Ветровая нагрузка на фундамент

Обновлено: 28.04.2024

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЗДАНИЯ И СООРУЖЕНИЯ

Методика определения ветровых нагрузок на ограждающие конструкции

Buildings and constructions. Method for determining wind loads on the building envelope

Дата введения 2016-05-01

Предисловие

1 РАЗРАБОТАН Федеральным государственным бюджетным образовательным учреждением высшего образования "Московский государственный университет имени М.В.Ломоносова" (Научно-исследовательским институтом механики Московского государственного университета имени М.В.Ломоносова (НИИ механики МГУ))

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

4 ВВЕДЕН ВПЕРВЫЕ

5 ПЕРЕИЗДАНИЕ. Ноябрь 2019 г.

ВНЕСЕНО Изменение N 1, утвержденное и введенное в действие приказом Федерального агентства по техническому регулированию и метрологии от 22.12.2020 N 1355-ст c 01.06.2021

Изменение N 1 внесено изготовителем базы данных по тексту ИУС N 3, 2021

1 Область применения

Настоящий стандарт уточняет и дополняет требования СП 20.13330 по назначению внешних ветровых нагрузок, учитываемых при расчетах зданий и сооружений по предельным состояниям первой и второй групп, в соответствии с положениями ГОСТ 27751 и распространяется на ограждающие конструкции высотных зданий и сооружений.

Дополнительными являются следующие положения:

1.1 Введено понятие "нормативный (эталонный) ветер", как схематизированная модель приземного пограничного слоя (ППС), и дана его математическая формулировка для использования при постановке задач аэрофизического и компьютерного моделирования ветровых нагрузок.

1.2 Выделен естественный характерный масштаб нормативного ветра, на этом основании конкретизировано понятие "высокое здание" и определен параметр аэродинамического подобия - "коэффициент высоты".

1.3 Определен универсальный критерий нормативного ветрового воздействия - "базовый (основной) аэродинамический коэффициент" внешних ветровых нагрузок и указана его связь с соответствующими частными определениями аэродинамических коэффициентов по СП 20.13330.

1.4 Установлена методика (правила) определения базового аэродинамического коэффициента на основе экспериментального (аэрофизического) и компьютерного (численного) моделирования.

1.5 Указан способ определения пиковых значений аэродинамического коэффициента.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие документы:

ГОСТ 4401 Атмосфера стандартная. Параметры

ГОСТ 27751 Надежность строительных конструкций и оснований. Основные положения по расчету

СП 20.13330.2016 "СНиП 2.01.07-85* Нагрузки и воздействия"

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных документов (сводов правил) в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде технических регламентов и стандартов.

3 Термины, определения, обозначения и единицы измерения

3.1 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1.1 приземный пограничный слой, ППС: Прилегающий к поверхности земли слой атмосферного воздуха толщиной до 500 м.

3.1.2 типы (шероховатости) местности: Принятая в строительной отрасли Российской Федерации классификация (А, В, С) характерных уровней шероховатости земной поверхности, влияющей на распределение по высоте скорости ветра в ППС, определяют по классификатору, приведенному в СП 20.13330.

3.1.3 ветровые районы: Территории (la, I, II, III, IV, V, VI, VII) Российской Федерации, отличающиеся по величине нормативного значения ветрового давления, определяют по карте 3 приложения Ж, приведенного в СП 20.13330.

3.1.4 нормативное значение ветрового давления: Характерный скоростной напор нормативного ветра для каждого ветрового района, определяют по классификатору, приведенному в СП 20.13330.

3.1.2-3.1.4 (Измененная редакция, Изм. N 1).

3.1.5 нормативный (эталонный) ветер: Схематизированная модель ППС, задаваемая для определения нормативной ветровой нагрузки на проектируемые сооружения.

Примечание - Представляет собой однонаправленное горизонтальное перемещение воздуха с заданным изменением среднего скоростного напора по высоте ППС (изменение атмосферного давления, плотности и вязкости воздуха по высоте в ППС не учитывается).

3.1.6 линейный масштаб нормативного ветра: Высота над уровнем земли, на которой скоростной напор нормативного ветра для данного типа местности равен нормативному значению ветрового давления для данного ветрового района.

3.1.7 высокое здание: Сооружение, высота которого превышает линейный масштаб нормативного ветра.

Примечание - Относительное понятие, зависящее от типа шероховатости местности и азимута настилающего ветра.

3.1.8 коэффициент высоты: Отношение геометрической высоты проектируемого здания к линейному масштабу нормативного ветра.

3.1.9 нормативная ветровая нагрузка: Результирующее распределение избыточного давления на ограждающих конструкциях проектируемого сооружения в условиях обтекания нормативным ветром с учетом интерференции от аэродинамически значимых соседних объектов.

3.1.10 аэродинамическая интерференция: Эффект взаимного влияния соседних сооружений и их элементов на обтекание и распределение ветровых нагрузок на ограждающих конструкциях объекта.

3.1.11 аэродинамически значимый объект: Здание, сооружение или иной объект, высота которого превышает уровень высоты шероховатости для данного типа местности.

3.1.12 нормативное значение средней ветровой нагрузки: Стационарная составляющая нормативной ветровой нагрузки.

3.1.13 аэродинамический коэффициент: Безразмерная величина, устанавливающая пропорциональность между скоростным напором настилающего ветра и результирующим избыточным давлением на ограждающих конструкциях сооружения.

3.1.14 настилающий ветер: Перемещение воздушных масс в ППС, не возмущенном рассматриваемым сооружением.

3.1.15 экспериментальное (аэрофизическое) моделирование: Реализация в аэродинамической трубе обтекания макета проектируемого сооружения и объектов окружающей застройки неравномерным воздушным потоком, имитирующим нормативный ветер.

3.1.16 -фактор: Отношение скоростных напоров неравномерного потока воздуха на уровне высоты макета здания и на уровне половины этой высоты при аэрофизическом моделировании.

Примечание - Используется для контроля соответствия фактической неравномерности потока в аэродинамической трубе нормативному ветру.

3.1.17 автомодельность по числу Рейнольдса: Для безразмерных аэродинамических коэффициентов свойство независимости от критерия "число Рейнольдса", начиная с некоторого достаточно большого значения этого критерия.

3.1.18 CFD (от англ, computational fluid dynamics): Семейство компьютерных вычислительных технологий решения систем уравнений механики сплошной среды, описывающих процесс обтекания тел (в данном случае - низкоскоростным воздушным потоком).

3.1.19 компьютерное (численное) моделирование: Численное воспроизведение методами CFD-технологий обтекания проектируемого сооружения и аэродинамически значимых элементов окружающей застройки нормативным ветром.

3.1.20 виртуальная аэродинамическая труба: Реализация в рамках CFD-технологий условий аэрофизического эксперимента в аэродинамической трубе с учетом масштаба моделирования объекта и нормативного ветра.

3.2 Обозначения и единицы измерения

Обозначения и единицы измерения количественных параметров и функций, применяемых при определении основного коэффициента внешних ветровых нагрузок, использованные в настоящем стандарте, приведены в таблице 1.

да с хрена ли нет-то.
ДА.
Ветровая нагрузка. Расчет давления от ветра достаточно сложен и зависит от многих факторов. К таким факторам относятся расположения относительно направления ветра, материала стен и крыши, от формы самого сооружения и т. д.

Поэтому давление от ветра можно подсчитать по упрощенной формуле:

Ветровая нагрузка = (15 х h + 40)xS,

где h – высота от уровня земли до верхней точки строения, S – площадь здания.

После того как вы подсчитали вес всего дома, необходимо подобрать оптимальный тип основания и рассчитать фундамент.

давненько я тут не захаживал . Вас с праздником . и теперь веники можно заготавливать . несмотря на ветровую нагрузку :)

Здание до 40 метров в ветровых районах 1-4 не учитываются (по СНиП Нагрузки и воздействия)
Для зданий высотой более 40 м при определении перемещений следует учитывать крен фундаментов под элементами жесткости (связи, диафрагмы и т. п.). При определении крена фундаментов, (СНиП Основания зданий и сооружений), ветровая нагрузка принимается как временная, и учитывается только 30% этой нагрузки.

Действие ветра на сооружения проявляется в виде статической ветровой нагрузки и в возбуждении колебаний конструкций. Недостаточность знаний о действии ветра на сооружения! приводила к обрушению мостов, высоких зданий, опор линии электропередачи, радиомачт. Основными причинами аварий были ошибки в назначении величины расчетной ветровой нагрузки, неправильное представление о характере ее распределения по сооружению, недостаточный учет аэродинамических характеристик, вибрация конструкций.

Если известны расчетная скорость ветра, его порывистость, профиль ветра по высоте, вероятность ветров различной силы и «роза ветров», может быть установлено действие ветра на сооружение.

Ветер — динамическая нагрузка, так как скорость его все время меняется. Реакция сооружения на ветер будет различной и жесткие конструкции воспринимают ее как статическую, реакция гибких конструкций зависит от частоты свободных (собственных) колебаний. Влияние порывов ветра часто оценивают динамическим коэффициентом, учитывающим и повторное их действие.

Для высоких сооружений ветровая нагрузка является основной; при расчете их на прочность и деформативность необходимы более детальные сведения о ветре в месте предполагаемого строительства, чем сообщаемые в нормативных документах.

Карта районирования территории страны по интенсивность ветровой нагрузки, приведенная в книге, составлена для равнинных районов. Местные особенности рельефа географического пункта не показаны на ней из-за недостаточной частоты расположения метеорологических станций и малого масштаба картам Поэтому большое значение приобретают общие сведения о влиянии на величину скорости ветра долины, холма, горной системы, большой водной поверхности, городской застройки с высоким» зданиями, лесных массивов и др.

Оценка расчетной скорости ветра и анализ влияния его порывов на сооружение вследствие случайного характера явления не могут быть сделаны без привлечения математической статистики.

Ветровая-нагрузка на сооружения зависит не только от размеров сооружения и скорости ветра, но и от конструктивной формы, оцениваемой аэродинамическими коэффициентами.

Только ясное физическое представление о действии ветра на сооружения, для познания которого привлечены и смежные научные дисциплины, в частности прикладная климатология, аэромеханика, математическая статистика, теория колебаний, может быть гарантией правильного расчета сооружений.
Источник: «Ветровая нагрузка на сооружения», Г. А. Савицкий, 1972

РУКОВОДСТВО
ПО РАСЧЕТУ ЗДАНИЙ И СООРУЖЕНИЙ НА ДЕЙСТВИЕ ВЕТРА

Руководство содержит рекомендации по определению ветровой нагрузки на здания и сооружения и указания по динамическому расчету высоких сооружений на действие ветра. В приложениях приведено обоснование основных положений и метода динамического расчета и даны примеры расчета зданий и сооружений на действие ветра.

Руководство предназначено для инженерно-технических работников проектных и научно-исследовательских институтов.

Руководство составлено к главе СНиП II-6-74* "Нагрузки и воздействия. Нормы проектирования".

* На территории Российской Федерации действуют СНиП 2.01.07-85, здесь и далее по тексту. - Примечание изготовителя базы данных.

В Руководстве приведены основные положения по определению ветровой нагрузки на здания и сооружения, а также указания по динамическому расчету высоких сооружений башенного типа (башни, дымовые трубы и т.п.), высоких зданий, антенно-мачтовых систем, градирен и др.

Рассмотрены вопросы аэродинамического возбуждения высоких сооружений и гибких призматических конструкций.

В прил.1 приведены аэродинамические коэффициенты для зданий, сооружений и конструкций.

Прил.2 содержит обоснование основных положений по определению статической составляющей ветровой нагрузки и метода динамического расчета высоких зданий и сооружений на действие турбулентного ветра.

В прил.3 даны примеры расчета высоких зданий и сооружений на действие ветра.

В Руководстве единицы физических величин приняты в системе СИ. Таблица соотношений между единицами этой системы и технической системы МКГСС дана в прил.4.

Руководство разработано в отделении динамики сооружений Центрального научно-исследовательского института строительных конструкций им. В.А.Кучеренко канд. техн. наук М.Ф.Барштейном.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящее Руководство составлено к главе СНиП II-6-74 "Нагрузки и воздействия. Нормы проектирования" и распространяется на проектирование промышленных, гражданских и сельскохозяйственных зданий и сооружений.

1.2. Здания и сооружения, проектируемые с учетом настоящего Руководства, должны удовлетворять требованиям главы СНиП II-6-74 "Нагрузки и воздействия", а также требованиям, предъявляемым действующими нормативными документами к аналогичным зданиям и сооружениям.

1.3. Ветровая нагрузка на здания и сооружения должна определяться как сумма статической и динамической составляющих.

Статическая составляющая, соответствующая установившемуся скоростному напору, должна учитываться во всех случаях. Динамическая составляющая, вызываемая пульсациями скоростного напора, должна учитываться при расчете: сооружений с периодом собственных колебаний более 0,25 с (мачт, башен, дымовых труб, опор линий электропередачи, аппаратов колонного типа, транспортерных галерей, открытых этажерок и т.п.); многоэтажных зданий высотой более 40 м; поперечных рам одноэтажных однопролетных производственных зданий высотой более 36 м при отношении высоты к пролету более 1,5.

1.4. Для высоких сооружений круговой цилиндрической формы (дымовых труб, мачт и т.п.) необходимо также производить поверочный расчет на резонанс, возникающий при таких скоростях ветра, когда частота срыва вихрей совпадает с собственной частотой колебаний сооружений поперек потока.

Примечание. В гибких призматических конструкциях при определенных скоростях ветра могут возникнуть колебания поперек потока, связанные с явлением аэродинамической неустойчивости таких тел. Указания по расчету и мероприятия по уменьшению колебаний таких конструкций устанавливаются на основании данных аэродинамических испытаний.


2. НОРМАТИВНОЕ ЗНАЧЕНИЕ СТАТИЧЕСКОЙ СОСТАВЛЯЮЩЕЙ ВЕТРОВОЙ НАГРУЗКИ. КОЭФФИЦИЕНТЫ ПЕРЕГРУЗКИ


2.1. Нормативное значение статической составляющей ветровой нагрузки должно определяться по формуле


, Па, (1)


;


- нормативный скоростной напор ветра на высоте 10 м над поверхностью земли, принимаемый по п.3.1; - плотность воздуха, кг/м; - скорость ветра на высоте 10 м над поверхностью земли, м/с; - коэффициент, учитывающий изменение скоростного напора по высоте, принимаемый в соответствии с указаниями, изложенными в пп.4.1-4.4; - аэродинамический коэффициент, принимаемый по табл.1, прил.1.

2.2. Коэффициент перегрузки для ветровой нагрузки на здания должен приниматься равным 1,2; на высокие сооружения, где ветровая нагрузка имеет решающее значение, 1,3, если в нормах проектирования этих сооружений не приводится другое значение этого коэффициента. Коэффициент перегрузки для дымовых труб высотой от 150 до 300 м рекомендуется принимать равным 1,4, выше 300 м - 1,5.

3. НОРМАТИВНЫЕ СКОРОСТНЫЕ НАПОРЫ

3.1. Нормативный скоростной напор ветра () для данного географического района устанавливается на основе статистического анализа климатологических данных по скоростям ветра в этом районе (районы СССР принимаются по карте, приведенной в главе СНиП II-6-74 "Нагрузки и воздействия. Нормы проектирования").

Скоростные напоры в зависимости от района СССР должны приниматься по табл.1.

Видео-курсы от Ирины Михалевской

В статье "Сбор нагрузок в каркасном доме" на примере были собраны вертикальные нагрузки на фундаменты каркасного дома. При жестком соединении колонн с фундаментами для расчета последних нужно определить также моменты и поперечные силы. В этой статье мы займемся сбором ветровых нагрузок на рамы здания.


Естественно, объема статьи не хватит, чтобы определить нагрузку на все фундаменты, поэтому мы выберем одну колонну на пересечении осей «Б» и «2» (на плане – розовая) и для нее будем стремиться определить нагрузку.

Для этого нам нужно будет «вырезать» две рамы – вдоль оси «Б» и вдоль оси «2», собрать на них ветер, а затем с учетом вертикальных нагрузок из статьи «Сбор нагрузок в каркасном доме» рассчитать эти рамы (расчет рам изложен в статье «Расчет каркаса с плоскими перекрытиями для определения нагрузки на фундамент»).

Сбор ветровой нагрузки на раму вдоль оси «Б» (ветер слева)

Первым делом открываем ДБН В.1.2-2:2006 «Нагрузки и воздействия», раздел 9 «Ветровые нагрузки».

Чтобы найти расчетное значение ветровой нагрузки на 1 кв. метр здания, воспользуемся формулой (9.2):

Значение W 0 – это по сути полное нормативное ветровое давление на высоте до 10 м, мы определим по таблице из приложения Е, выбрав ветровую нагрузку для нужного города; W 0 = 470 Па = 47 кг/м 2 .

Коэффициент надежности по эксплуатационному расчетному значению ветровой нагрузки γfe выбираем из таблицы пункта 9.15 при η = 0,02 (для объектов массового строительства); γfe = 0,21.

Коэффициент С определяется по формуле (9.3):

С = С aer*Ch*Calt*Crel*Cdir*Cd.

Разберем, как находить каждый из коэффициентов.

1) Коэффициент С aer – это аэродинамический коэффициент, который зависит от формы здания. Дело в том, что при одинаковой силе ветра (в нашем случае это 47 кг/м 2 ) при обдуве зданий разной конфигурации мы получим разный эффект, выраженный в усилении или ослаблении этого ветрового давления на поверхность. Коэффициент вполне логичен, а его значение получено опытным путем. Чтобы найти С aer для нашей конструкции, нужно заглянуть в схему 2 приложения И, в которой рассмотрено здание с двускатными покрытиями:


На схеме мы видим разрез дома и его план, а также коэффициенты Ce c индексами от 1 до 3, которые и будут равны искомому С aer для разных частей здания. Заметьте также, что на схеме указано направление ветра, для которого верны данные коэффициенты. Так как рама у нас вдоль оси «Б» не симметрична, необходимо будет в итоге сделать расчет рамы для ветра в двух направлениях: со знаком «+» и «-», выбрав затем наихудшие значения усилий.


Итак, на стену по оси «1» (левую) ветер будет действовать с понижающим коэффициентом Се = + 0,8 (знак «+» означает, что ветер действует на поверхность; знак «-» - ветер действует от поверхности, как бы отрывая от нее).

Для правой стены по оси «4» коэффициент Се3 нужно найти из таблицы того же приложения И, для этого определим два значения:

1 – отношение b / l = 9.5/9 = 1.05, где b – длина здания в плане (перпендикулярно ветру), l – длина здания в плане (вдоль направления ветра);

2 – отношение h 1/ L = 5/9 = 0.55, где h 1 – высота дома от уровня земли до низа крыши; L – длина здания (вдоль направления ветра).

Так как полученные нами значения 1,05 и 0,55 не совпадают с имеющимися в таблице, нужно определять значения Се3 интерполяцией.

Предлагаю сделать это графическим методом (в любой чертежной программе).

Шаг 1. Найдем значение Се3 при b / l = 1.05 и h 1/ L = 0,5:



Откладываем отрезок равный 1 (2-1=1). С одной стороны вниз откладываем отрезок длиной 0,4 (соответствует 1); с другой – 0,5 (соответствует 2). Значения 0,4 и 0,5 мы взяли из таблицы приложения И. Соединяем отрезки наклонной линией. Разбиваем отрезок, равный 1, на 20 частей, т.к. (2-1)/(1,05-1)=20; откладываем вертикальные отрезки в каждой точке (от 1,05 до 1,95) – расстояние между ними по 0,05. Находим первый отрезок (розовый), соответствующий значению 1,05, и измеряем его длину: -0,405 – это искомая величина (с минусом потому, что 0,4 и 0,5 – тоже с минусом).

Шаг 2. Найдем значение Се3 при b / l = 1.05 и h 1/ L = 1:



Делаем все по тому же принципу, только с одной стороны откладываем отрезок длиной 0,5; с другой – 0,6. Получаем значение -0,505.

Шаг 3. Найдем значение Се3 при b / l = 1.05 и h 1/ L = 0,55:



Откладываем отрезок равный 0,5 (1-0,5=0,5). С одной стороны откладываем отрезок длиной 0,405 (соответствует 0,5); с другой – 0,505 (соответствует 1). Соединяем их наклонной линией. Разбиваем отрезок, равный 0,5, на 10 частей, т.к. (1-0,5)/(0,55-0,5)=10; откладываем вертикальные отрезки в каждой точке (от 0,55 до 0,95) – расстояние между ними по 0,05. Находим первый отрезок (розовый), соответствующий значению 0,55, и измеряем его длину: -0,415 – это искомая величина (с минусом потому, что 0,405 и 0,505 – тоже с минусом).

В итоге, мы нашли искомый коэффициент Се3 при b / l = 1.05 и h 1/ L = 0,55:

Значение Се3 при h 1/ L , равном

-0,415

Для левого ската крыши коэффициент Се1 также определяется интерполяцией. Угол наклона крыши 30 градусов, h 1/ L = 0,55.

Шаг 1. Найдем значение Се1 при α = 30 и h1/L = 0,5:



Откладываем отрезок равный 20. С одной стороны откладываем отрезок длиной 0,4 вниз – так как 0,4 у нас со знаком «-» (соответствует 20); с другой – 0,3 вверх – так как 0,3 со знаком «+» (соответствует 40). Соединяем их наклонной линией. Разбиваем отрезок, равный 20, на 2 части, т.к. (40-20)/(30-20)=2. Откладываем отрезок (розовый), соответствующий значению 30 градусов, и измеряем его длину: -0,05 – это искомая величина (с минусом потому, что отрезок отложен вниз).

Шаг 2. Найдем значение Се1 при α = 30 и h 1/ L = 1:



Откладываем отрезок равный 20. С одной стороны откладываем отрезок длиной 0,7 вниз – так как 0,7 у нас со знаком «-» (соответствует 20); с другой – 0,2 вниз – так как 0,2 тоже со знаком «-» (соответствует 40). Соединяем их наклонной линией. Разбиваем отрезок, равный 20, на 2 части, т.к. (40-20)/(30-20)=2. Откладываем отрезок (розовый), соответствующий значению 30 градусов, и измеряем его длину: -0,45 – это искомая величина (с минусом потому, что он отложен вниз).

Шаг 3. Найдем значение Се1 при α = 30 и h 1/ L = 0,55:



Откладываем отрезок равный 0,5. С одной стороны вниз откладываем найденный в шаге 1 отрезок длиной 0,05 (соответствует 0,5); с другой – 0,45 (соответствует 1). Соединяем их наклонной линией. Разбиваем отрезок, равный 0,5, на 10 частей, т.к. (1-0,5)/(0,55-0,5)=10; откладываем вертикальные отрезки в каждой точке (от 0,55 до 0,95) – расстояние между ними по 0,05. Находим первый отрезок (розовый), соответствующий значению 0,55, и измеряем его длину: -0,09 – это искомая величина (с минусом потому, что 0,05 и 0,45 – тоже с минусом).

В итоге, мы нашли искомый коэффициент Се1 при α = 30 и h 1/ L = 0,5:

Значение Се1 при h 1/ L , равном

-0,09

Для правого ската крыши коэффициент Се2 определяем интерполяцией. Угол наклона крыши 30 градусов, h 1/ L = 0,55.

Искомый коэффициент Се2 при ? = 30 и h 1/ L = 0,5:

Значение Се2 при h 1/ L , равном

-0,41

2) Коэффициент С h – это коэффициент высоты здания, который дает увеличение ветрового давления с увеличением высоты дома. Легко представить: чем выше взобраться, тем сильнее ветер. Обратите внимание, что подбирать этот коэффициент нужно по изменению 1 к ДБН «Нагрузки и воздействия». Согласно этому документу коэффициент Сh определяется по табл.9.01 для зданий и сооружений, старший период собственных колебаний которых не превышает 0,25 сек, и по табл.9.02 для всех других зданий и сооружений. Как разобраться с этими таблицами и периодами собственных колебаний? Если конфигурация здания сбалансирована настолько, что ветер не создаст значительных колебаний конструкции, то значения коэффициента берутся из таблицы 9.01 (в ней коэффициенты значительно меньшие, чем в таблице 9.02). Проверить старший период собственных колебаний конструкции можно, рассчитав ее в программном комплексе (например, с этой задачей справляются Мономах и Лира). Для нашего скромного домика мы возьмем данные из таблицы 9.01.

Зададимся типом местности II – сельская местность.

Для части здания ниже 5 метров С h = 0,7. В нашем примере это как раз стены дома. Для крыши будет следующий коэффициент С h = 0,82 (находится интерполяцией при максимальной высоте дома 7,9 м).

3) Коэффициент С alt – это коэффициент, учитывающий размещения дома на высоте над уровнем моря. При проектировании любого объекта у нас всегда есть данные по абсолютной отметке, к которой мы уже потом привязываем относительные. Если эта абсолютная отметка меньше 500 м, то С alt = 1. Если дом строится в горах, то коэффициент равен удвоенной величине абсолютной отметки (в километрах).

В нашем случае для г. Николаева С alt = 1.

4) Коэффициент С rel – учитывает рельеф местности и повышается, если дом стоит на склоне. Для ровной местности С rel = 1.

5) Коэффициент С dir = 1, можете почитать о нем в ДБН, по-видимому, больше единицы он бывает в каких-то исключительных случаях, о которых ДБН умалчивает.

6) Коэффициент С d = 1, он, как и коэффициент С h , зависит от периода колебаний здания.

Определим коэффициент С и распределенную по поверхности стен и крыши ветровую нагрузку W е (ветер слева):

1) для левой стены по оси «1»

С = 0,8*0,7*1*1*1*1 = 0,56;

W е1 = 0,21*47*0,56 = 5,53 кг/м 2 ;

2) для правой стены по оси «4»

С = -0,415*0,7*1*1*1*1 = -0,29;

W е2 = 0,21*47*(-0,29) = -2,86 кг/м 2 (нагрузка действует в направлении от здания);

3) для левого ската крыши (у оси «1»)

С = -0,09*0,82*1*1*1*1 = -0,07;

W е3 = 0,21*47*(-0,07) = -0,7 кг/м 2 (отрывающая нагрузка);

4) для правого ската крыши (у оси «4»)

С = -0,41*0,82*1*1*1*1 = -0,34;

W е4 = 0,21*47*(-0,34) = -3,36 кг/м 2 (отрывающая нагрузка).

Для варианта «ветер справа» нагрузки будут зеркальны.

Определим ветровую нагрузку W (кг/м), приходящуюся на раму по оси «Б». Для этого нужно умножить распределенную по площади нагрузку W е на расчетный пролет сбора нагрузки для колонны (стропильной ноги). Расчетный пролет для крайних колонн, к которым приложена ветровая нагрузка (согласно плану в начале статьи), равен 2,75 м. Стропильные ноги установлены с шагом 1,2 м, значит для всех стропильных ног, кроме крайних (на торцах здания) расчетный пролет будет равен 1,2 м; для крайних – 1,2/2 = 0,6 м.



1) Ветровая нагрузка W 1 на колонну по оси 1/Б:

W 1 = W е1 * L = 5.53*2.75 = 15.2 кг/м;

2) Ветровая нагрузка W 2 на колонну по оси 4/Б:

3) Ветровая нагрузка W 3 на стропильную ногу у оси 1:

4) Ветровая нагрузка W 4 на стропильную ногу у оси 4:

W 4 = W е4 *L = -3,36 * 1,2 = -4,03 кг/м.



На рисунке значения ветровой нагрузки указаны без знака «-», т.к. стрелками указано направление действия нагрузок.

Сбор ветровой нагрузки на раму вдоль оси «2» (ветер слева)

Расчетное значение ветровой нагрузки на 1 кв. метр здания:

Здесь W 0 = 470 Па = 47 кг/м 2 ; ? fe = 0,21 – как и в предыдущем расчете.

Коэффициент С определяется по формуле:

С = С aer*Ch*Calt*Crel*Cdir*Cd;

здесь Calt = Crel = Cdir = Cd = 1; Ch = 0,7 – до 5 метров; Ch = 0,82 – до верха дома (как в предыдущем расчете).

Найдем С aer для частей здания (ветер слева).

На стену по оси «А» (левую) ветер будет действовать с понижающим коэффициентом Се = + 0,8.

Для правой стены по оси «Г» коэффициент Се3 нужно найти из таблицы, для этого определим два значения:

1 – отношение b / l = 9 /9,5 = 0,95, где b – длина здания в плане (перпендикулярно ветру), l – длина здания в плане (вдоль направления ветра);

2 – отношение h 1/ L = 5/9,5 = 0.53, где h 1 – высота дома от уровня земли до низа крыши; L – ширина здания (вдоль направления ветра).

Так как полученные нами значения 0,95 и 0,53 не совпадают с имеющимися в таблице, нужно определять значения Се3 интерполяцией.

Значение Се3 при h 1/ L , равном

-0,406

Согласно примечанию к схеме 2 приложения И (ДБН «Нагрузки и воздействия») при ветре, перпендикулярном торцу здания, для всего покрытия Се = -0,7.



Определим коэффициент С и распределенную по поверхности стен и крыши ветровую нагрузку W е (ветер слева):

1) для левой стены по оси «А» на уровне до 5 м:

С = 0,8*0,7*1*1*1*1 = 0,56;

W е1 = 0,21*47*0,56 = 5,53 кг/м 2 ;

для левой стены по оси «А» на уровне 7,9 м:

С = 0,8*0,82*1*1*1*1 = 0,66;

W е1' = 0,21*47*0,66 = 6,51 кг/м 2 ;

2) для правой стены по оси «Г» на уровне до 5 м:

С = -0,406*0,7*1*1*1*1 = -0,28;

W е2 = 0,21*47*(-0,28) = -2,76 кг/м 2 (нагрузка действует в направлении от здания);

для правой стены по оси «Г» на уровне 7,9 м:

С = -0,406*0,82*1*1*1*1 = -0,33;

W е2' = 0,21*47*(-0,33) = -3,26 кг/м 2 (нагрузка действует в направлении от здания);

3) для коньковой балки по оси «Б»:

С = -0,7*0,82*1*1*1*1 = -0,57;

W е3 = 0,21*47*(-0,57) = -5,63 кг/м 2 (отрывающая нагрузка).

Для варианта «ветер справа» нагрузки будут зеркальны.

Определим ветровую нагрузку W (кг/м), приходящуюся на раму по оси «2». Для этого нужно умножить распределенную по площади нагрузку W е на расчетный пролет сбора нагрузки для колонны (балки). Расчетный пролет для крайних колонн, к которым приложена ветровая нагрузка, разный для первого и второго этажей, т.к. на первом этаже есть колонна по оси «3», а на втором этаже этой колонны уже нет. В итоге, расчетный пролет для первого этажа (до трех метров) равен 3 м, а для второго этажа – 4,5 м. Уменьшением нагрузки на верхнюю часть колонны, в связи с уменьшением площади сбора нагрузки (стена сужается из-за крыши), пренебрегаем для упрощения расчета, эта нагрузка пойдет в запас. Расчетный пролет для коньковой балки равен сумме половины пролетов каждой стропильной ноги: 2,6 + 2,6 = 5,2 м.



1) Ветровая нагрузка W 1 на колонну по оси 2/А на 1 этаже:

W 1 = W е1 * L = 5.53*2.75 = 15.2 кг/м;

Ветровая нагрузка W 1 на колонну по оси 2/А на 2 этаже до отметки +5 м:

W 1 = W е1 * L = 5.53*4,5 = 24,9 кг/м;

W 1 = W е1' * L = 6,51*4,5 = 29,3 кг/м

(ветровая нагрузка на уровне от 5 до 7,9 м переменная, она возрастает от 24,9 до 29,3 кг/м);

2) Ветровая нагрузка W 2 на колонну по оси 2/Г на 1 этаже:

Ветровая нагрузка W 2 на колонну по оси 2/А на 2 этаже до отметки +5 м:

(ветровая нагрузка на уровне от 5 до 7,9 м переменная, она возрастает от -12,4 до -14,7 кг/м);

3) Ветровая нагрузка W 3 на коньковую балку по оси «2»:



Итак, ветровые нагрузки собраны. Можно приступать к расчету рам дома для определения нагрузок на столбчатые фундаменты.

Видео-курсы от Ирины Михалевской

В статье "Сбор нагрузок в каркасном доме" на примере были собраны вертикальные нагрузки на фундаменты каркасного дома. При жестком соединении колонн с фундаментами для расчета последних нужно определить также моменты и поперечные силы. В этой статье мы займемся сбором ветровых нагрузок на рамы здания.


Естественно, объема статьи не хватит, чтобы определить нагрузку на все фундаменты, поэтому мы выберем одну колонну на пересечении осей «Б» и «2» (на плане – розовая) и для нее будем стремиться определить нагрузку.

Для этого нам нужно будет «вырезать» две рамы – вдоль оси «Б» и вдоль оси «2», собрать на них ветер, а затем с учетом вертикальных нагрузок из статьи «Сбор нагрузок в каркасном доме» рассчитать эти рамы (расчет рам изложен в статье «Расчет каркаса с плоскими перекрытиями для определения нагрузки на фундамент»).

Сбор ветровой нагрузки на раму вдоль оси «Б» (ветер слева)

Первым делом открываем ДБН В.1.2-2:2006 «Нагрузки и воздействия», раздел 9 «Ветровые нагрузки».

Чтобы найти расчетное значение ветровой нагрузки на 1 кв. метр здания, воспользуемся формулой (9.2):

Значение W 0 – это по сути полное нормативное ветровое давление на высоте до 10 м, мы определим по таблице из приложения Е, выбрав ветровую нагрузку для нужного города; W 0 = 470 Па = 47 кг/м 2 .

Коэффициент надежности по эксплуатационному расчетному значению ветровой нагрузки γfe выбираем из таблицы пункта 9.15 при η = 0,02 (для объектов массового строительства); γfe = 0,21.

Коэффициент С определяется по формуле (9.3):

С = С aer*Ch*Calt*Crel*Cdir*Cd.

Разберем, как находить каждый из коэффициентов.

1) Коэффициент С aer – это аэродинамический коэффициент, который зависит от формы здания. Дело в том, что при одинаковой силе ветра (в нашем случае это 47 кг/м 2 ) при обдуве зданий разной конфигурации мы получим разный эффект, выраженный в усилении или ослаблении этого ветрового давления на поверхность. Коэффициент вполне логичен, а его значение получено опытным путем. Чтобы найти С aer для нашей конструкции, нужно заглянуть в схему 2 приложения И, в которой рассмотрено здание с двускатными покрытиями:


На схеме мы видим разрез дома и его план, а также коэффициенты Ce c индексами от 1 до 3, которые и будут равны искомому С aer для разных частей здания. Заметьте также, что на схеме указано направление ветра, для которого верны данные коэффициенты. Так как рама у нас вдоль оси «Б» не симметрична, необходимо будет в итоге сделать расчет рамы для ветра в двух направлениях: со знаком «+» и «-», выбрав затем наихудшие значения усилий.


Итак, на стену по оси «1» (левую) ветер будет действовать с понижающим коэффициентом Се = + 0,8 (знак «+» означает, что ветер действует на поверхность; знак «-» - ветер действует от поверхности, как бы отрывая от нее).

Для правой стены по оси «4» коэффициент Се3 нужно найти из таблицы того же приложения И, для этого определим два значения:

1 – отношение b / l = 9.5/9 = 1.05, где b – длина здания в плане (перпендикулярно ветру), l – длина здания в плане (вдоль направления ветра);

2 – отношение h 1/ L = 5/9 = 0.55, где h 1 – высота дома от уровня земли до низа крыши; L – длина здания (вдоль направления ветра).

Так как полученные нами значения 1,05 и 0,55 не совпадают с имеющимися в таблице, нужно определять значения Се3 интерполяцией.

Предлагаю сделать это графическим методом (в любой чертежной программе).

Шаг 1. Найдем значение Се3 при b / l = 1.05 и h 1/ L = 0,5:



Откладываем отрезок равный 1 (2-1=1). С одной стороны вниз откладываем отрезок длиной 0,4 (соответствует 1); с другой – 0,5 (соответствует 2). Значения 0,4 и 0,5 мы взяли из таблицы приложения И. Соединяем отрезки наклонной линией. Разбиваем отрезок, равный 1, на 20 частей, т.к. (2-1)/(1,05-1)=20; откладываем вертикальные отрезки в каждой точке (от 1,05 до 1,95) – расстояние между ними по 0,05. Находим первый отрезок (розовый), соответствующий значению 1,05, и измеряем его длину: -0,405 – это искомая величина (с минусом потому, что 0,4 и 0,5 – тоже с минусом).

Шаг 2. Найдем значение Се3 при b / l = 1.05 и h 1/ L = 1:



Делаем все по тому же принципу, только с одной стороны откладываем отрезок длиной 0,5; с другой – 0,6. Получаем значение -0,505.

Шаг 3. Найдем значение Се3 при b / l = 1.05 и h 1/ L = 0,55:



Откладываем отрезок равный 0,5 (1-0,5=0,5). С одной стороны откладываем отрезок длиной 0,405 (соответствует 0,5); с другой – 0,505 (соответствует 1). Соединяем их наклонной линией. Разбиваем отрезок, равный 0,5, на 10 частей, т.к. (1-0,5)/(0,55-0,5)=10; откладываем вертикальные отрезки в каждой точке (от 0,55 до 0,95) – расстояние между ними по 0,05. Находим первый отрезок (розовый), соответствующий значению 0,55, и измеряем его длину: -0,415 – это искомая величина (с минусом потому, что 0,405 и 0,505 – тоже с минусом).

В итоге, мы нашли искомый коэффициент Се3 при b / l = 1.05 и h 1/ L = 0,55:

Значение Се3 при h 1/ L , равном

-0,415

Для левого ската крыши коэффициент Се1 также определяется интерполяцией. Угол наклона крыши 30 градусов, h 1/ L = 0,55.

Шаг 1. Найдем значение Се1 при α = 30 и h1/L = 0,5:



Откладываем отрезок равный 20. С одной стороны откладываем отрезок длиной 0,4 вниз – так как 0,4 у нас со знаком «-» (соответствует 20); с другой – 0,3 вверх – так как 0,3 со знаком «+» (соответствует 40). Соединяем их наклонной линией. Разбиваем отрезок, равный 20, на 2 части, т.к. (40-20)/(30-20)=2. Откладываем отрезок (розовый), соответствующий значению 30 градусов, и измеряем его длину: -0,05 – это искомая величина (с минусом потому, что отрезок отложен вниз).

Шаг 2. Найдем значение Се1 при α = 30 и h 1/ L = 1:



Откладываем отрезок равный 20. С одной стороны откладываем отрезок длиной 0,7 вниз – так как 0,7 у нас со знаком «-» (соответствует 20); с другой – 0,2 вниз – так как 0,2 тоже со знаком «-» (соответствует 40). Соединяем их наклонной линией. Разбиваем отрезок, равный 20, на 2 части, т.к. (40-20)/(30-20)=2. Откладываем отрезок (розовый), соответствующий значению 30 градусов, и измеряем его длину: -0,45 – это искомая величина (с минусом потому, что он отложен вниз).

Шаг 3. Найдем значение Се1 при α = 30 и h 1/ L = 0,55:



Откладываем отрезок равный 0,5. С одной стороны вниз откладываем найденный в шаге 1 отрезок длиной 0,05 (соответствует 0,5); с другой – 0,45 (соответствует 1). Соединяем их наклонной линией. Разбиваем отрезок, равный 0,5, на 10 частей, т.к. (1-0,5)/(0,55-0,5)=10; откладываем вертикальные отрезки в каждой точке (от 0,55 до 0,95) – расстояние между ними по 0,05. Находим первый отрезок (розовый), соответствующий значению 0,55, и измеряем его длину: -0,09 – это искомая величина (с минусом потому, что 0,05 и 0,45 – тоже с минусом).

В итоге, мы нашли искомый коэффициент Се1 при α = 30 и h 1/ L = 0,5:

Значение Се1 при h 1/ L , равном

-0,09

Для правого ската крыши коэффициент Се2 определяем интерполяцией. Угол наклона крыши 30 градусов, h 1/ L = 0,55.

Искомый коэффициент Се2 при ? = 30 и h 1/ L = 0,5:

Значение Се2 при h 1/ L , равном

-0,41

2) Коэффициент С h – это коэффициент высоты здания, который дает увеличение ветрового давления с увеличением высоты дома. Легко представить: чем выше взобраться, тем сильнее ветер. Обратите внимание, что подбирать этот коэффициент нужно по изменению 1 к ДБН «Нагрузки и воздействия». Согласно этому документу коэффициент Сh определяется по табл.9.01 для зданий и сооружений, старший период собственных колебаний которых не превышает 0,25 сек, и по табл.9.02 для всех других зданий и сооружений. Как разобраться с этими таблицами и периодами собственных колебаний? Если конфигурация здания сбалансирована настолько, что ветер не создаст значительных колебаний конструкции, то значения коэффициента берутся из таблицы 9.01 (в ней коэффициенты значительно меньшие, чем в таблице 9.02). Проверить старший период собственных колебаний конструкции можно, рассчитав ее в программном комплексе (например, с этой задачей справляются Мономах и Лира). Для нашего скромного домика мы возьмем данные из таблицы 9.01.

Зададимся типом местности II – сельская местность.

Для части здания ниже 5 метров С h = 0,7. В нашем примере это как раз стены дома. Для крыши будет следующий коэффициент С h = 0,82 (находится интерполяцией при максимальной высоте дома 7,9 м).

3) Коэффициент С alt – это коэффициент, учитывающий размещения дома на высоте над уровнем моря. При проектировании любого объекта у нас всегда есть данные по абсолютной отметке, к которой мы уже потом привязываем относительные. Если эта абсолютная отметка меньше 500 м, то С alt = 1. Если дом строится в горах, то коэффициент равен удвоенной величине абсолютной отметки (в километрах).

В нашем случае для г. Николаева С alt = 1.

4) Коэффициент С rel – учитывает рельеф местности и повышается, если дом стоит на склоне. Для ровной местности С rel = 1.

5) Коэффициент С dir = 1, можете почитать о нем в ДБН, по-видимому, больше единицы он бывает в каких-то исключительных случаях, о которых ДБН умалчивает.

6) Коэффициент С d = 1, он, как и коэффициент С h , зависит от периода колебаний здания.

Определим коэффициент С и распределенную по поверхности стен и крыши ветровую нагрузку W е (ветер слева):

1) для левой стены по оси «1»

С = 0,8*0,7*1*1*1*1 = 0,56;

W е1 = 0,21*47*0,56 = 5,53 кг/м 2 ;

2) для правой стены по оси «4»

С = -0,415*0,7*1*1*1*1 = -0,29;

W е2 = 0,21*47*(-0,29) = -2,86 кг/м 2 (нагрузка действует в направлении от здания);

3) для левого ската крыши (у оси «1»)

С = -0,09*0,82*1*1*1*1 = -0,07;

W е3 = 0,21*47*(-0,07) = -0,7 кг/м 2 (отрывающая нагрузка);

4) для правого ската крыши (у оси «4»)

С = -0,41*0,82*1*1*1*1 = -0,34;

W е4 = 0,21*47*(-0,34) = -3,36 кг/м 2 (отрывающая нагрузка).

Для варианта «ветер справа» нагрузки будут зеркальны.

Определим ветровую нагрузку W (кг/м), приходящуюся на раму по оси «Б». Для этого нужно умножить распределенную по площади нагрузку W е на расчетный пролет сбора нагрузки для колонны (стропильной ноги). Расчетный пролет для крайних колонн, к которым приложена ветровая нагрузка (согласно плану в начале статьи), равен 2,75 м. Стропильные ноги установлены с шагом 1,2 м, значит для всех стропильных ног, кроме крайних (на торцах здания) расчетный пролет будет равен 1,2 м; для крайних – 1,2/2 = 0,6 м.



1) Ветровая нагрузка W 1 на колонну по оси 1/Б:

W 1 = W е1 * L = 5.53*2.75 = 15.2 кг/м;

2) Ветровая нагрузка W 2 на колонну по оси 4/Б:

3) Ветровая нагрузка W 3 на стропильную ногу у оси 1:

4) Ветровая нагрузка W 4 на стропильную ногу у оси 4:

W 4 = W е4 *L = -3,36 * 1,2 = -4,03 кг/м.



На рисунке значения ветровой нагрузки указаны без знака «-», т.к. стрелками указано направление действия нагрузок.

Сбор ветровой нагрузки на раму вдоль оси «2» (ветер слева)

Расчетное значение ветровой нагрузки на 1 кв. метр здания:

Здесь W 0 = 470 Па = 47 кг/м 2 ; ? fe = 0,21 – как и в предыдущем расчете.

Коэффициент С определяется по формуле:

С = С aer*Ch*Calt*Crel*Cdir*Cd;

здесь Calt = Crel = Cdir = Cd = 1; Ch = 0,7 – до 5 метров; Ch = 0,82 – до верха дома (как в предыдущем расчете).

Найдем С aer для частей здания (ветер слева).

На стену по оси «А» (левую) ветер будет действовать с понижающим коэффициентом Се = + 0,8.

Для правой стены по оси «Г» коэффициент Се3 нужно найти из таблицы, для этого определим два значения:

1 – отношение b / l = 9 /9,5 = 0,95, где b – длина здания в плане (перпендикулярно ветру), l – длина здания в плане (вдоль направления ветра);

2 – отношение h 1/ L = 5/9,5 = 0.53, где h 1 – высота дома от уровня земли до низа крыши; L – ширина здания (вдоль направления ветра).

Так как полученные нами значения 0,95 и 0,53 не совпадают с имеющимися в таблице, нужно определять значения Се3 интерполяцией.

Значение Се3 при h 1/ L , равном

-0,406

Согласно примечанию к схеме 2 приложения И (ДБН «Нагрузки и воздействия») при ветре, перпендикулярном торцу здания, для всего покрытия Се = -0,7.



Определим коэффициент С и распределенную по поверхности стен и крыши ветровую нагрузку W е (ветер слева):

1) для левой стены по оси «А» на уровне до 5 м:

С = 0,8*0,7*1*1*1*1 = 0,56;

W е1 = 0,21*47*0,56 = 5,53 кг/м 2 ;

для левой стены по оси «А» на уровне 7,9 м:

С = 0,8*0,82*1*1*1*1 = 0,66;

W е1' = 0,21*47*0,66 = 6,51 кг/м 2 ;

2) для правой стены по оси «Г» на уровне до 5 м:

С = -0,406*0,7*1*1*1*1 = -0,28;

W е2 = 0,21*47*(-0,28) = -2,76 кг/м 2 (нагрузка действует в направлении от здания);

для правой стены по оси «Г» на уровне 7,9 м:

С = -0,406*0,82*1*1*1*1 = -0,33;

W е2' = 0,21*47*(-0,33) = -3,26 кг/м 2 (нагрузка действует в направлении от здания);

3) для коньковой балки по оси «Б»:

С = -0,7*0,82*1*1*1*1 = -0,57;

W е3 = 0,21*47*(-0,57) = -5,63 кг/м 2 (отрывающая нагрузка).

Для варианта «ветер справа» нагрузки будут зеркальны.

Определим ветровую нагрузку W (кг/м), приходящуюся на раму по оси «2». Для этого нужно умножить распределенную по площади нагрузку W е на расчетный пролет сбора нагрузки для колонны (балки). Расчетный пролет для крайних колонн, к которым приложена ветровая нагрузка, разный для первого и второго этажей, т.к. на первом этаже есть колонна по оси «3», а на втором этаже этой колонны уже нет. В итоге, расчетный пролет для первого этажа (до трех метров) равен 3 м, а для второго этажа – 4,5 м. Уменьшением нагрузки на верхнюю часть колонны, в связи с уменьшением площади сбора нагрузки (стена сужается из-за крыши), пренебрегаем для упрощения расчета, эта нагрузка пойдет в запас. Расчетный пролет для коньковой балки равен сумме половины пролетов каждой стропильной ноги: 2,6 + 2,6 = 5,2 м.



1) Ветровая нагрузка W 1 на колонну по оси 2/А на 1 этаже:

W 1 = W е1 * L = 5.53*2.75 = 15.2 кг/м;

Ветровая нагрузка W 1 на колонну по оси 2/А на 2 этаже до отметки +5 м:

W 1 = W е1 * L = 5.53*4,5 = 24,9 кг/м;

W 1 = W е1' * L = 6,51*4,5 = 29,3 кг/м

(ветровая нагрузка на уровне от 5 до 7,9 м переменная, она возрастает от 24,9 до 29,3 кг/м);

2) Ветровая нагрузка W 2 на колонну по оси 2/Г на 1 этаже:

Ветровая нагрузка W 2 на колонну по оси 2/А на 2 этаже до отметки +5 м:

(ветровая нагрузка на уровне от 5 до 7,9 м переменная, она возрастает от -12,4 до -14,7 кг/м);

3) Ветровая нагрузка W 3 на коньковую балку по оси «2»:



Итак, ветровые нагрузки собраны. Можно приступать к расчету рам дома для определения нагрузок на столбчатые фундаменты.

Читайте также: