем h = 30 см из несортированного камня толщиной 20 см.

Читайте также: