Узел опирания кирпичной кладки на пол

Обновлено: 22.04.2024

Аварийные ситуации в каменных домах нередко возникают из-за несоблюдения правил монтажа стальных и железобетонных конструктивных элементов: перемычек, балок, сборных плит перекрытий и лестничных маршей.

Аварийные ситуации в каменных домах нередко возникают из-за несоблюдения правил монтажа стальных и железобетонных конструктивных элементов: перемычек, балок, сборных плит перекрытий и лестничных маршей.

Прежде всего, речь идет о безграмотном исполнении опорных площадок, а зачастую о полном их отсутствии. В зоне опирания балок и перемычек на кирпичную кладку воздействует неравномерное давление, которое вызывает интенсивное локальное напряжение в стене, что может привести к деформированию и даже частичному разрушению стеновой конструкции. Чтобы повысить сопротивление опоры местному смятию, в местах монтажа балок устраивают железобетонные распределительные плиты, размеры которых определяют расчетом (глубина заложения в стене не менее 12 см) по СНиП II-22-81 «Каменные и армокаменные конструкции». Если для устройства междуэтажного перекрытия используются стальные балки, то в армированный монолит встраивают стальные закладные детали, к которым приваривают балочные концы. Сегменты кладки под опорными площадками размером в один квадратный метр армируются стальными сетками в каждом ряду.

Что касается железобетонных перемычек, то на опорах также делают распределительные плиты. В самонесущих стенах и перегородках допускается ограничится слоем цементно-песчаного раствора толщиной 15 мм. Из опыта проектирования принято, что глубина опирания перемычек составляет 20-25 мм.

Перед монтажом сборных пустотных железобетонных плит перекрытия по обрезу стены также наносят полутора сантиметровый цементно-песчаный слой. Глубина (длина) опирания конструкций должна быть не менее 12 см – требование СНиП II-22-81. Если нет возможности соблюсти эту строительную норму, то предпринимают дополнительные меры по обеспечению конструктивной безопасности перекрытия. Внимание! Категорически запрещается укорачивать индустриальные изделия (отрезать опорные части). Эта распространенная ошибка может привести к фатальным последствиям.

Железобетонные лестничные марши монтируют на заранее установленные и подготовленные железобетонные лестничные площадки. Здесь могут применяться различные схемы. В частных владениях преимущественно единые монолитные лестничные конструкции. Сборные марши лучше всего опирать на площадки заводского изготовления той же серии. Вместе с тем, практикуют комбинирование индустриальных изделий с монолитными площадками. Особенно распространены лестничные комплексы, основанные на балках и косоурах из металлопроката (швеллеров, двутавров). Так или иначе, но лестничные марши должны опираться на прочные и стабильные железобетонные или стальные балочные площадки (в определенных случаях ещё и на кирпичные стены), причем в строгом соответствии с проектным решением.

Ещё один момент – интеграция каких-либо элементов в кирпичную кладку должна быть технически обоснована и безопасна. Бесполезные и теплопроводные включения ухудшают прочностные и теплотехнические показатели ограждающей конструкции. Другими словами, оторванные от основной структуры фрагменты нестабильны и при неблагоприятных условиях могут обрушиться. К тому же самодеятельные железобетонные пояса, сквозные стальные прогоны и прочее становятся мостиками холода и провоцируют промерзание наружных стен.

Чтобы не подводить кирпичный фронтон уступами под скат крыши, кладку «наклонили». Эта, с позволения сказать, «смелая находка» каменщиков таит в себе угрозу обрушения наклонного участка стены. Причем обвал может произойти в любой момент, причинить врез здоровью и даже жизни находящихся рядом людей, а также спровоцировать последующее частичное разрушение здания. Например, положение скатной крыши весьма шатко так как достаточно незначительной ударной нагрузки, чтобы выбить опору из-под крупного сегмента стропильной конструкции.

Массивную стальную двутавровую балку смонтировали прямо на кирпичные стены – без надлежащей подготовки и фиксации. Некое цементно-песчаное образование нельзя считать опорной плитой. Недостроенный объект оставили под открытыми небом на длительное время. Не затвердевший и не набравший прочность цемент под концами балок размыло водой. Ряды кладки под опорными площадками оставили без армирования. Когда строительство продолжится, и балка будет нагружена, возникнет риск смятия кирпичной кладки и, как следствие, частичного разрушения стены и деформации междуэтажного перекрытия.

Над широким дверным проемом установили составную перемычку из металлопроката. Сам по себе элемент выглядит достойно. Однако длина опирания не отвечает нормативным требованиям (слишком короткая). К тому же в кирпичной кладке не выполнены даже самые простые опорные площадки, не говоря уже об армировании, которое было бы желательно при устройстве проема в мощной несущей стене.

Сначала по обрезу стен второго этажа сделали монолитный железобетонный пояс (совершенно излишний – надо признать). А затем «вспомнили» о кирпичных фронтонах скатной крыши. Таким образом, одним выстрелом убили двух зайцев – возвели неустойчивый каменный треугольник, который в любой момент может обрушится на головы обитателей дома, и «сотворили» протяженный мостик холода – источник многочисленных проблем и неприятностей.

Перемычка над дверным проемом в несущей стены из керамических блоков имеет слишком короткие опорные концы, то есть длина опирания на стены недостаточна для обеспечения требуемого уровня прочности и надежности. «Масла в огонь» добавляет некие импровизированные «подставки» из полнотелого глиняного кирпича в распиленном виде, а также низкое качества кладки (неправильная перевязка швов, частичное отсутствие раствора между рядами блоков и многое другое).

Сборная пустотная железобетонная плита перекрытия справа опирается на внутреннюю стену всего на несколько сантиметров, что противоречит требованию СНиПа. А у левой плиты частично вырезали опорную часть – чтобы подогнать всю эту конструктивную «солянку» под железобетонную лестницу подвала. Объект долго оставался без крыши, что привело к коррозии арматуры, что особенно ярко демонстрируют соединяющие плиты стальные анкеры.

Основную часть каменной стены облицевали декоративным кирпичом. Над оконными и дверными проектами смонтировали составные перемычки. На несущую часть уложили железобетонные изделия, а над внешней стенкой – стальные уголки. Такой прием позволяет создать единую фасадную отделки здания. Однако стальную перемычку смонтировали с нарушениями. Зазор между металлом и железобетоном не заполнили утеплителем и не оштукатурили по сетке. Декоративный слой искривлен и выглядит так, будто вот-вот отделится от несущей кирпичной стены.

Ставьте лайки и подписывайтесь на канал, чтобы не пропустить новые статьи о строительных ошибках.

На сегодняшний день, пол по грунту - это одно из распространенных решений организации полов в домах, которые сооружаются без подвалов.

Пол по грунту - это стяжка по уплотненному основанию: песку, отсеву или щебню мелкой фракции. Данные сыпучие материалы являются материалами обратной засыпки после производственных работ по сооружению фундамента и после выемки плодородных слоев почвы.

Если вы сталкивались с таким полом, то наверняка задавались вопросом, на что опирать перегородки?

Если перегородка выполняется на основании деревянного каркаса или металлопрофиля ГКЛ, то здесь проблем нет, но, что делать если она выполняется из кирпича или блока?

По сути, если посмотреть на перегородку с точки зрения конструкции, то она является балкой с очень большим сечением, и поскольку высота в несколько десятков раз превышает ширину такой балки, то эта конструкция обладает очень хорошей жесткостью.

Опирая такую конструкцию на пол по грунту - конструктивно, этот узел представляет собой балку на упругом основании (иллюстрация выше).

И, если соблюдена технология уплотнения грунта под стяжкой, то можно быть уверенным, что наше основание выдержит перегородку, так как основным условием технологии полов по грунту является соблюдение правил уплотнения основания.

Но, в целях безопасности производится ряд мероприятий, которые предотвращают прогиб и обеспечат правильную работу узла опирания в растягивающей зоне балки.

Поэтому, первый способ:

устройство перегородки на два арматурных стержня

На стяжку производится укладка гидроизоляции, далее - два стержня арматуры и сверху кладется стеновой материал на кладочный раствор.

Данная конструкция вполне обеспечит надежный узел опирания и является универсальной, поскольку в процессе строительства мы можем отходить от проекта и "двигать" перегородки уже по месту.

Рекомендация : Если в перегородке планируется дверной проем, то арматуру в зоне растяжения разрывать нельзя, в связи с чем, образуется порог высотой 3-4 см.

Во избежание образования ненужного порога, если он не будет скрыт при дальнейшей финишной отделке, существует второй способ.

Способ второй: армированная лента

Данный способ уже не подразумевает перемещения перегородок после выполнения полов по грунту, т.к. основание закладывается во время бетонирования стяжки.

Как правило, бетонирование монолитной ленты производится заранее в тех местах, где проектом предусматриваются перегородки. Лента может быть выполнена как отдельно от стяжки (вар. а), так и залита одновременно со стяжкой пола (вар. б).

Минимальное количество стержней рабочей арматуры - 2 шт., диаметром не менее 8 мм. Вполне подходит класс А-1 (гладкий прут).

Третий способ: опирание на фундамент

Данный способ страхует хозяина и применяется там, где отсутствует уверенность в надежном основании для пола по грунту.

В верхний монолитный пояс ленточного фундамента или в ростверк встраиваются ЖБ балки, которые и будут служить опорной частью для перегородок.

На пересечении стен - устраиваются неглубокие столбики. Если перегородка более, чем 3-4 м. - устраиваются промежуточные столбики. Схема следующая:

Стрелками указаны места, где рабочая арматура пояса по фундаменту должна связываться воедино с прутками опорной балки для перегородки.

Ещё один часто используемый узел - это комбинация стены с кирпичной облицовкой с МЗЛФ и полами по грунту:

uzel-2.1.jpg


Рис. 1.1. Типовой узел 2.


Между конструкцией такого узла и рекомендациями Пеноплекс существуют определённое противоречие. Такое использование утеплителя в Пеноплексе считают неправильным:

penopleks.jpg


Рис. 1.2. Неправильный узел по мнению Пеноплекс (рис. 6 на стр. 21 в Рекомендациях).

Между тем, наши расчёты показывают, что тепловой режим такого узла соответствует всем требованиям по надёжности и энергоэффективности конструкции:

uzel-2-teplo.jpg


Рис. 1.3. Тепловая карта работы узла в зимних условиях.


Единственным недостатком такого узла является то, что вентиляционные отверстия, которые устраиваются в облицовочной кладки для вентиляции воздушного зазора, устанавливаются выше нижней точки кладки. Устранить этот недостаток можно вкладышем из ПСБ 25 толщиной 30мм и высотой 100 мм, который вставляется в зазор в нижней части. Он ещё больше улучшает теплоизоляционные свойства узла и устраняет возможный застой влажного воздуха и конденсацию влаги.

Узел характеризуется простотой исполнения и минимальным расходом на утепление от пучения, вертикальный и горизонтальные участки образованы листом ЭППС 50 мм толщиной, лежащим вдоль фундамента.

При необходимости, возможно небольшое изменение ширины ленты МЗЛФ за счёт свеса кладки:

uzel-2.2.jpg


Рис. 1.3. Модификация типового узла 2.

Данный узел подходит для большинства многослойных стен с внешней облицовкой кирпичём, в том числе с использованием утеплителей.

Более сложный вариант решения опирания облицовки, лишённый многих недостатков узла 2.0, реализован в узлах 2.1 и 2.2.

Довольно часто в интернете при обсуждении конструктива полов по грунту встречается такое решение, как устройство ребер под тяжёлыми перегородками, опирающимися на полы по грунту. Выглядит это примерно так:

Ребро под перегородкой.jpg

Рис. 1. Ребро усиления под тяжёлой перегородкой.

Ребро под перегородкой3.jpg

Рис. 2. Вариант усиления пола по грунту под перегородку.

Вот ещё один вариант:

Ребро под перегородкой2.jpg

Рис. 3. Ещё один вариант усиления пола по грунту под перегородку.

Обратим внимание, что на рис. 1 под ребром усиления добавлен более плотный и прочный ЭППС. На рис. 2 и 3 подразумевается, что при добавлении ребра усиления, оно будет опираться на то же самое основание, что и под всем остальным полом.

Нетрудно догадаться, что добавление ребра без замены под ним утеплителя на более плотный, не меняется коэф. постели основания. А значит осадка пола под тяжёлой перегородкой будет одинаковая, что у пола с ребром, что без ребра. Даже в случае с ребром она может быть чуть больше, потому что увеличивается масса бетона, опираемого на утеплитель. Это подтверждается и расчётом в Robot для участка пола размером 3000х3000 мм с опёртой на него кирпичной перегородкой толщиной 120 мм с удельной массой 1800 кг/м3:

Деформация 1.jpg

Рис. 4. Деформация плиты пола по грунту под кирпичной перегородкой.

деформация 2.jpg

Рис. 5. Деформация плиты пола с ребром под кирпичной перегородкой.

На рис. 4-5 показаны расчётные деформации пола по грунту с ребром (рис.5) и без (рис.4). Видно, что в обоих случаях максимальные деформации плиты пола составили 0,1 см (1 мм). И это понятно, т.к. коэф. постели одинаковый у конструкций, расположенных под перегородкой, неважно, с ребром она или без.

Намного эффективнее в случае тяжёлых перегородок делать под ними утепление пола более жестким пенопластом, как на рис. 1. Но и в этом случае устройство ребра не нужно, т.к. на восприятие нагрузки работает не столько плита пола, сколько основание под ней. Бетон плиты пола выполняет функцию прокладки между перегородкой и основанием, имеющим структуру "утеплитель-песчаная подушка-грунт основания". Эта прокладка распределяет нагрузку на утеплитель по призме, поэтому даже в неармированной плите пола толщиной 100 мм от кирпичной перегородки толщиной 120 мм на утеплитель нагрузка распределится на участок шириной 320 мм:

Призма.jpg

Рис.6. Призма распределения нагрузки от кирпичной перегородки в плите пола по грунту.

В армированной плите распределение будет на ещё большую ширину за счёт работы арматуры.

Ещё один аргументом усиления плиты ребром может быть противостояние продавливающим нагрузкам. Но расчет на продавливание, сделанный для плиты 100 мм показывает, что необходимости в этом нет:



Рис. 7. Расчет плиты пола на продавливание.

Таким образом, устройство рёбер под перегородками в полах по грунту в большинстве случаев не является оправданным и рационально обоснованным решением.

Узел 1.0

Данный типовой узел - сочетание МЗЛФ со стеной из ГБ (или теплой керамики) и полами по грунту.

Узел 1.1 Т-МЗЛФ

Узел 1.1 Т-МЗЛФ

Узел, аналогичный 1.0, но таврового вида.

Узел 1.2 Т-МЗЛФ с использованием блоков ФБС

Узел 1.2 Т-МЗЛФ с использованием блоков ФБС

Узел 1.1 с использованием блоков ФБС.

Узел 2.0 Опирание облицовки на МЗЛФ + полы по грунту

Узел 2.0 Опирание облицовки на МЗЛФ + полы по грунту

Ещё один часто используемый узел - это комбинация стены с кирпичной облицовкой с МЗЛФ и полами по грунту

Узел 2.1 Опирание облицовки на монолитный пояс

Узел 2.1 Опирание облицовки на монолитный пояс

Этот узел является альтернативным узлу 2.0 решением для опирания кирпичной облицовки стен. В нём облицовка ставится не на фундамент, а на теплоизолированный выступ монолитного пояса.

Узел 2.2 Опирание облицовки на уголок

Узел 2.2 Опирание облицовки на уголок

Развитие узла 2.1, опирание облицовки происходит на полку уголка.

Узел 3.0 МЗЛФ и полы по лагам

Узел 3.0 МЗЛФ и полы по лагам

Узел используется при строительстве срубов или каркасных домов с полами по деревянным лагам с подпольем.

Узел 4.0

Узел 4.0

Узел для сочетания каркасного дома, сруба или брусового дома с Т-МЗЛФ и полами по грунту.

Утеплённый финский фундамент УФФ

Утеплённый финский фундамент УФФ

Данный вид Т-МЗЛФ хорошо подходит для каркасных домов, легких домов из теплой керамики и газобетона.

Узел ввода коммуникаций без приямка

Узел ввода коммуникаций без приямка

Узел ввода коммуникаций с использованием приямка

Узел ввода коммуникаций с использованием приямка

Типовые проекты коттеджей

К-372

Небольшой бюджетный дом.
Стены выполнены из газобетона D300, толщиной 300 мм, плита УШП. Проект в базовой версии содержит раздел ИР, в котором представлено устройство канализации, водопровода и системы отопления.

К-366

Комфортный одноэтажник, аналог Z10 и Z67 от польской студии Z500.

К-322

Небольшой дом-квартира. Есть в нескольких вариантах исполнения фундамента и кровли.

Читайте также: