Устройство фундамента под резервуар смета

Обновлено: 24.04.2024

5.1.1. Рекомендуется, что перечень исходных данных для проектирования основания и фундамента под резервуар входят данные инженерно-геологических изысканий (для районов распространения многолетнемерзлых грунтов - данные инженерно-геокриологических изысканий).

СП 11-105-97 "Инженерно-геологические изыскания для строительства" одобренный письмом Госстроя РФ от 17 февраля 2004 года N 9-20/112 устанавливает состав, объемы, методы и технологию производства инженерно-геологических изысканий для обоснования проектной подготовки строительства, а также инженерно-геологических изысканий, выполняемых в период строительства, эксплуатации и ликвидации сооружения.

5.1.2. Материалы инженерно-геологических изысканий площадки строительства содержат следующие сведения о грунтах и грунтовых водах:

  • литологические колонки;
  • физико-механические характеристики грунтов (плотность грунтов p, удельное сцепление грунтов с, угол внутреннего трения φ, модуль деформации Е , коэффициент пористости е , показатель текучести IL и др.);
  • расчетный уровень грунтовых вод с учетом прогноза изменения гидрогеологического режима грунтовых вод на период срока службы резервуаров без учета их объемов.

В районах распространения многолетнемерзлых грунтов проводятся изыскания с целью получения сведений о составе, состоянии и свойствах мерзлых и оттаивающих грунтов, криогенных процессов и образованиях, включая прогнозы изменения инженерно-геокриологических условий проектируемых резервуаров с геологической средой.

5.1.3. Число геологических выработок определяется проектной организацией с учетом наличия ранее проведенных инженерно-геологических изысканий. В случае строительства резервуара на месте демонтированного осуществляется подтверждение ранее проведенных изысканий бурением одной скважины на периметре с исследованием геологии грунтовых вод и проведением расчетов с использованием геодезических наблюдений за маркерами в период эксплуатации демонтированного резервуара.

5.1.4. При разработке проектной документации оснований и фундаментов рекомендуется руководствоваться положениями СП 22.13330.2011 "Свод правил "СНиП 2.02.01-83* Основания зданий и сооружений", утвержденного приказом Минрегиона РФ от 28 декабря 2010 года N 823, СП 24.13330.2011 "Свод правил "СНиП 2.02.03-85 Свайные фундаменты", утвержденного приказом Минрегиона РФ от 27 декабря 2010 года N 786, СНиП 2.02.04-88 "Основания и фундаменты на вечномерзлых грунтах", утвержденного Приказом Минрегиона РФ от 29 декабря 2011 года N 622, СП 14.13330.2011 "Свод правил "СНиП II-7-81* Общие правила производства работ. Строительство в сейсмических районах", утвержденного приказом Минрегиона РФ от 27 декабря 2010 года N 779, СНиП 3.02.01-87 "Земляные сооружения, основания и фундаменты", утвержденного приказом Минрегиона РФ от 29 декабря 2011 года N 635/2 и рекомендациями настоящего Руководства по безопасности.

5.2. Рекомендации к проектным решениям оснований

5.2.1. Грунты, деформационные характеристики которых обеспечивают допустимые осадки резервуаров, рекомендуется использовать в естественном состоянии как основание для резервуара.

5.2.2. Для грунтов, деформационные характеристики которых не обеспечивают допустимые осадки резервуаров, предусматривают инженерные мероприятия по их упрочнению либо устройство свайного фундамента.

5.2.3. Для просадочных грунтов рекомендуется предусматривать устранение просадочных свойств в пределах всей просадочной толщи или устройство свайных фундаментов, полностью прорезающих просадочную толщу.

5.2.4. При проектировании оснований резервуаров, возводимых на набухающих (пучинистых) грунтах, в случае, если расчетные деформации основания превышают предельные, предусматривают проведение следующих мероприятий:

  • полная или частичная замена слоя набухающего (пучинистого) грунта ненабухающим;
  • применение компенсирующих песчаных или гравийных подушек;
  • устройство свайных фундаментов.

5.2.5. При проектировании оснований резервуаров, возводимых на водонасыщенных пылевато-глинистых, биогенных грунтах и илах, в случае если расчетные деформации основания превышают допустимые, рекомендуется предусматривать проведение следующих мероприятий:

  • устройство свайных фундаментов;
  • для биогенных грунтов и илов - полная или частичная замена их песком, щебнем, гравием и т.д.;
  • предпостроечное уплотнение грунтов временной пригрузкой основания (допустимо проведение уплотнения грунтов временной нагрузкой в период гидроиспытания резервуаров по специальной программе).

5.2.6. При проектировании оснований резервуаров, возводимых на подрабатываемых территориях, в случае если расчетные деформации основания превышают допустимые, рекомендуется предусматривать проведение следующих мероприятий:

  • устройство сплошной железобетонной плиты со швом скольжения между днищем резервуара и верхом плиты;
  • применение гибких соединений (компенсационных систем) в узлах подключения трубопроводов;
  • устройство приспособлений для выравнивания резервуаров.

5.2.7. При проектировании оснований резервуаров, возводимых на закарстованных территориях, предусматривают проведение следующих мероприятий, исключающих возможность образования карстовых деформаций:

  • заполнение карстовых полостей;
  • прорезка карстовых пород глубокими фундаментами;
  • закрепление закарстованных пород и (или) вышележащих грунтов.

Размещение резервуаров в зонах активных карстовых процессов не допускается.

5.2.8. При применении свайных фундаментов концы свай заглубляют в малосжимаемые грунты и обеспечивают требования к предельным деформациям резервуаров.

Свайное основание может быть как под всей площадью резервуара - "свайное поле", так и "кольцевым" - под стенкой резервуара.

5.2.9. Если применение указанных мероприятий согласно подпунктам 5.2.7, 5.2.8 не исключает возможность превышения предельных деформаций основания проектная организация предусматривает специальные устройства (компенсаторы) в узлах подключения трубопроводов, обеспечивающие прочность и надежность узлов при осадках резервуаров, а также устройство для выравнивания резервуаров.

5.2.10. При строительстве в районах распространения многолетнемерзлых грунтов при использовании грунтов основания по первому принципу (с сохранением грунтов в мерзлом состоянии в период строительства и эксплуатации) предусматривается их защита от воздействия положительных температур хранимой в резервуарах нефти и нефтепродукта. Это достигается устройством проветриваемого подполья "Высокий ростверк" или применением теплоизоляционных материалов в сочетании с принудительным охлаждением грунтов - "термостабилизацией".

5.2.11. Грунтовые подушки выполняются из послойно уплотненного при оптимальной влажности грунта, модуль деформации которого после уплотнения составляет не менее 15 МПа, коэффициент уплотнения - не менее 0,90.

Уклон откоса грунтовой подушки рекомендуется выполнять не более 1:1,5.

Рекомендованная ширина горизонтальной части поверхности подушки за пределами окрайки:

  • 0,7 м - для резервуаров объемом не более 1000 м 3 ;
  • 1,0 м - для резервуаров объемом более 1000 м 3 и для площадок строительства с расчетной сейсмичностью 7 и более баллов (независимо от объема) по шкале MSK-64 "Шкала сейсмической интенсивности MSK-64".

Поверхность подушки за пределами периметра резервуара (горизонтальная и наклонная части) защищается отмосткой.

5.3. Рекомендации к проектным решениям фундаментов

5.3.1. В качестве фундамента резервуара рекомендуется использовать грунтовую подушку (с железобетонным кольцом под стенкой и без него) либо железобетонная плита.

5.3.2. Для резервуаров объемом 2000 м 3 и более под стенкой резервуара устанавливается железобетонное фундаментное кольцо шириной не менее 0,8 м для резервуаров объемом не более 3000 м 3 и не менее 1,0 м - для резервуаров объемом более 3000 м 3 . Толщина кольца принимается не менее 0,3 м.

5.3.3. Для площадок строительства с расчетной сейсмичностью 7 баллов и более по шкале MSK-64 "Шкала сейсмической интенсивности MSK-64" фундаментное кольцо рекомендуется устраивать для всех резервуаров, независимо от объема, шириной не менее 1,5 м, а толщину кольца принимать не менее 0,4 м. Фундаментное кольцо рассчитывается на основное, а для площадок строительства с сейсмичностью 7 баллов и более по шкале MSK-64 "Шкала сейсмической интенсивности MSK-64" также на особое сочетание нагрузок.

5.3.4. Под всем днищем резервуара рекомендуется предусматривать гидроизолирующий слой, выполненный из песчаного грунта, пропитанного нефтяными вяжущими добавками, или из рулонных материалов. Рекомендуется применять песок и битум без содержания коррозионно-активных агентов.

5.3.5. При устройстве фундамента резервуара рекомендуется предусматривать проведение мероприятий по отводу грунтовых вод и атмосферных осадков из-под днища резервуара.

5.4. Рекомендуемый расчет нагрузок на основание и фундамент резервуара

5.4.1. Нагрузки, передаваемые с корпуса на основание и фундамент резервуара, определяются в зависимости от конструктивных, технологических, климатических, сейсмических нагрузок и их сочетаний, приведенных в таблице 19 настоящего Руководства по безопасности.

Таблица 19. Сочетания воздействий для расчета нагрузок на фундаменты

Вид нагрузки Сочетание воздействий для расчета нагрузок на фундаменты
1, 2 3 4
Условия эксплуатации и гидравлических испытаний Проверка на опрокидывание пустого резервуара Условия землетрясения
Вес продукта (или воды) + - +
Вес корпуса и крыши резервуара + + +
Вес стационарного оборудования + + +
Вес теплоизоляции + + +
Внутреннее избыточное давление - + +
Вакуум + - -
Снеговая нагрузка + - +
Ветровая нагрузка + + -
Сейсмическая нагрузка - - +

5.4.2. В состав нагрузок, передаваемых по контуру стенки резервуара на его фундамент, входят нагрузки двух типов.

Нагрузки первого типа, обеспечивающие осесимметричное распределение усилий по контуру стенки, включают:

  • вес резервуара с учетом оборудования и теплоизоляции, за вычетом центральной части днища;
  • снеговую нагрузку;
  • избыточное давление и разрежение в газовом пространстве резервуара.

Нагрузка второго типа возникает от ветрового воздействия на корпус резервуара и создает кососимметричное распределение усилий по контуру стенки.

Ветровая нагрузка вызывает появление опрокидывающего момента, вычисляемого относительно точки, расположенной на оси симметрии опорного контура стенки с подветренной стороны резервуара. Нагрузки первого типа создают момент, препятствующий опрокидыванию резервуара.

5.4.3. Перечень рекомендуемых расчетов:

  • определение нагрузок на центральную часть днища в условиях эксплуатации, гидро- и пневмоиспытаний и при сейсмическом воздействии;
  • расчет максимальных и минимальных нагрузок по контуру стенки в условиях эксплуатации и при сейсмическом воздействии;
  • проверку на отрыв окраек днища от фундамента при действии внутреннего избыточного давления на пустой резервуар;
  • проверку на опрокидывание пустого резервуара путем сравнения опрокидывающего момента и момента от удерживающих сил;
  • проверку резервуара с продуктом на опрокидывание в условиях землетрясения;
  • расчет анкеров, если происходит отрыв окраек днища от фундамента при действии внутреннего давления на пустой резервуар;
  • расчет анкеров, если устойчивость пустого резервуара от опрокидывания не обеспечена;
  • расчет анкеров, если устойчивость резервуара с продуктом от опрокидывания при землетрясении не обеспечена.

5.4.4. Расчет нагрузок на основание и фундамент резервуара при землетрясении рекомендуется производить специализированными организациями.

5.4.5. Опрокидывающий момент Mw, МН·м, действующий на резервуар в результате ветрового воздействия, рекомендуется вычислять по формуле:

где опрокидывающий момент от действия ветра на стенку Mws, МН·м, определяется по формуле:

Опрокидывающий момент от действия ветра на крышу определяется по формуле:


(43)

где b0=10m- базовый параметр;

Yn- коэффициент надежности по опасности;

Hs- высота стенки, м;

D- диаметр резервуара, м;

Pw- нормативное значение ветрового давления, МПа.

5.4.6. Расчетная погонная нагрузка по контуру стенки характеризуется максимальным и минимальным значениями, соответствующими диаметрально противоположным участкам фундамента в соответствии с рисунок 28 настоящего Руководства по безопасности. Максимальная и минимальная нагрузки определяются соответственно, как сумма и разность максимальных нагрузок первого и второго типа (с учетом знаков). Расчетная нагрузка по контуру стенки в основании резервуара рекомендуется определять по формулам:

Рисунок 28

5.4.7. Расчетная вертикальная нагрузка Qmax, МН на фундамент резервуара, соответствующая расчетному сочетанию нагрузок 1 (см. таблицу 19), составляет:

где Yn- коэффициент надежности по опасности;

Gr- вес листов настила крыши, МН;

Gs- вес стенки, МН;

Gs0- вес оборудования на стенке, МН;

Gr0- вес оборудования на крыше, МН;

Gst- вес теплоизоляции на стенке, МН;

Gr- вес крыши, МН;

Grt- вес теплоизоляции на крыше, МН;

ps- расчетная снеговая нагрузка на поверхности земли, МПа, определяемая по СП 20.13330.2011 "Свод правил "СНиП 2.01.07-85* Нагрузки и воздействия", утвержденному приказом Минрегиона РФ от 27 декабря 2010 года N 787;

pv- нормативное значение вакуума, МПа;

ce= 0,85 при D≤60 м;

ce= 1,0 при D>100 м;

ce= 0,85 + 0,00375•( D- 60) - в промежуточных случаях;

D- диаметр резервуара, м;

ψ1, ψ2, ψ3- коэффициенты сочетаний для длительных нагрузок, назначаемые в соответствии с СП 20.13330.2011 "Свод правил "СНиП 2.01.07-85* Нагрузки и воздействия", утвержденным приказом Минрегиона РФ от 27 декабря 2010 года N 787, (пп.6.2, 6.3) для основной по степени влияния нагрузки ψ=1, для остальных ψ=0,95.

5.4.8. Нагрузки на центральную часть днища определяются исходя из величины внутреннего избыточного давления, максимального проектного уровня налива и плотности продукта (эксплуатация) или воды (гидро- и пневмоиспытания). Эту нагрузку рекомендуется определять по формулам:

а) нагрузка pf, МПа, на основание под центральной частью днища при эксплуатации:

б) нагрузка pfg, МПа, на основание под центральной частью днища при гидро- и пневмоиспытаниях:

где Yn- коэффициент надежности по ответственности;

g- ускорение свободного падения, м/с 2 ;

p- плотность продукта, т/м 3 ;

pg- плотность воды, используемой для гидравлических испытаний, т/м 3 ;

ps- плотность металла, т/м 3 ;

H- высота налива продукта при эксплуатации, м;

Hg- высота налива воды при гидравлических испытаниях, м;

p- нормативное избыточное давление в газовом пространстве, МПа;

tbc- номинальная толщина центральной части днища резервуара, м.

5.4.9. Рекомендации по установке анкеров

5.4.9.1. Анкеровка корпуса резервуара рекомендуется если:

  • происходит отрыв окраек днища от фундамента при действии внутреннего избыточного давления;
  • момент от сил, вызванных ветровым воздействием, превышает момент от вертикальных удерживающих сил, действующих на пустой резервуар.

5.4.9.2. В случаях, указанных в подпункте 5.4.9.1, стенка резервуара прикрепляется к фундаменту анкерными устройствами, шаг установки и размеры которых определяются расчетом.

5.4.9.3. Рекомендуется установка анкеров, если выполняются следующие неравенства, соответствующие условиям подпункта 5.4.9.1:


, (48)

Левая часть второго неравенства представляет момент от удерживающих сил, а правая - опрокидывающий момент, определяемый по пункту 5.4.5.

5.4.9.4. Подъемная сила Fwvr, MН, от действия ветра на крышу рекомендуется определять по формуле:

где Yn- коэффициент надежности по опасности;

r- радиус резервуара, м;

pw- нормативное значение ветрового давления, МПа, определяется по СП 20.13330.2011 "Свод правил "СНиП 2.01.07-85* Нагрузки и воздействия", утвержденному приказом Минрегиона РФ от 27 декабря 2010 года N 787, (таблица 11.1).

Для конических крыш с углом наклона ar≥5 и сферических крыш высотой fr≥0,1D, а также для резервуаров с плавающими крышами следует принять Fwvr =0.

5.4.9.5. Расчетную минимальную вертикальную нагрузку на фундамент резервуара Qmin, MН, рекомендуется вычислять для расчетного сочетания нагрузок 3 (см. таблицу 19) составляет:

где Yn- коэффициент надежности по опасности;

r- радиус резервуара, м;

Gs- вес стенки, МН;

Gr- вес стенки, МН;

Gs0- вес оборудования стенки, МН;

Gr0- вес оборудования крыши, МН;

Gst- вес теплоизоляции на стенке, МН;

Grt- вес теплоизоляции на крыше, МН;

p- нормативное избыточное давление в газовом пространстве, МПа.

5.4.9.6. Расчетное усилие Na, MH, в одном анкерном болте рекомендуется определять по формуле:

Выполняем работы по устройству ж/бетонного фундамента под оборудование на хим.предприятии. Имеется проектная смета, где применена расценка ТЕР06-01-005-03 Устройство железобетонных фундаментов общего назначения объемом: более 25м3. Мы настаиваем применить к ней расценку ТЕР06-01-005-08 Дополнительные затраты на устройство: сложных фундаментов, на что Заказчик категорически против, т.к. не считает фундамент сложным, но все показатели показывают обратное. Кратко о фундаменте:

Ростверк Рм1 – 2шт. является составной частью массивного фундамента под оборудование в объеме 194,4м3/шт. (*2шт=388,8м3), с двухярусной конфигурацией, где нижний элемент имеет восьмиугольника, а верхний - круглого формы с нишей Ø1020, h-600мм.

Ростверк Рм2 в объеме 53,5м3/шт.имеет двухярусную конфигурацию, где нижний элемент имеет форму восьмиугольника, а верхний - круглой формы с анкерными болтами.

Ростверки Рм1, Рм2 объединяет в единый фундамент поддон Пдм1 (48,5м3) с приямками, в разных уровнях, а также имеются деформационные швы по периметру Рм1, Рм2. ИТОГО фундамент составляет 490,8м3.

Просим ответить, в каких ситуациях применяются дополнительные затраты на уст-во сложных фундаментов, и прав ли проектный институт в ограниченности расценок.

Как расценить установку стекловолоконных флагштоков
Автор: Таня Баженова. В 27-09-. посмотрите Неважно из чего, флагшток на фундаменте или без фундаментов (как вам надо) - применительно из дорожных знаков.


Устройство фундамента для забора из панелей ж/б
Автор: максим. Фундамент будут делать монолитные ж/б. В расценку ФЕР 7-1-54-2 входит устройство фундаментов но стаканного типа. Я тогда беру фундамент ленточные ж/б: правильно?



Какие правильно применить расценки.
Автор: александр агафонов. Сначала, как нас учили, нужно устранить причину, в данном случае неправильно делан фундамент опоры смотрите устройство фундаментов в пучинистых грунтах наметив мероприятия по исправлению брака при устройстве фундаментов делаем ведомость объемов работ, а .


Среднеотраслевая структура величины НР по статьям затрат
Автор: Светлана. Почему от позиции? Уплотнение грунта основания., по технологии устройства оснований и фундаментов, начинают проверять уже перед устройством фундамента, а не только после засыпки. Поэтому и процент на лаб.испытания берется от всей ваше сметы.

Устройство железобетонных конструкций отстойников, резервуаров и прочих сооружений при днищах бункерного типа — 100 м3

Состав работ:

1.Раскрой и установка досок.
2.Установка щитов опалубки.
3.Крепление элементов опалубки проволокой и гвоздями строительными.
4.Установка и сварка арматуры.
5.Укладка бетонной смеси.

Ресурсы:

КодНаименованиеК-воЕд.
Затраты труда рабочих (Средний разряд - 4)2404
Затраты труда машинистов211.53
Краны на автомобильном ходу, грузоподъемность 16 т2.34
Краны на гусеничном ходу, грузоподъемность до 16 т201.94
Погрузчики, грузоподъемность 5 т0.27
Вибраторы глубинные134.62
Автомобили бортовые, грузоподъемность до 5 т6.98
Установки для сварки ручной дуговой (постоянного тока)219.52
Вода0.441
Электроды сварочные Э42, диаметр 6 мм0.28
Гвозди строительные0.21
Известь строительная негашеная комовая, сорт I0.147
Проволока горячекатаная в мотках, диаметр 6,3-6,5 мм0.1
Лесоматериалы круглые, хвойных пород, для строительства, диаметр 14-24 см, длина 3-6,5 м2.17
Доска обрезная, хвойных пород, ширина 75-150 мм, толщина 25 мм, длина 4-6,5 м, сорт III4.6
Доска обрезная, хвойных пород, ширина 75-150 мм, толщина 44 мм и более, длина 4-6,5 м, сорт III1.2
Смеси бетонные мелкозернистого бетона101.5
Арматура16.6

Вы можете сравнивать 2 или 3 расценки из одной базы. Перейдите на страницу нужной расценки и нажмите кнопку "Добавить" - будет сформирована кнопка на страницу с результатом.

Устройство железобетонных фундаментов общего назначения объемом: до 5 м3 — 100 м3

Состав работ:

1.Раскрой и установка досок.
2.Установка щитов опалубки.
3.Крепление элементов опалубки проволокой и гвоздями строительными.
4.Укладка бетонной смеси.
5.Установка арматуры.

Ресурсы:

КодНаименованиеК-воЕд.
Затраты труда рабочих (Средний разряд - 2,9)405
Затраты труда машинистов25.39
Краны на автомобильном ходу, грузоподъемность 16 т0.67
Краны на гусеничном ходу, грузоподъемность до 16 т22.96
Погрузчики, грузоподъемность 5 т0.25
Вибраторы глубинные17
Автомобили бортовые, грузоподъемность до 5 т1.51
Установки для сварки ручной дуговой (постоянного тока)1.8
Вода2.937
Пленка полиэтиленовая, толщина 0,15 мм10.1
Электроды сварочные Э42, диаметр 6 мм0.004
Гвозди строительные0.037
Известь строительная негашеная комовая, сорт I0.046
Проволока горячекатаная в мотках, диаметр 6,3-6,5 мм0.04
Лесоматериалы круглые, хвойных пород, для строительства, диаметр 14-24 см, длина 3-6,5 м0.69
Бруски обрезные, хвойных пород, длина 4-6,5 м, ширина 75-150 мм, толщина 40-75 мм, сорт III0.08
Доска обрезная, хвойных пород, ширина 75-150 мм, толщина 25 мм, длина 4-6,5 м, сорт III0.2
Доска обрезная, хвойных пород, ширина 75-150 мм, толщина 44 мм и более, длина 4-6,5 м, сорт III0.69
Щиты из досок, толщина 25 мм49.5
Смеси бетонные тяжелого бетона101.5
Арматура1

Вы можете сравнивать 2 или 3 расценки из одной базы. Перейдите на страницу нужной расценки и нажмите кнопку "Добавить" - будет сформирована кнопка на страницу с результатом.

10.1.1. Проектирование основания и фундаментов под резервуар должно выполняться специализированной проектной организацией с учетом положений ГОСТ Р 52910-2008, СНиП 2.02.01-83*, СНиП 2.02.03-85; СНиП 2.02.04-88; СНиП II-7-87 и дополнительных требований настоящего Стандарта.

10.1.2. Материалы инженерно-геологических и гидрологических изысканий площадки строительства должны содержать следующие сведения о грунтах и грунтовых водах:

- литологические колонки под пятно резервуара, количество, глубина и расположение которых должны обеспечить построение достоверных разрезов вдоль контурной окружности основания и по ее диаметрам;

- физико-механические характеристики грунтов, представленных в литологических колонках (удельный вес γ, угол внутреннего трения φ, сцепление С, модуль деформации Е, коэффициент пористости ε);

- расчетный уровень грунтовых вод с прогнозом гидрологического режима на ближайшие 20 лет для резервуаров объемом до 10000 м 3 и на 50 лет для резервуаров объемом более 10000 м 3 .

Кроме того, если сжимаемая толща представлена слабыми грунтами (модуль деформации менее 10 МПа), то для каждой грунтовой разности должны быть приведены значения коэффициента фильтрации.

Для величин физико-механических характеристик грунтов должны приводиться однозначные расчетные значения.

При проектировании фундаментов резервуаров в сложных инженерно-геологических условиях инженерные изыскания должны выполняться специализированными организациями и содержать данные для выбора типа оснований и фундаментов с учетом возможного изменения (в процессе строительства и эксплуатации) инженерно-геологических и гидрологических условий площадки строительства.

10.1.3. Расчет основания по деформациям предусматривает определение расчетных значений величин, характеризующих абсолютные и относительные перемещения фундаментных конструкций и элементов стальной оболочки резервуара с целью их ограничения, обеспечивающего нормальную эксплуатацию резервуара и его долговечность.

10.1.4. Расчет осадок основания резервуара следует выполнять, как правило, с использованием расчетной схемы основания в виде линейно-деформируемой среды: полупространства с условным ограничением глубины сжимаемой толщи или слоя конечной толщины.

В случае, если расчетные значения деформаций основания превышают предельные значения, следует выполнить расчет осадок с учетом совместной работы оболочки резервуара и основания, рассматривая расчетную схему основания, характеризуемую коэффициентами жесткости, в качестве которых принимаются отношения давления на основание к его расчетным осадкам в различных точках поверхности согласно рекомендациям СНиП 2.01.09.

Расчет системы «резервуар-основание» может быть выполнен также с использованием существующих вычислительных комплексов по определению осадок фундаментов с учетом взаимодействия основания и оболочки резервуара.

10.1.5. Проектная высота расположения днища резервуара определяется технологическим заданием, однако, эта высота должна превышать максимальный уровень окружающей спланированной поверхности земли минимум на 0.5 м, а после достижения основанием расчетных осадок высота днища над уровнем окружающей земли должна быть не менее 0,15 м.

10.1.6. В проекте КМ должно быть представлено задание для проектирования основания и фундаментов под резервуар, включающее расчетные реактивные усилия (нагрузки), передаваемые от корпуса резервуара на его фундамент, а также величины допустимых деформаций основания.

10.2. Расчет нагрузок на основание и фундамент резервуара

10.2.1. Реактивные усилия, передаваемые с корпуса на основание и фундамент резервуара, определяются в зависимости от конструктивных, технологических, климатических, сейсмических нагрузок и их сочетаний, приведенных в таблице П.4.6 Приложения П.4.

10.2.2. В состав нагрузок, передаваемых по контуру стенки резервуара на его фундамент, входят нагрузки двух типов.

Нагрузки первого типа, обеспечивающие осесимметричное распределение усилий по контуру стенки, включают:

- вес резервуара с учетом оборудования и теплоизоляции, за вычетом центральной части днища;

- избыточное давление и разрежение в газовом пространстве резервуара.

Нагрузка второго типа возникает от ветрового воздействия на корпус резервуара и создает кососимметричное распределение усилий по контуру стенки.

Ветровая нагрузка вызывает появление опрокидывающего момента, вычисляемого относительно точки, расположенной на оси симметрии опорного контура стенки с подветренной стороны резервуара. Нагрузки первого типа создают момент, препятствующий опрокидыванию резервуара.

10.2.3. Перечень необходимых расчетов включает:

- определение нагрузок на центральную часть днища в условиях эксплуатации, гидро- пневмоиспытаний и при сейсмическом воздействии;

- расчет максимальных и минимальных нагрузок по контуру стенки в условиях эксплуатации и при сейсмическом воздействии;

- проверку на отрыв окраек днища от фундамента при действии внутреннего избыточного давления на пустой резервуар;

- проверку на опрокидывание пустого резервуара путем сравнения опрокидывающего момента и момента от удерживающих сил;

- проверку резервуара с продуктом на опрокидывание в условиях землетрясения;

- расчет анкеров, если происходит отрыв окраек днища от фундамента при действии внутреннего давления на пустой резервуар;

- расчет анкеров, если устойчивость пустого резервуара от опрокидывания не обеспечена;

- расчет анкеров, если устойчивость резервуара с продуктом от опрокидывания при землетрясении не обеспечена.

Расчет нагрузок на основание и фундамент резервуара при землетрясении приведен в п. 9.6.6.

10.2.4. Опрокидывающий момент, действующий на резервуар в результате ветрового воздействия, вычисляется по формуле:

10.2.5. Расчетная погонная нагрузка по контуру стенки характеризуется максимальным и минимальным значениями, соответствующими диаметрально противоположным участкам фундамента (рис. 10.1). Максимальная и минимальная нагрузки определяются соответственно, как сумма и разность максимальных нагрузок первого и второго типа (с учетом знаков). Расчетная нагрузка по контуру стенки в основании резервуара определяется по формулам:

Рис. 10.1. Нагрузки на фундамент, передаваемые по контуру стенки резервуара

Рис. 10.1. Нагрузки на фундамент, передаваемые по контуру стенки резервуара

10.2.6. Расчетная вертикальная нагрузка на фундамент резервуара, соответствующая 1-му расчетному сочетанию нагрузок (таблица П. 4.6 Приложения П.4), составляет:

10.2.7. Если теплоизоляция, или вакуум, или снеговая нагрузка отсутствуют, формула 10.2.6 должна быть приведена в соответствие с полученным сочетанием нагрузок.

10.2.8. Коэффициент fs назначается согласно указаниям п. 9.2.3.1.7.

10.2.9. Нагрузки на центральную часть днища определяются исходя из величины внутреннего избыточного давления, максимального проектного уровня налива и плотности продукта (эксплуатация) или воды (гидро- пневмоиспытания). Эту нагрузку следует определять по формулам:

pf = γn[0,001g(ρH + ρstbc) + 1,2p],

Pfg = γn[0,001g(ρgH0g + ρstbc) + 1,25p].

10.2.10. Требования по установке анкеров

10.2.10.1. Анкеровка корпуса резервуара требуется если:

- происходит отрыв окраек днища от фундамента при действии внутреннего избыточного давления;

- момент от сил, вызванных ветровым воздействием, превышает момент от вертикальных удерживающих сил, действующих на пустой резервуар.

10.2.10.2. В случаях, указанных в п. 10.2.10.1, стенка резервуара прикрепляется к фундаменту анкерными устройствами, шаг установки и размеры которых определяются расчетом.

10.2.10.3. Требуется установка анкеров, если выполняются следующие неравенства, соответствующие условиям п. 10.2.10.1:

Левая часть второго неравенства представляет момент от удерживающих сил, а правая - опрокидывающий момент, определяемый по формуле п. 10.2.4.

10.2.10.4. Подъемная сила от действия ветра на крышу определяется по формуле:

Для конических крыш с углом наклона αr ≥ 5° и сферических крыш высотой fr ≥ 0,1D, а также для резервуаров с плавающими крышами следует принять Fwvr = 0.

10.2.10.5. Расчетная минимальная вертикальная нагрузка на фундамент резервуара вычисляется для 3-го расчетного сочетания нагрузок (таблица П. 4.6 Приложения П.4) и составляет:

Qmin = γn[(Gs + Gr) + 0,95(Gs0 + Gr0 + Gst + Grt) - 1,2·0,95р π r2].

10.2.10.6. Если теплоизоляция или избыточное давление отсутствуют, формула 10.2.10.5 должна быть приведена в соответствие с полученным сочетанием нагрузок.

10.2.10.7. Расчетное усилие в одном анкерном болте определяется по формуле:

10.3. Конструктивные решения фундаментов

10.3.1. Устройство фундаментов под резервуары рекомендуется выполнять с применением следующих конструктивных решений:

- грунтовая подушка (рис. 10.2);

- кольцевой железобетонный фундамент (рис. 10.3);

- сплошная железобетонная плита (рис. 10.4).

10.3.2. Для устройства грунтовой подушки используются чистые и прочные сыпучие материалы - песок и щебень.

Рис. 10.2. Грунтовая подушка

Рис. 10.2. Грунтовая подушка

Формирование подушки осуществляется слоями толщиной около 150 мм с утрамбовкой слоев катками массой от 5 до 10 тонн. Высота подушки должна составлять не менее 0,5 м.

По верху подушки устраивается гидрофобный слой из битумно-песчаной смеси толщиной не менее 50 мм, состоящей из формованной в горячем состоянии смеси следующих компонентов: 9 % битума, растворенного в чистом керосине, 10 % портландцемента и 81 % чистого песка.

Дренаж грунтовой подушки и контроль протечек через возможные повреждения днища обеспечивается путем установки по периметру фундамента на расстоянии не более 5 м друг от друга радиальных дренажных трубок диаметром 75 мм, закрытых с торцов пластиковой сеткой 10 × 10 мм.

Рис. 10.3. Кольцевой железобетонный фундамент

Рис. 10.3. Кольцевой железобетонный фундамент

10.3.3. Кольцевой железобетонный фундамент используется при наличии значительных контурных нагрузок по периметру стенки или при необходимости установки анкеров.

Ширина кольцевого фундамента должна быть не менее 0,8 м для резервуаров объемом до 3000 м 3 и не менее 1,0 для резервуаров объемом свыше 3000 м 3 . Толщина железобетонного кольца принимается не менее 0,3 м. При строительстве резервуаров в сейсмических районах наличие кольцевого железобетонного фундамента является обязательным. Ширина кольца должна быть не менее 1.5 м, а толщина не менее 0,4 м.

Рис. 10.4. Сплошная железобетонная плита

Рис. 10.4. Сплошная железобетонная плита

Рис. 10.4. Сплошная железобетонная плита

10.3.4. Фундамент в виде сплошной железобетонной плиты рекомендуется для резервуаров диаметром не более 15 м на немерзлых грунтах, для всех резервуаров на мерзлых грунтах, а также для всех резервуаров при хранении в них этилированных бензинов, реактивного топлива или иных ядовитых продуктов. Для обнаружения возможных протечек продукта железобетонная плита должна иметь уклон не менее 1 % от центра к периметру, а также радиально расположенные дренажные канавки.

Читайте также: