Условия работы фундамента под нагрузкой

Обновлено: 28.03.2024

Перед началом проектирования необходимо изучить конструктивное решение здания: габариты, его назначение, характер передачи нагрузки (несущие стены или каркас), материал стен и перекрытий, их размеры, количество этажей, назначение первого этажа, наличие подвала.

Расчет оснований и фундаментов производится по расчетным нагрузкам. При расчете по деформациям (II предельное состояние) коэффициент перегрузки равен 1.

Определение нагрузок действующих на фундамент производится до уровня планировочной отметки. Перед сбором нагрузок, необходимо установить какие, элементы конструкций являются несущими и какие самонесущими, как проходит передача нагрузок от перекрытий.

Сбор нагрузок от веса конструкций и временной нагрузки производится на грузовую площадь, которая принимается в соответствии со статической схемой сооружения. Для ленточных фундаментов под нагруженные несущие стены длина грузовой площадки принимается между осями оконных проемов, ширина – до середины пролета между наружной и внутренней стеной, под внутренние стены длина грузовой площади принимается равной 1 пог.м, а ширина – равной расстоянию между серединами пролетов. Для колонн длина и ширина грузовой площади принимается равной расстоянию между серединами пролетов.

К постоянным нагрузкам относится вес конструкций (стен, перекрытия, кровли и др.), к временным – полезная нагрузка на перекрытия, снеговая и ветровая нагрузка. Нормативные нагрузки от веса конструкций определяются по проектным размерам и удельным весам материалов, коэффициенты перегрузки принимаются по СНиПу 2.01.07-85 (п.3.1-3.4). Величины нормативных временных нагрузок определяются по СНиПу 2.01.07-85 (п. 3.5-3.9).

При расчете нагрузки от одного перекрытия полное значение нормативных временных нагрузок, указанных в СНиПе, следует снижать в зависимости от грузовой площади А рассчитываемого элемента умножением на коэффициент сочетания ψА, равный для квартир, общежитий, служебных и бытовых помещений при А > А1 = 9 м 2

При наличии двух перекрытий и более

где n – число загруженных временной нагрузкой перекрытий.

Для читальных залов, торговых залов, участков обслуживания и ремонта оборудования

При наличии двух и более перекрытий

Нормативные атмосферные нагрузки, определенные по неблагоприятным значениям в течение определенного периода времени, и соответствующие коэффициенты приведены в СНиП 2.01.07-85.

Возможность одновременного проявления нескольких нагрузок регламентируется нормативными документами. СНиП 2.01.07-85 выделяет основное и особое сочетание нагрузок. Основное сочетание включает постоянные, временные, длительные и кратковременные нагрузки. Особое сочетание нагрузок, помимо постоянных и временных нагрузок включает особую нагрузку.

Расчет оснований по деформациям и по несущей способности приводится на основное сочетание нагрузок. Нагрузки на основание от наземных частей сооружения в зависимости от их схемы определяются на уровне спланированной отметки земли, верхнего обреза или подошвы фундамента отдельно от вертикальных и горизонтальных сил.

В каркасных зданиях с полным каркасом вся нагрузка от перекрытий воспринимается только каркасом. Здание имеет как внутренние, так и наружные (пристенные) колонны. Наружные стены выполняются самонесущими или как дополнение каркаса с передачей на него веса стены. В зданиях с неполным каркасом нагрузки от перекрытий передаются на наружные стены и внутренний каркас. В бескаркасных зданиях вся нагрузка от чердачного, междуэтажного перекрытия и покрытия передается на наружные и внутренние продольные стены или на наружные торцевые и внутренние поперечные стены. Так как стены здания передают нагрузку на фундамент по простенкам, нагрузка суммируется по длине, равной расстоянию между осями оконных проемов.

Пример 1.1. Требуется определить нагрузки пятиэтажного административно-бытового комбината шахты, если здание с неполным поперечным каркасом (рис. 1.5). Стены выполнены из кирпичной кладки удельным весом γ = 18 кН/м 3 , толщина наружных стен 64 см. Внутренний поперечный каркас из сборных железобетонных колонн сечением 40×40 см и ригелей сечением 54×30 см. Междуэтажные перекрытия из крупноразмерного железобетонного настила, кровля – из железобетонных плит по строительным балкам с техническим чердаком. Район строительства г. Тула.




Рис. 1.5. Расчетная схема к примеру 1.1

Сбор нагрузок производить в такой последовательности. Определяют постоянные нормативные нагрузки: от веса покрытия (гидроизоляционный ковер, кровельный настил и балки) – 1,5 кПа, от веса чердачного перекрытия с утеплителем – 3,8 кПа; от веса междуэтажного перекрытия – 3,6 кПа; от веса перегородок – 1,0 кПа; от веса карниза – 2 кН/м.

По СНиПу устанавливают временные нагрузки: снеговая на 1м 2 горизонтальной проекции – 1,8 кПа, временная на чердачное перекрытие – 0,7 кПа, временная на междуэтажное перекрытие – 2,0 кПа.

Решение. Определяем нагрузку на наружную стену в осях Б – 2.

Грузовая площадь А = 3,3 × 2,8 = 9,24 м 2 , где 3,3 м – расстояние между осями оконных проемов, а 2,8 м – половина расстояния в чистоте между стеной и колонной. Возможность неодновременного загружения всех пяти этажей временной нагрузкой учитываем, вводя понижающий коэффициент по формуле (1.1) при средней площади помещений 18м 2 :

Постоянные нагрузки от конструкции, кН:

вес покрытия 1,5×9,24 = 13,86;

вес чердачного перекрытия 3,8×9,24 = 35,11;

вес пяти междуэтажных перекрытий 3,6×9,24×5 = 116,3;

от сборного ригеля перекрытий 0,54×0,3×2,8×25×6 = 68,0;

вес перегородок на пяти этажах 1×9,24×5 = 46,2

вес кирпичной кладки выше чердачного перекрытия 1,5×0,51×3,3×18 = 45,0;

вес стены за вычетом веса оконных проемов на длине 3,3м

0,64×(3,6×3,2 – 2,32×1,79)×5×18 = 445,42.

Итоговая постоянная нагрузка 769,4 кН.

Временные нагрузки, кН

на кровлю 1,8 × 9,24 = 16,63;

на чердачное перекрытие 0,7 × 9,24 = 6,46;

на пять междуэтажных перекрытий с коэффициентом ψn1 = 0,66

Итоговая временная нагрузка 84,07 кН.

Нормативная нагрузка на 1м наружной стены

(769,4 + 84,07)/3,3 = 258,6 кН.

Нагрузка на колонну. кН;

грузовая площадь 5,6×5,6 = 31,36 м 2

вес покрытия 1,5×31,36 = 47;

вес чердачного перекрытия 3,8×31,36 = 119,1;

вес плит междуэтажных перекрытий 3,6×5×31,36 = 564,48;

вес перегородок на пяти этажах 1×5×31,96 = 156,8,

вес сборного ригеля перекрытий 0,54×0,3×2,8×25×2×6 = 136,0;

вес железобетонных колонн 0,4×0,4×3,6×25×5 = 72.

Итоговая постоянная нагрузка 1095,38 кН.

на кровлю 1,8×31,36 = 56,44;

чердачное перекрытие 0,7×31,36 = 21,95;

вес пяти междуэтажных перекрытий с коэффициентом ψn1 = 0,66

Итоговая временная нагрузка 275,28 кН.

Нормативная нагрузка на колонну 1095,38 + 275,28 = 1370,66 кН.

3.Определение размеров в плане фундаментов мелкого заложения на естественном основании

Выбор глубины заложения фундаментов производится в соответствии со СНиП 2.02.01.83 [3, с. 100-108]; [9, с. 37-40].

Размеры в плане фундаментов мелкого заложения на естественном основании определяются:

– для ленточного фундамента по формуле

где b – ширина подошвы фундамента, м;

N – расчетная нагрузка от веса сооружения, кН;

– среднее значение объемного веса материала фундамента и грунта на его обрезах, кН/м ; = 20 кH/м

– условное расчетное давление грунта под подошвой фундамента, определяемое по СНиП 2.02.01.838*,кПа; d – глубина заложения подошвы фундамента, м;

– для отдельно стоящего (столбчатого) квадратного фундамента

где d – высоты фундамента, квадратного в плане, м.

Если основанием фундамента служит слабый грунт, для которого не дано расчетное давление в СНиП 2.02.01.83*, то размеры фундамента в плане определяются подбором.

После определения размера фундамента в плане производится его конструирование, т.е. принимается вид фундамента (сборный или монолитный). Для сборного фундамента по каталогам подбираются типовые блоки. При этом не допускается вылет консоли подушки больше того, что указан в таблице для соответствующего напряжения под подошвой фундамента. После уточнения в плане размеров фундамента, которые могут измениться в большую сторону, производится проверка несущего слоя грунта по формуле

где Nр – расчетная нагрузка на уровне верхнего обреза, кН;

G – вес фундамента (вес стеновых и фундаментных блоков) для отдельных фундаментов, кН;

для ленточных фундаментов, кН/м 2 ;

Gгр – вес грунта на его обрезах, кН.

А – площадь подошвы фундамента, м 2

Rp – расчетное сопротивление грунта, определяемое по формуле (7) СНиПа 2.09.01-83*.

1) разница между составляет меньше 10% от R. В этом случае размеры блока оставляют без изменения;

2) разница между более 10%. Это значит, что фундамент запроектирован не экономично. Размер фундамента в плане следует уменьшить;

3) может вызвать увеличение осадки грунта основания за счет распространения пластических деформаций на большую глубину. В этом случае необходимо увеличить подошвы фундамента;

4) для внецентренно загруженных фундаментов допускается увеличивать расчетное сопротивление на 20%;

При устройстве фундаментов важное значение имеют не только правильный выбор глубины заложения, точность разбивочных работ, соблюдение технологических процессов устройства фундамента, но и верный выбор самой конструкции фундамента с учетом всех нагрузок от здания и способности грунта оснований выдерживать эти нагрузки без существенных деформаций. Расчеты и вариантное конструирование фундаментов с учетом применения различных материалов и способов их возведения позволят найти оптимальное техническое решение, при котором фундаменты будут более надежными и экономичными.

Грамотный расчет оснований и фундаментов может выполнить только специалист, так как для этого надо уметь использовать данные инженерно-геологических изысканий, нормативы, коэффициенты, величины и другие показатели, а также методики расчета, принятые в СНиПах. При расчете основания здания первостепенное значение имеют вид и сопротивляемость грунта. Для предварительного назначения размеров фундамента используются данные нормативного давления на основания. Эти данные могут быть использованы при ширине фундаментов от 0,6 до 1,5 м и глубине заложения от 1 до 2,5 м, считая от отметки природного рельефа или от отметки планировки до отметки основания.

Нормативное давление на основание

Вид грунта кПа кгс/см2
Крупнообломочные грунты, щебень, гравий 500-600 5,0-6,0
Пески гравелистые и крупные 350-450 3,5-4,5
Пески средней крупности 250-350 2,5-3,5
Пески мелкие и пылеватые плотные 200-300 2,0-3,0
Пески средней плотности 100-200 1,0-2,0
Супеси твердые и пластичные 200-300 2,0-3,0
Суглинки твердые и пластичные 100-300 1,0-3,0
Глины твердые 300-600 3,0-6,0
Глины пластичные 100-300 1,0-3,0

При глубине заложения фундамента более 2,5 м нормативное давление увеличивается, а при менее 1 м — уменьшается. Общее давление на грунт при определенной опорной площади фундамента не должно превышать расчетного сопротивления грунта. Общая нагрузка, действующая на 1—2 м2 подошвы ленточного фундамента, будет равна сумме нагрузок от снега, крыши, всех перекрытий и перегородок, оборудования в доме, наружной стены дома и самого фундамента. Ориентировочную общую нагрузку можно вычислить с помощью таблиц.

Нагрузка от 1 м2 стены

Материал стен кПа кгс/м2
Деревянные каркасно-панельные толщиной 150 мм с минераловатным утеплителем 0,3-0,5 30-50
Брусчатые и бревенчатые толщиной 140-180 мм 0,7-1,0 70-100
Из опилкобетона толщиной 350 мм 3,0-4,0 300-400
Из керамзитобетона толщиной 350 мм 4,0-5,0 400-500
Из шлакобетона толщиной 400 мм 5,0-6,0 500-600
Из эффективного кирпича толщиной, мм:
380 5,0-6,0 500-600
510 6,5-7,5 650-750
640 8,0-9,0 800-900
Из полнотелого кирпича сплошной кладки толщиной, мм:
250 4,5-5,0 450-500
380 7,0-7,5 700-750
510 9,0-10,0 900-1000

Нагрузка от 1 м2 перекрытий пролетом до 4,5 м

Тип перекрытия кПа кгс/м2
Чердачное по деревянным балкам плотностью, кг/м3, не более:
200 0,7-1 70-100
300 1-1,5 100-150
500 1,5-2 150-200
Цокольное по деревянным балкам плотностью, кг/м3, не более:
200 1-1,5 100-150
300 1,5-2,0 150-200
500 2,0-3,0 200-300
Цокольное железобетонное 3,0-5,0 300-500

Нагрузка от 1 м2 горизонтальной проекции крыш

Тип кровли кПа кгс/м2
Покрытие рубероидом 0,3-0,5 30-50
Керамическая черепица при уклоне 45° 0,6-0,8 60-80
Кровельная сталь при уклоне 27° 0,2-0,3 20-30

Виды оснований

К основаниям из просадочных грунтов относятся глинистые грунты, которые, находясь в напряженном состоянии под действием нагрузки от сооружения или собственного веса, при замачивании дают дополнительную деформацию — просадку. Критерием для отнесения глинистых грунтов к просадочным является степень влажности (доля заполнения пор водой) < 0,6.

В зависимости от возможности просадочных явлений под действием собственного веса грунтовые условия на участке строительства подразделяются на два типа:

  • грунтовые условия, при которых просадка от собственного веса не превышает 5 см;
  • грунтовые условия, при которых возможна просадка от собственного веса более 5 см.

Тип грунтовых условий устанавливается в процессе инженерно-геологических изысканий. Устойчивость дома и других сооружений можно обеспечить следующими мероприятиями:

  • устранением просадочных свойств грунтов в пределах всей или части просадочной толщи;
  • заглублением фундамента;
  • устройством свайных фундаментов;
  • применением водозащитных и конструктивных мероприятий.

Выбор мероприятия производится на основе технико-экономических расчетов.

К основаниям из набухающих грунтов относят глинистые грунты, которые при замачивании в напряженном состоянии увеличиваются в объеме. Для набухающих грунтов характерны, кроме того, большая пластичность, низкий предел усадки и природная влажность. Выбор глубины заложения и назначение размеров фундаментов, возводимых на набухающих грунтах, можно производить без учета их набухающих свойств, т.е. как для обычных грунтов в природном состоянии.

Для противодействия набуханию грунтов можно увеличить давление на эти грунты против нормативов. Устойчивость дома и других сооружений при возможных деформациях основания от набухания, превышающих допустимые, обеспечивается за счет соответствующей подготовки основания:

  • устранения набухающих свойств грунтов в пределах всей или части толщи путем предварительного замачивания;
  • применения компенсирующих грунтовых подушек;
  • замены (полной или частичной) слоя набухающего грунта другим грунтом.

Рис. 1. Схема устройства компенсирующей подушки: 1 — ленточный фундамент; 2 — песчаная подушка; 3 — отметка планировки; 4 — отметка кровли (верха) набухающего грунта; Н — глубина заложения фундамента; а — ширина фундамента; h — высота песчаной подушки; с — отрезок компенсационной подушки

Компенсирующие подушки применяются в целях уменьшения величины неравномерности подъема ленточных фундаментов при замачивании основания из набухающих грунтов. Располагают компенсирующие подушки на кровле или в пределах слоя набухающих грунтов таким образом, чтобы глубина заложения фундамента Н была минимальной, но не менее 0,5 м, минимальное давление на грунт — не менее 1 кгс/см2. Размеры подушек назначаются в зависимости от ширины ленточного фундамента.

Размеры компенсирующих подушек

Ширина фундамента, а, м h c α , град.
0,5 < а < 0,71,2а 0,7а 75-90
0,7 < а < 11,15а 0,5а 75-90
1 < а < 1,21,1а 0,4а 75-90

Примечание. В том случае, если между стенками траншеи и подушкой будет находиться насыпной грунт, ширина подушки назначается из условия обеспечения устойчивости под действием горизонтальных напряжений.

Для устройства подушки рекомендуется применять несвязные грунты. Плотность уплотненного грунта подушки должна быть не менее: для мелких песков 1,60 т/м3, для средних и крупных 1,55 т/м3. Нижний слой подушки толщиной от 15 до 30 см не уплотняется.

Действие сил пучения грунта на фундаменты

Давление по подошве фундамента назначается в зависимости от вида грунта подушки и его состояния. Нагрузка на основание, особенно из просадочных и набухающих грунтов, должна быть сбалансирована, иначе при фактической нагрузке, превышающей нормативную вследствие замачивания грунта, произойдет дополнительная просадка фундамента, а при недогрузке силам пучения легко будет вытолкнуть вверх фундамент. Рассмотрим, как действуют эти силы на фундамент.

Самыми опасными силами, действующими на фундаменты малоэтажных домов, являются силы морозного пучения. В тяжелых пучинистых грунтах, где присутствуют водонасыщенные глины, суглинки, супеси, вертикальные перемещения поверхностного слоя грунта при его промерзании на 1—1,5 м составляют 10—15 см (рис. 2).

Схема деформации грунта при пучении
Схема действующих сил пучения на фундаменты
Рис. 2. Схема деформации грунта при пучении: 1 — уровень промерзания грунта; 2 — уровень земли до пучения; 3 — уровень земли при пучении Рис. 3. Схема действующих сил пучения на фундаменты: а — силы пучения, действующие на ленточный фундамент без подвала; б — то же, с подвалом; в — силы бокового пучения, действующие на столбчатый фундамент; 1 — фундамент; 2 — уровень промерзания грунта; 3 — уровень земли до пучения; 4 — уровень земли при пучении; А — нагрузка сооружения на фундамент; Б — сила сопротивления грунта основания; В — силы морозного пучения грунта основания

Результаты действия сил морозного пучения — подъём фундамента, а затем при неравномерном оттаивании грунта — его опускание — приводят к деформации фундамента, перекосу стен дома и появлению различных дефектов: трещины в стенах, смещение балок, крыльца, отслоение обоев, заклинивание дверей и т.д. Избежать отрицательного воздействия сил морозного пучения не всегда удается только за счет увеличения глубины заложения фундамента ниже уровня промерзания. Силы пучения действуют не только снизу, но и сбоку. Эти касательные силы способны накренить фундамент, что приведет к изменению направления действующих вертикально сил, внецентренному давлению от нагрузок дома и дополнительным неприятным последствиям. Силы, действующие на фундаменты, показаны на рис. 3.

Опорная поверхность фундамента (см. рис. 3, а) — подошва — расположена выше уровня промерзания грунта и на нее действуют силы пучения В. Такое устройство фундамента можно считать неправильным. Фундаменты, расположенные ниже уровня промерзания грунта (см. рис. 3, б, в), не испытывают давления мерзлого грунта снизу, но боковое давление остается значительным и может привести к смещению фундамента. Для нейтрализации этих сил, кроме мероприятий, описанных при рассмотрении свойств просадочных и набухающих грунтов, рекомендуется:

Целью курсовой работы является проектирование и расчет фундаментов под опорные конструкции моста.

Курсовая работа включает в себя проектирование двух вариантов фундамента:

мелкого заложения и свайного. Для каждого из вариантов был произведен расчет по деформациям (определение осадок), расчет оснований по несущей способности

В процессе проектирования фундаментов были определены расчетные усилия,

действующие на обрез фундамента, нормативные и расчетные значения характеристик грунтов, выбрана глубина заложения фундаментов, определены размеры подошвы фундаментов в плане, произведено технико-экономическое сравнение фундаментов, в результате которого был выбран наиболее оптимальный вариант.

Работа выполнена в соответствии с заданием на проектирование и действующими СНиП’ами

Глава I .Исходные данные, нагрузки на фундамент, характеристики грунтов

Исходные данные


1) Схема сооружения №7- мост через канал ГЭС

2) Географический район строительства сооружения - Волхов

3) Характеристика сооружения – Вариант №3

4) Характеристики грунтов и толщины слоев, слагающих основание сооружения, приведены в таблицы


5) Дополнительные условия – УГВ на отм (до пуска канала)

№ слоя Наименование грунта Толщина слоя

w

c E
скв 1 скв 2 скв 3
м
град МПа
Песок среднезернистый 2,66 1.85 0,12 - -
Песок пылеватый 2,65 1,36 0,17 - -
Супесь 0.5 0.5 2,71 1,94 0,19 0.4 0.005

Определяем постоянные и временные нагрузки, действующие на уровне поверхности грунта. Расчет нагрузок сводим в таблицу


1.Собственный вес пролетного строения


2.Временная нагрузка на тротуаре


3.Временная нагрузка на проезжей части

Схема сооружения и схема основания представлены в приложении 1.

Нагрузки, действующие на фундаменты

В зависимости от продолжительности действия нагрузки подразделяются на постоянные и временные.

Постоянными считаются нагрузки и воздействия, которые действуют постоянно как в период строительства, так и при эксплуатации сооружения.

Временными считаются нагрузки и воздействия, которые прикладываются или возникают в отдельные периоды строительства и эксплуатации. Временные нагрузки подразделяются на длительнодействующие, кратковременные и особые.

Определяем постоянные и временные нагрузки, действующие на уровне поверхности грунта (обреза фундамента).

Расчет нагрузок сводим в таблицу 2.

№ фундамента Характер и наименование нагрузки Направление нагрузки Формула определения нагрузки Нормативное значение нагрузки NII. тс Коэффициент надежности по нагрузки Расчетное значение NI,тс Плечо, м Момент, тс м
Постоянные
1.Вес бокового пролета Верт.

135.2 1.1 148.72 -148.72
2.Вес центрального пролета Верт.

166,4 1,1 183,04 183,04
3.Вес быка Верт.

480.06 1.1 528.07
Временные длительные
1.На тротуаре Верт.

67,2 1.2 80,64 1,5
2.На проезжей части Верт.
1,2 453.6 1,5

Суммарная вертикальная нагрузка NII=1226,86 NI=1394,07

Суммарная горизонтальная нагрузка 0 0


Суммарный момент

Предварительное определение площади подошвы фундаментов

Расчет ведется на основное сочетание нормативных нагрузок, рассчитанных по II группе предельных состояний.

Предварительные размеры фундамента находятся из условия, что фактическое давление под подошвой фундамента P , должно не превышать расчетного сопротивления грунта R.


P


При этом фундамент получается таким, что области пластических деформаций в основании достаточно малы: Z b/4

Требуемая площадь подошвы фундамента определяется по формуле





; 1226.86 тс

приведенный удельный вес, вводимый для определения веса фундамента с грунтом на его уступах ;


глубина заложения подошвы фундамента: d=2.5м;


R расчетное сопротивление грунта основания, определяемые по формуле:


, коэффициенты условий работы, принимаемые по [5]: , ;

коэффициент, зависящий от прочностных характеристик грунта:

коэффициенты, принимаемые по [5]:

коэффициент, зависящий от ширины подошвы фундамента:

осредненное расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента. При наличии УГВ удельный вес грунта определяется с учетом взвешивающего действия воды: ;

осредненное расчетное значение удельного веса грунтов, залегающих выше подошвы фундамента. При наличии УГВ удельный вес грунта определяется с учетом взвешивающего действия воды: ;

расчетное значение удельного сцепление грунта, залегающего непосредственно под подошвой фундамента:



b ширина подошвы фундамента.




Прямоугольный фундамент (A= )




При решении квадратного уравнения получили ширину прямоугольного фундамента: b=2.24, которая меньше ширины быка (3,5м)


Конструктивно принимаем ширину фундамента: b=4,5,

Расчетное сопротивление грунта основания фундамента:


Выполняем проверку условия:



Условие выполняется P


Следует проверить фундамент на совместное действие







Проверка выполнена успешно.

Предварительное определение веса ростверка

Исходя из условия конструктивного размещения свай на расстоянии 3d друг от друга, находится условное давление под подошвой ростверка:


диаметр поперечного сечения сваи:

Условная площадь подошвы ростверка определяется по формуле:


Так как длина быка 12,7 м, то принимаем длину ростверка 13 м

Ширина быка 3,5 м, то принимаем ширину ростверка 4 м

расчетная нагрузка по обрезу фундамента: тс

средний удельный вес фундамента и грунта:

глубина заложения подошвы свайного ростверка:

коэффициент надежности по нагрузке:

Ориентировачный расчетный вес ростверка определяется по формуле:


Количество свай в фундаменте с учетом веса ростверка:


Конструирование ростверка

Ростверк устраивается по верху свай для обеспечения совместной работы свай под нагрузкой. Конструкция ростверка спроектирована с учетом условий передачи нагрузки и количества свай. Разбивка свай в ростверке центрально нагруженного фундамента произведена равномерно.

Расположение свай принято рядовое. Ширина плиты ростверка позволяет установить расстояние между рядами висячих свай c>3d. Расстояние от центра тяжести сваи до края ростверка принято равным d.

  • функционирование машин с неравномерно движущимися частями;
  • движение транспорта как по поверхности земли, так и под землей;
  • трамбовка грунта во время во время обустройства подушки основания здания;
  • углубление свай;
  • работа лесопильного оборудования или компрессоров и прокатных станов.

Особенности и классификация фундаментов под динамические нагрузки

Сооружение основания, предназначенного для обеспечения устойчивости к динамическим нагрузкам, необходимо при возведении промышленных зданий, в которых установлены опорные колонны, и, соответственно, фундаментов под станки. Такие фундаменты имеют ряд особенностей, учитывать которые необходимо при строительстве. В первую очередь это касается колебаний, которые приходится выдерживать основанию под станки и машины.

Конструкция фундамента под динамические нагрузки

Конструкция фундамента под динамические нагрузки

Испытываемые колебания могут быть и статические, и динамические. Возникновение динамических нагрузок связано с колебаниями во время работы промышленного оборудования и строительной техники, проведением взрывных работ или с сильными порывами ветра. Проектирование основания осуществляется в соответствии со СНиП 2.02.05-87.

Основная цель обеспечить безопасную эксплуатацию машин, без причинения какого-либо ущерба возведенному зданию. Основания машин с динамическими нагрузками проектируют:

  1. Монолитными, где предусмотрено наличие приямков, колодцев или отверстий, в которых размещаются части оборудования.
  2. Стенными. Имеющими основание в виде ростверка, стены и верхнюю плиту, опирающуюся на колонны.
  3. Рамными, представляющими собой конструкцию из верхней плиты и балок, которые опираются на нижнюю плиту фундамента через ряд стоек.
  4. Облегченными, где опору создают колонны.

Для того чтобы успешно выдерживать довольно высокие динамические нагрузки возводимое основание должно:

  1. Обладать значительной массой, обеспечивающей устойчивость к существующим и предстоящим нагрузкам. Уровень сопротивляемости основания вибрациям напрямую зависит от его массы.
  2. Отличаться значительной прочностью, обеспечивающей долгосрочную эксплуатацию и самого оборудования, и здания, в котором оно установлено.
  3. Иметь довольно высокую инертность. Фундаменту, сооруженному под оборудование, предстоит выдержать воздействие агрессивных сред. В их число входят смазка, машинные масла и другие жидкости, оказывающие разрушающее действие на само основание и грунт.

При сооружении такого фундамента необходимо в точности следовать рекомендациям и соблюдать все установленные нормы в отношении габаритов и правил возведения основания и крепления на нем оборудования.

Важно обеспечить полное отсутствие уклона ростверка. Это гарантирует равномерное распределение нагрузки и тем самым продлит срок эксплуатации оборудования и фундамента.

Основное требование, предъявляемое к фундаментам, на которых установлено ударное или иное оборудование, заключается в соответствии стандартам безопасности труда и обеспечении эффективной защиты от вредного влияния динамических нагрузок на оборудование, установленной как на самом основании, так и в непосредственной близости от него.

Фундамент под оборудование

Фундамент под оборудование

Для соблюдения указанных условий необходимо при возведении подобных фундаментов строго следовать нормам, установленным СНиП:

  • 2.02.01-83;
  • 2.02.03-85;
  • 2.03.01-84;

Как указывает руководство, фундаменты машин, подверженных динамическим нагрузкам сооружают в виде монолитной плиты. Они могут быть сборными и сборно-монолитным. По существующим требованиям и нормам основание под динамические нагрузки возводится монолитным железобетонным. Класс бетонной смеси, используемой для его сооружения – В15. Отличие основания под машины с динамическими нагрузками от фундаментов под жилые постройки заключается в их конструкции.

Проектирование фундаментов машин с динамическими нагрузками

Большая часть динамических нагрузок – ударное воздействие. Это может быть и одиночный импульс, и изменяющаяся внешняя нагрузка. Эти явления и вызывают свободные или вынужденные колебания.

Турбогенератор - оборудование с динамическими нагрузками

Турбогенератор – оборудование с динамическими нагрузками

Надежные основания обустраивают для установки машин:

  • вращающихся равномерно, к числу которых относятся электродвигатели и турбогенераторы;
  • вращающихся не только равномерно, но и с поступательным и возвратным движением, а это могут быть компрессоры или двигатели внутреннего сгорания;
  • совершающих возвратно-поступательное движение одновременно с ударами.

Машины и механизмы могут оказывать на фундамент воздействие, совершая возвратно-поступательное движение, совмещенное с неравномерным вращением или передавать на основание случайные нагрузки. Для точного проектирования основания под динамические нагрузки необходим профессиональный расчет. Коэффициенты жесткости для фундаментов на естественной платформе определаются по формулам:

где kz – это коэффициент жесткости при вертикальных поступательных движениях фундамента;

А – площадь платформы;

Сz – жесткость основания при осуществлении поступательного вертикального перемещения фундамента.

При горизонтальных движениях фундаментов:

Вся работа – это несколько обязательных этапов, в ходе которых проводится расчет амплитуды колебания основания, которая должна полностью соответствовать установленной правилами. Установки значений давления под подошвой и расчет прочности всех элементов, из которых состоит фундамент.

Выбирая марку бетона для создания железобетонной конструкции, необходимо учитывать наличие воздействия на фундамент и динамической нагрузки, и статистических нагрузок, и высоких технологических температур, оказываемых в одно время. Посмотрите видео, как правильно выбрать марку бетона.

Платформа, на которой будут установлено оборудование, должна обеспечить безопасность и эффективность труда, а расчет материалов и параметров должен гарантировать продолжительный срок ее эксплуатации. Основание для проектирования подошвы, которая имеет в большинстве случаев прямоугольную форму, является правильный расчет. В первую очередь стоит сказать о том, что высота фундаментов машин предусматривается минимальная, так она тесно связана с размерами крепежных болтов и глубиной их заделки.

На данном этапе выбирается проектная марка бетона, которая в соответствии со СНиПом должна быть не менее М150 или М200. Расчет фундамента выполняется для установки как единичной модели, так и нескольких машин динамической нагрузки. Выполнение данных работ связано с определением центра тяжести и учетом волн, распространяемых в грунте при работе низкочастотных или других машин.

Сооружение фундамента под динамические нагрузки

Необходимое условие прочности сооружения – отделение фундаментов машин от оснований построек специально спроектированными швами. При проектировании фундамента машин с динамическими нагрузками в обязательном порядке принимают расчет технические характеристики, которыми обладает оборудование, амплитуда колебаний непосредственно машин и расположенных поблизости конструкций. Необходимо принимать в расчет динамические нагрузки, действующие на оборудование и крепежные болты.

При установке колонн необходимо использовать

При установке колонн необходимо использовать “стаканы”

Особого внимания заслуживают значения предельных колебаний всего фундамента и его частей. Оборудование, установленное на сооружаемом основании, требует наличия дополнительных подъямков или колодцев, которые также подвергаются определенным нагрузкам и испытывают колебания. Приступая к сооружению основания машин с динамическими нагрузками необходимо учесть наличие дополнительных крепежных болтов и других элементов, которым снабжено оборудование при поставке.

Машины с динамическими нагрузками устанавливают как можно дальше от объектов, обладающих повышенной чувствительностью к вибрации, к числу которых относятся опорные колонны. Установка машин на открытой площадке требует наличия данных о глубине промерзания грунта. В большинстве случаев машины с динамическими нагрузками устанавливают на мелкозаглубленном фундаменте. Если сооружение подобного основания ведется на сложном грунте, то используют свайную конструкцию, колонны в которой имеют различную глубину проникновения в грунт.

Такие колонны, как правило, делают в «стакане», который армируют и заполняют бетоном. Эти железобетонные колонны становятся надежной опорой будущего фундамента. Они надежно укрепляют грунты. Создание основания для машин с динамическими нагрузками требует поэтапного выполнения работ с учетом особенностей, которыми обладает оборудование.

Бетонирование выполняется в непрерывном режиме. При необходимости технология выполнения работ допускает сооружение рабочих швов, места нахождения которых, указаны на чертежах и установлены еще на стадии проектирования.

Выбирая место, в котором будет установлено оборудование, необходимо принять во внимание установленное расстояние от машины до той точки, где расположены опорные колонны или другое оборудование. Это расстояние не должно быть меньше одного метра от выступающих частей машины. Фундамент, на который опираются стены помещения или колонны, не может быть связан с основанием, обустроенным для машин с динамическими нагрузками. Посмотрите видео, как производится установка опорных колонн.

Определив расстояние от каждой опорной колонны, приступают к разметке, в соответствии с которой подготавливают котлован. В открытых цехах глубина котлована определяется глубиной промерзания грунта. Подсыпку делают песком, тщательно промочив и уплотнив его.

После выставления опалубки и укладки армировочной сетки на опалубку необходимо уложить шаблон. Используя отверстия, подготовленные в нем, с помощью гаек фиксируют фундаментные болты.


При всех предупредительных информационных посылах, о том, что фундамент является не просто несущей конструкцией, а и гарантией устойчивости здания, все равно находятся желающие максимально сэкономить даже на этом элементе. Они забывают о том, что грунт сам по себе неоднороден, достаточно подвижен и очень бурно реагирует на грунтовые воды и подтопления, проявляя свое «нетерпение» явлениями пучинистости.


Расчеты и их последствия.

Уменьшая затраты на площадь опоры вы подвергаете все строение опасности разрушения вследствие различных грунтовых процессов, приводящих к деформации ослабленных опор.

Несколько слов о фундаментах и видах нагрузок


На каждый фундамент расчет обязателен.

Просматривая информацию о поведении грунта под различными фундаментами, бросается в глаза, что расчетная составляющая не может базироваться только на виде фундамента или только на виде почвы, в расчет берется также общая нагрузка на фундамент и поведение различных почв под воздействием этих нагрузок.

Для наглядности и понятности приведем несколько сравнительных классификаций.

Итак, фундамент может быть:

  • Несущий. Здесь комментарии излишни, несущий, значит, ответственен за все строение. Ярким примером является ленточный фундамент;
  • Комбинированный – в данном случае к функции опоры добавлена и сейсмозащита. Как правило, это лента + сваи;
  • Неглубокого заложения. А именно выше глубины промерзания; такие фундаменты характерны для нетяжелых строений, времянок и отдельно стоящих построек типа бани, гаража и сараев;
  • Глубокого заложения. Полноценный фундамент, как ленточный, так и сборной из плит, кирпича либо камня, размещении ниже уровня промерзания и может выдерживать нагрузку нескольких уровней или этажей;
  • Специальные. Плавающие, или качающиеся фундаменты – как правило, экспериментальные в строительстве частных домов не используются.

В зависимости от характеристик слоев почвы и нагрузки на них происходят следующие явления, которые получили название фаз:

  • Фаза, при которой происходят равнонаправленные упругие деформации, при этом векторы распределения нагрузок и их сила одинаковы;
  • Комбинированная фаза, при которой начинают происходить местные сдвиги, которые перераспределяют силу воздействия на почву и ее слои;
  • Фаза сдвигов и начала уплотнения боковых карманов, хотя ее-то можно назвать не началом, а логическим продолжением предыдущего этапа. Просто в данном случае эти карманы заявляют о себе как вполне самостоятельные структуры, способные влиять на расчетные величины;
  • Этап (или фаза) выпора. На этом этапе грунт под опорами уплотняется настолько, что и сам оказывает выраженное давление на глубже лежащие слои. Это фаза образования ядра бокового уплотнения;

  • И наконец, завершающим этапом в этой градации является преобладание бокового уплотнения. В данном случае создается уплотненная зона в несколько раз превышающая фундамент, которая также оказывает свое воздействие на нижележащий грунт.

Практическое применение


Графический вид полезных расчетов.

Теория без практики мертва, поэтому любая инструкция будет полезна только в случае применения всего этого на практике. Так вот о ней родимой, о практике – последние две фазы характерны для многоэтажных домов со свайной системой фундамента и комбинированной (сваи + железобетонные блоки).

Поэтому в данном материале практическое применение этого материала не отображается. Остаются первые три фазы, которые могут быть полезны в практическом смысле, так как они позволяют вычислить необходимую площадь закладываемого фундамента.

Итак, эта величина должна быть больше произведения:

  • Коэффициента надежности равного 1.2 и определенного экспериментальными и расчетными путями;
  • Расчетной нагрузки в кг. В данном случае учитывается не только вес стен, перекрытий, крыши, но даже прогнозируемого слоя снега на крыше;
  • Расчетного сопротивления грунта глубиной до 2 метров, которое есть в специальных таблицах.

  • Полученное произведение необходимо разделить на так называемый коэффициент условий работы, который также находится из таблиц и составляет для глины – 1.0 – 1.2;
  • Для песка – 1.2 – 1.4. Разница в коэффициентах зависит от вида породы.

Еще немного теории


Фото ошибки в расчетах строения фундамента.

Ошибки в расчетах могут привести к различным аварийным явлениям – осадкам фундамента, которые требуют немедленного реагирования. Но существуют и естественные осадки.

Осадка основания фундамента вполне физическое явление, на которое также производятся поправки, при калькуляции фундаментов жилых зданий. Об этом немного подробнее.

А начнем с разрушительных явлений:

  • Прогибы и выгибы фундамента. Это явление, которое возникает вследствие неравномерности осадки основания. Неравномерная нагрузка, при котором дуга растяжения в первом случае будет находиться у фундамента (прогиб), во втором случае у кровли (выгиб);
  • Сдвиг. Это движение фундамента в вертикальной плоскости за счет различных явлений, чаще сейсмического характера;
  • Крен. Практически вариант Пизанской башни, при этом многоэтажная конструкция отклоняется в сторону всей массой. Характерен для многоэтажных строений. Крен опасен падением и разрушением всего здания;
  • Перекос – проваливание одной из основ фундамента, в результате чего возникает смещение вниз всей конструкции длинного здания. Яркий пример этого явления осадка свайного фундамента подмытого водой в результате ошибок в проектировании сливов или других причин;
  • Горизонтальные смещения и закручивание. Достаточно редкие виды деформаций чаще связанные с сейсмическими и геофизическими явлениями.

Причины неравномерных, аварийных осадок следующие:

    Основания по своей структуре неоднородны, что не было учтено при постройке дома;

И снова практическое применение

Кроме ужасов предыдущего раздела существуют вполне мирные и прогнозируемые осадки фундамента под расчетными аргументами и фактами. Введены даже предельно допустимые осадки фундаментов для их различных видов.

  • Здания на железобетонных конструкциях могут давать осадку до 8 см;
  • Строения, использующие стальные сваи для опоры – до 12 см;
  • Для деревянных и сборно-щитовых строений барачного типа максимальная осадка до 15 см.

Строительная мысль также не стоит на месте и предлагает различные методы определения расчетной осадки строений для различных типов почв. На данный момент времени только официально разрешенных к использованию методик существует около 20.

С целью экономии времени и места в мозгах мы их не приводим. Хочется только сказать, что достаточно часто производится определение осадки фундамента методом послойного суммирования.

Расчет осадки свайного фундамента методом послойного суммирования и ленточного фундамента будут иметь отличия, так памятуя из вышесказанного о разных фазах сдвигов грунта, на сваи придется вводить поправки.

Построения и расчеты требуют навыков.

Совет! В строительных нормах и правилах вы можете найти пример-расчет осадки фундамента методом послойного суммирования и провести расчеты своими руками.
Но дело в том, что, несмотря на данные расчеты и обилие программ позволяющих это сделать в интернете, эксперты склоняются к мысли, что расчеты необходимо делать специалистам и в привязке к конкретным условиям.
В противном случае цена будет слишком высока.

В заключение

Инженерные расчеты не так просты, как кажутся, даже построение эпюр требует знаний и навыков, поэтому самодеятельность в данном случае не приветствуется, особенно в вопросах проблемных грунтов. Видео в этой статье также предлагает свое видение проблемы.

Читайте также: