Усиление фундаментов при реконструкции

Обновлено: 07.05.2024

РЕКОМЕНДАЦИИ
ПО ПРОЕКТИРОВАНИЮ И УСТРОЙСТВУ ОСНОВАНИЙ,
ФУНДАМЕНТОВ И ПОДЗЕМНЫХ СООРУЖЕНИЙ ПРИ РЕКОНСТРУКЦИИ
ГРАЖДАНСКИХ ЗДАНИЙ И ИСТОРИЧЕСКОЙ ЗАСТРОЙКИ

Настоящие Рекомендации по проектированию и устройству оснований, фундаментов и подземных сооружений при реконструкции гражданских зданий и исторической застройки

ГП Научно-исследовательским, проектно-изыскательским и конструкторско-технологическим институтом оснований и подземных сооружений (НИИОСП) им. Ц.М.Герсеванова - головная организация (руководитель работы доктор техн. наук, проф. Ильичев В.А., доктора техн. наук, прфессора Бахолдин Б.В. Григорян А.А., Коновалов П.А., Петрухин В.П., Сорочан Е.А., Ставницер Л.Р., Шейнин В.И., доктор геол.-мин. наук Кулачкин Б.И., кандидаты техн. наук Багдасаров Ю.А., Буданов В.Г., Гольдфельд И.3., Грачев Ю.А., Ибрагимов М.Н., Игнатова О.И., Колыбин И.В., Конаш В.Е., Корольков В.Н., Лавров И.В., Мариупольский Л.Г., Михеев В.В., Никифорова Н.С., Поляков B.C., Светинский Е.В., Скачко А.Н., Трофименков Ю.Г., Федоровский В.Г., Холмянский М.Л., Шишкин В.Я., инженеры Кисин Б.Ф., Мещанский А.Б., Пекшев В.Г.);

Моспроект-2 (инженеры: Фадеев В.И., Ильин В.А.);

Институтом по изысканиям и проектированию подземных сооружений (Мосинжпроект) (инженеры Панкина С.Ф., Самохвалов КХМ., Казеева Н.К.);

Государственным проектно-изыскательским институтом (ГПИ "Фундаментпроект") (инженеры Михальчук В.А., Ханин Р.Е., канд. техн. наук Пинк М.Н.);

Проектно-строительной фирмой (ПСФ) "Гидростройинжиниринг" (инж. Лешин ГМ.);

Московским государственным строительным университетом (МГСУ) (доктор техн. наук проф. Ухов С.Б);

Ассоциацией "Стройнормирование" (инж. Дубиняк В.В.).

2. ВНЕСЕНЫ Москомархитектурой.

3. ПОДГОТОВЛЕНЫ к утверждению и изданию Управлением перспективного проектирования и нормативов Москомархитектуры (инженеры Шевяков И.Ю., Щипанов Ю.Б.).

4. СОГЛАСОВАНЫ Управлением государственного контроля охраны и использования памятников истории и культуры г.Москвы и НИиПИ Генплана г.Москвы.

5. УТВЕРЖДЕНЫ И ВВЕДЕНЫ в действие указанием Москомархитектуры от 3 июля 1998 г. N 21.

Введение

Настоящие Рекомендации разработаны на основе технического задания Москомархитектуры. Составленные для условий Москвы, они развивают выпущенные в 1997 году МГСН 2.07-97* "Основания, фундаменты и подземные сооружения", в которых отмечены естественные и антропогенные процессы, приводящие к деформациям зданий и сооружений, резкому ухудшению экологической обстановки, увеличению риска возникновения чрезвычайных ситуаций. Учтены "Рекомендации по расчету, проектированию и устройству свайных фундаментов нового типа в г. Москве" (1997 год).

* Действуют ТСН 50-304-2001 г.Москвы (МГСН 2.07-01), здесь и далее по тексту. - Примечание "КОДЕКС".

Решаемая в настоящее время задача совершенствования архитектурного облика города, особенно его центральной части, вызывает в ряде случаев необходимость реконструкции существующих зданий с надстройкой 2-4 и более этажей. Отмеченные выше ухудшения экологической обстановки также приводят часто к необходимости проведения работ по реконструкции зданий и сооружений. В последние годы возникают работы по подведению под существующие здания нескольких подземных этажей. В этих условиях рекомендации по проектированию и осуществлению реконструкции оснований, фундаментов и подземных сооружений являются весьма актуальными, тем более, что в действующих в настоящее время нормативных документах вопросы реконструкции зданий практически не отражены.

В соответствии с заданием в Рекомендациях приведены также некоторые данные о реконструкции зданий исторической застройки (памятники истории и культуры). Вместе с тем, необходимо иметь в виду, что Минкультуры РФ изданы РНиП 1.02.01-94 "Инструкция о составе, порядке разработки, согласовании и утверждении научно-проектной документации для реставрации недвижимых памятников истории и культуры".

1. Основные положения

* Далее в тексте эти Рекомендации называются Рекомендации (1997).

1.2 Целью настоящих Рекомендаций является обеспечение надежности и экономичности выполнения работ по основаниям, фундаментам и подземным частям гражданских зданий и объектов исторической застройки при их реконструкции.

1.3 Настоящими Рекомендациями следует руководствоваться организациям, независимо от формы собственности и принадлежности, осуществляющим изыскания, проектирование и выполнение работ по реконструкции гражданских зданий и объектов исторической застройки в г. Москве и ЛПЗП.

1.4 Настоящие рекомендации по реконструкции должны соблюдаться при проведении инженерно-геологических, гидрогеологических и экологических изысканий; обследовании конструкций реконструируемого и окружающих зданий; проектировании, производстве, контроле качества и приемке работ.

1.5 Под реконструкцией понимается выполнение работ, проводимых в связи с изменением геометрических размеров зданий, возрастанием постоянных или временных нагрузок, устройством подземных сооружений в пределах пятна застройки, а также восстановлением несущей способности оснований и фундаментов, утраченной вследствие суффозии, колебания уровня подземных вод и др., а также возникшими деформациями конструкций и их износом.

1.6 Работы по реконструкции должны выполняться с учетом требований настоящих "Рекомендаций" и производиться только специализированными организациями по лицензиям, получаемым на основе заключений соответствующих базовых центров.

1.7 Работы по проектированию, а также производство работ по усилению оснований и фундаментов реконструируемых зданий являются объектами сертификации и должны получать соответствующие подтверждения.

1.8 Надежность работы реконструируемых зданий обеспечивается совместной работой системы "основание - фундамент - надземные конструкции". Отказы в работе сооружений возникают вследствие полного или частичного нарушения надежной работы элементов данной системы. Поэтому при проектировании возможно осуществлять усиление всех элементов этой системы или отдельных ее частей.

1.9 Отказы оснований возникают за счет проявления природных и техногенных процессов, а также за счет отклонений от нормативных документов, допускаемых при изысканиях, проектировании, строительстве и эксплуатации. Основными причинами отказов являются:

- суффозионные процессы, а также колебания УПВ, вызванные изменением гидрогеологических условий в районе расположения здания, атмосферными водами, аварийными и систематическими утечками из коммуникаций;

- проявление карстовых деформаций;

- снижение прочностных и деформационных свойств грунтов при увлажнении, и также проявление процесса набухания грунта, морозное пучение;

- проведение земляных работ в пределах или вблизи застройки, плывунность грунтов и др.;

- увеличение нагрузок на основание, особенно сопровождаемое появлением эксцентриситета их приложения или изгибом здания;

- вибрационные или динамические воздействия от авто- и железнодорожного транспорта, линий метрополитена, оборудования, установленного в сооружениях, и промышленных установок, расположенных вблизи.

1.10 Особенностями работ по реконструкции являются их выполнение в условиях крайне стесненной обстановки, обычно при продолжающейся эксплуатации зданий, что требует для их выполнения специальной технологии и организации работ, соответствующего технического оснащения.

1.11 При реконструкции фундаментов отсутствует возможность разработки типовых схем усиления. Схемы усиления должны приниматься в каждом конкретном случае в зависимости от нагрузок на фундаменты, наличия подвала и других подземных сооружений, инженерно-геологических и гидрогеологических условий и др.

1.12 Реконструкция зданий - памятников архитектуры выполняется, как правило, без изменения архитектурно-планировочных решений и конструктивных элементов и согласовывается с организациями по охране памятников.

1.13 Применяемые методы усиления оснований и фундаментов должны обеспечивать их совместную работу с основанием и существующими фундаментами.

Следует учитывать, что любые работы по усилению оснований и изменению конструкций фундаментов неизбежно вызывают при их осуществлении деформации оснований и осадки фундаментов.

1.14 Работы по усилению фундаментов и подземных сооружений в сложных условиях должны проводиться при научном сопровождении специализированной научно-исследовательской организации.

2. Методы реконструкции и усиления оснований и фундаментов

2.1 Повышение несущей способности оснований и фундаментов при реконструкции может быть обеспечено за счет:

- усиления и изменения конструкции или размера фундамента;

- закрепления грунтов основания инъектированием;

2.2 .Укрепление и усиление фундаментов проводят в следующих случаях:

- при снижении прочности материала фундамента в результате его разрушения, физического и химического выветривания или износа;

- при реконструкции здания, вызывающей увеличение нагрузок или появление дополнительных воздействий, например, вибрации от оборудования;

- при новом строительстве рядом расположенного здания, подземного сооружения, прокладке коммуникаций и т.д.

- при появлении деформаций в конструкциях, общем крене здания.

2.3 Используют следующие методы усиления фундаментов:

- укрепление тела фундамента путем инъекций, которое применяется при небольших разрушениях материала фундамента и незначительном повышении нагрузок на фундаменты;

- устройство обойм без уширения или с уширением подошвы фундамента;

- подведение конструктивных элементов под существующие фундаменты - плит, столбов, стен, осуществляемое при необходимости повышения несущей способности основания или углубления фундаментов;

- подведение новых фундаментов с использованием, главным образом, свай различных видов - вдавливаемых, буронабивных, буроинъекционных, бурозавинчивающихся и др., которое осуществляется при значительном увеличении нагрузок и значительной глубине залегания несущего слоя грунта;

- переустройство столбчатых фундаментов в ленточные и ленточных в плитные;

- устройство щелевых (шлицевых) фундаментов.

2.4 Укрепление оснований зданий и подземных сооружений проводится в следующих случаях:

- при ослаблении оснований в период их эксплуатации, в результате чего происходят значительные общие и неравномерные осадки, а также крены зданий;

- при реконструкции зданий и подземных сооружений, когда происходит увеличение нагрузок и (или) перераспределение их между несущими конструкциями.

2.5 Инъекционное закрепление грунтов различными растворами применяют для:

- усиления оснований при углублении фундаментов;

- устройства плиты под зданием из закрепленного грунта;

- цементации зоны контакта подошвы фундамента с грунтом;

- устройства противофильтрационных завес и пристенной наружной гидроизоляции подземных конструкций.

2.6 Проектирование инъекционного закрепления грунтов осуществляется на основании материалов специальных инженерно-геологических исследований, а также рекомендаций научно-исследовательских и специализированных организаций по способу закрепления, составу растворов, прочностным и фильтрационным свойствам закрепленных грунтов.

2.7 Производство работ по химическому закреплению допускается только по утвержденному проекту, разработанному специализированной организацией или подразделением, имеющим специалистов по химзакреплению грунтов и опыт проектирования таких мероприятий.

2.8 При организации и производстве работ по химзакреплению грунтов необходимо применять мероприятия, исключающие загрязнение почвы, подземных вод и атмосферного воздуха.

2.9 Основные способы химического закрепления грунтов, используемые материалы, оборудование и методы производства работ приведены в разделе 7 настоящих Рекомендаций.

3. Инженерные изыскания и обследования

3.1. Инженерные изыскания

3.1.1 Инженерные изыскания при реконструкции должны обеспечивать комплексное изучение инженерно-геологических условий площадки реконструируемого здания или подземного сооружения и получение материалов для решения вопроса о необходимости проектирования усиления фундаментов или укрепления основания.

3.1.2 Проведению изысканий и обследованию оснований и фундаментов зданий должны предшествовать:

- визуальная оценка состояния верхней конструкции здания, в том числе фиксация имеющихся трещин, их размера и характера, установка маяков на трещины;

- выявление режима эксплуатации здания с целью установления факторов, отрицательно действующих на основание (утечки из коммуникаций, затопление подвалов, сырость и высолы на стенах, замачивание пазух фундаментов, нарушение отмостки и т.д.);

- установление наличия и состояния дренажных систем;

- ознакомление с архивными материалами инженерно-геологических изысканий, имеющимися на площадке реконструкции;

- организация работ по наблюдению за деформациями основания и осадками сооружения.

Необходимость и повышении прочности оснований фундаментов существующих зданий и сооружений может вызываться различными причинами, к которым можно отнести: снижение прочности оснований в процессе эксплуатации, неправильный учет свойств грунта основания при Проектировании, увеличение нагрузок на основание при реконструкции, ведение строительных и горных работ вблизи здания, влияние динамических воздействий, различного рода аварийные ситуации и другие причины.

Усиление оснований существующих зданий выполняют следующими способами: химическим закреплением; физико-химическим закреплением; термическим закреплением; глубинным уплотнением грунта; заменой слабого грунта; включением в основание элементов повышенной жесткости.

Упрочнение основания существующих зданий и сооружений позволяет передать на основание возрастающие нагрузки при реконструкции, в некоторых случаях без замены или усиления фундаментов. Не требуется также и выполнения земляных работ по отрывке фундаментов.

Выбор схем закрепления зависит от формы и размеров фундамента, конструктивных особенностей здания, характеристики основания и других условий.

По характеру расположения инъ-екторов у фундамента закрепление бывает вертикальное, наклонное, горизонтальное и комбинированное

В настоящее время накоплен богатый опыт закрепления оснований фундаментов существующих зданий методом силикатизации.

Способом одностворной силикатизации были укреплены основания под фундаментами Московского Кремля, Государственного драматического театра им. М. Горького в Куйбышеве, Одесского театра оперы и балета и др.

Для укрепления песчаных оснований аварийных зданий используют газовую силикатизацию. Укрепление выполняют составом водного раствора силиката натрия плотностью 13 кг/ м3 и углекислого газа.

При реконструкции промышленных предприятий, а также жилых и гражданских зданий для усиления оснований применяются карбамидные смолы. Карбамидными смолами закрепляют грунты в основании фундаментов, а также в откосах котлованов для повышения их устойчивости.

Растворы для закрепления грунтов приготовляют непосредственно на строительной площадке. При закреплении песков применяют карбамидные смолы марок КМ, МФ-17 и МСБ. Плотность раствора должна составлять 10,7—10,8 кг/м3.

Подпорная стена в котловане создается инъецированием растворов через вертикальные и наклонные скважины. После устройства подпорной стенки, через закрепленный грунт пробуривают горизонтальные скважины и закрепляют грунт непосредственно под фундаментами колонн.

До последнего времени нагнетание растворов при закреплении грунтов осуществляли через инъекторы, погружаемые вертикально или наклонно с поверхности грунта. Существенным недостатком в этом случае является то, что при выполнении работ нарушается эксплуатация подвалов и нижних этажей, а то и всего здания на длительное время.

В ряде случаев нагнетание закрепляющих растворов производится из горизонтально расположенных инъек-торов, которые погружаются в грунт из специально оборудованных для этой цели шахтных колодцев, приямков или траншей.

В результате истечения срока эксплуатации сооружений, необходимости использования новых технологий при интенсификации или переориентации производства в цехах промышленных зданий, изменения условий эксплуатации строений, прокладки новых подземных коммуникации, возведения зданий рядом с уже существующими, а также развития незатухающей дополнительной осадки требуется оценка обеспечения фундаментами дальнейшей нормальной эксплуатации, а в необходимых случаях — реконструкция и усиление оснований и фундаментов.

Усиление фундаментов необходимо выполнять в следующих условиях:
при увеличении нагрузки на фундаменты, возможной при реконструкции, капитальном ремонте и надстройке зданий;
при разрушении конструкции фундамента при ее расположении в агрессивной среде;
при увеличении деформативности и ухудшении условий устойчивости оснований в результате дополнительного увлажнения или ухудшения свойств грунтов в силу изменения инженерно-геологических условий;
при развитии недопустимых осадок, происходящих, как правило, в результате ошибок, допущенных при проектировании вследствие неправильной оценки несущей способности и деформативности основания или при строительстве и вызвавших нарушение природной структуры грунта.




В настоящее время используют следующие методы усилия оснований и фундаментов: изменение условий передачи давления по подошве фундамента на грунты оснований; повышение прочности конструкции фундамента; увеличение несущей способности грунтов, слагающих основание; пересадка фундаментов на сваи; изменение условий передачи давления по подошве фундамента на грунт оснований с помощью увеличения опорной площади, заглубления фундамента, устройства под зданием фундаментной плиты и введение дополнительных опор.

При недостаточной несущей способности основания увеличивают площадь фундаментов. Уширение выполняют двумя способами: без обжатия грунтов основания и с предварительным Обжатием.

В первом случае уширение производится с помощью дополнительных частей (банкетов), которые могут быть односторонними (при внецентренной нагрузке) или двусторонними (при центральной). Фундаменты под колонны чаще всего усиливают по всему периметру. Банкеты и существующие фундаменты должны быть жестко соединены, для чего используют штрабы (рис. 14.4, а) либо специальные металлические и железобетонные балки (рис. 14.4, б, в).

Ширина банкета в нижней части должна быть не менее 30 см, в верхней—20 см.

При необходимости ряд одиночных фундаментов может быть превращен в ленточный, а несколько ленточных фундаментов — в сплошную железобетонную плиту. Иногда уширение ленточных и отдельных фундаментов выполняют с применением арматуры, располагаемой в банкетах (рис. 14.5, а, б).

При уширении без обжатия (рис. 14.4 и 14.5, а) уширенная часть фундамента вступает в работу только после значительного увеличения внешней нагрузки, когда появятся дополнительные осадки, причем уширения воспримут только часть дополнительной нагрузки, значительная же ее часть будет по-прежнему передаваться через подошву старого фундамента, что вполне допустимо, поскольку выпор грунта из-под старой подошвы затруднен вследствие при-грузки основания уширениями фундамента (рис. 14.5, а).

Рис. 14.4. Уширение ленточных фундаментов монолитными банкетами: а — одностороннее уширение; б, в — двустороннее ушврение соответственно при большом и незначительном увеличении размера подошвы фундамента; 1 — упорный уголок; 2 — подкос; 3 — рабочая балка; 4 — щебеночная подготовка; 5 — анкер; б — распределительная балка; 7 — зачеканкалитымбетдам

При уширении фундамента с обжатием основания (рис. 14.5, б) вдоль боковых граней фундамента разрабатывают траншею и бетонируют примыкающие к граням фундамента банкеты отдельными участками по длине омоноличивания с кладкой. Затем устанавливают в проемах фундаментов пакеты из стальных балок для упоров в них гидравлических домкратов. Домкраты обжимают основание под новыми частями фундамента. До перестановки домкратов банкеты расклинивают, сохраняя тем самым напряжения под их подошвой. После перестановки домкратов пространство между банкетами и стальными пакетами заливают бетоном. В этом случае уширения будут воспринимать большую часть дополнительного давления по сравнению с предыдущим случаем (рис. 14.5, е).

Рис. 14.5. Конструкции уширения подошвы фундаментов: а — без обжатия грунта основания; б, ж — с обжатием грунта домкратами; в — эпюра давления до усиления; г—то же, после обжатия грунта домкратами (эпюра до усиления показана пунктиром); д, е — то же, после усиления и загружения фундаментов; 1 — усиливаемый фундамент; 2 — конструкция уширения; 3 — арматура; 4 — домкрат; 5 — клинья; 6 — пакеты из металлических балок; 7 — бетон; 8 — банкет

Для усиления фундаментов совместно с обжатием грунтов можно применять плоские гидравлические домкраты (рис. 14.6, а), представляющие собой плоские резервуары из двух тонких (1…3 мм) металлических листов, имеющих по периметру валик круглого сечения диаметром 20…80 мм (рис. 14.6, б). В домкраты рекомендуется нагнетать твердеющие жидкости (эпоксидную смолу, цементный раствор), которые фиксируют созданное напряженное состояние.

Рис. 14.6. Усиление фундамента с применением плоских домкратов: а — схема усиления; б — деталь размещения домкрата; 1 — фундамент; 2 — банкеты; 3 — штрабы в фундаменте; 4 — балки; 5 — плоский домкрат; 6 — трубка для нагнетания жидкости в домкрат

Для предварительного уплотнения грунтов применяют и другой метод, заключающийся в установке с двух сторон существующего фундамента дополнительных железобетонных блоков уши рения, нижняя часть которых стягивается гибкими анкерами из арматурной стали, пронизанными сквозь них и существующие фундаменты (рис. 14.7). Верхнюю часть блоков разжимают с помощью домкратов или забивных клиньев. В результате блоки, поворачиваясь вокруг нижней закрепленной точки, обжимают грунт основания, а затем в этом положении щели между фундаментами и блоками заполняются бетоном. Такой способ особенно удобен, если у усиливаемого фундамента отсутствуют развитые консоли.

Рис. 14.7. Усиление фундаментов дополнительными блоками, обжимающими грунты оснований при их повороте: 1 — существующий фундамент; 2 — щель, раскрывшаяся при повороте блоков и заполняемая бетоном; 3 — железобетонный блок; 4 — анкерное крепление; 5 — отверстие для анкеров, заполняемое раствором по окончании работ

Рис. 14.8. Увеличение опорной площади фундаментов: 1 — распределительная монолитная обвязка по периметру стен; 2 — монолитные участки перекрытий; 3 — нажимная рамная конструкция из монолитного железобетона; 4 — дополнительный фундамент из сборных плит; 5 — основной фундамент из сборных плит

В случае необходимости значительного увеличения площади фундаментов может быть предложен другой метод, сущность которого заключается в укладке на щебеночную подготовку дополнительных железобетонных плит (рис. 14.8). Плиты располагают в виде двух (или более) лент, уложенных в продольном направлении, перпендикулярном существующим поперечным стенам. На каждой ленте дополнительного фундамента устанавливают опалубку и арматуру нажимных рам, которые состоят из нижних горизонтальных ригелей сечением 40 ж 60 см, лежащих на новых фундаментах, и наклонных стоек упоров такого же сечения. Рамы передают усилия на пояса-обвязки поперечных стен, по которым ведется кладка кирпичных стен надземных стен здания. Для образования замкнутого контура нажимных рам над ними, в плоскости перекрытия над техническим подпольем, устраивают монолитные участки железобетона в виде полос шириной 60 см, высотой, равной высоте сборных плит перекрытия.

К увеличению глубины заложения фундаментов прибегают реже из-за значительной трудоемкости. Однако этот способ применяют в случае необходимости увеличения глубины подвала, переноса подошвы фундамента на более плотные нижележащие слои грунта и т. д.

Для ленточных фундаментов эту процедуру выполняют в такой последовательности (рис. 14.9). Сначала в несущей стене прорубают отверстия, через которые пропускают разгружающие балки, устанавливаемые на бетонные тумбы или специальные опоры. Учитывая возможность осадки грунта, целесообразно опирать балки на домкраты, что позволяет регулировать положение опор при увеличении деформации основания.

Работы по увеличению глубины заложения ведут отдельными захватками длиной 2,5…3 м.

При заглублении фундамента под колонну применяют подкосы (рис. 14.10) или специальную конструкцию — «ножницы» (рис. 14.11).

Рис. 14.9. Заглубление ленточных фундаментов

Подводка под здание фундаментной плиты снижает давление по подошве и используется при существенном возрастании нагрузок или значительных неравномерных осадках и слабых грунтах оснований. Плиту толщиной до 25 см укладывают на щебеночную подготовку (рис. 14.12); сечение ее второстепенных балок 30×40 см, главных — 50×100 см. Шаг второстепенных балок около 2,5 м. Глубина заделки плиты в существующие стены 30…40 см, ее целесообразно устраивать не на уровне уже существующих фундаментов, а на 75…80 см выше.

Рис. 14.10. Перенос отметки заложения подошвы фундамента под колонну

Рис. 14.11. Подводка фундаментов под колонны на глубоких отметках с помощью приспособления «ножницы»: L— подкос; 2 — воротник; 3 — стальной анкер; 4 – новый фундамент; 5 – старый фундамент

Введение дополнительных опор целесообразно при сплошной замене перекрытий и при больших (более 7,5 м) пролетах. Необходимо соблюдать условие равномерности осадок существующих и вновь возводимых опор, имея в виду, что осадки уже построенных опор стабилизировались и практически равны нулю.

Рис. 14.12. Фундаментные плиты: прогоны фундаментной плиты; 2 — плита; 3 — балки фундаментной плиты; 4 — существующие конструкции

Рис. 14.13. Увеличение прочности оснований и фундаментов: а — наращиванием с помощью обойм; 6 — инъекцией раствора в кладку; в — закреплением грунта под фундаментом; 1 — усиливаемый фундамент; 2 — железобетонная обойма; 3 — трубки для инъекции; 4 — шгьекторы; 5 — закрепленный грунт

Рис. 14.14. Усиление ленточных и одиночных фундаментов набивными сваями: 1 — существующий фундамент; 2 — рандбалка (железобетонная или металлическая); 3 — свайный ростверк; 4— набивная свая

Повышение прочности конструкций фундаментов достигается с помощью устройства железобетонных или металлических (с последующим обетонированием) обойм (рис. 14.13, а) или инъецированием в кладку фундамента цементного раствора (рис. 14.13, б). Иногда оба способа используются одновременно.

Увеличение несущей способности грунтов основания осуществляется с помощью методов закрепления грунтов, рассмотренных в гл. 12. Обычно закрепление осуществляют с помощью инъекторов, погружаемых в грунт под подошвой фундамента (рис. 14.13, в). Применение набивных свай при усилении фундаментов может быть рекомендовано при высокой деформируемости грунтов, наличии подземных вод, осложняющих процесс уширения, и при значительном увеличении внешних нагрузок. Несущую способность и число свай определяют расчетом. Недостатком такого способа является его сложность из-за необходимости подводки набивных свай. Сваи формируются в грунте обычно из подвальных помещений с помощью обсадных труб либо в предварительно пробуренных скважинах (рис. 14.14, а — д).

Кроме набивных свай в последнее время все большее распространение получают вдавливаемые сваи, состоящие из отдельных сборных железобетонных элементов квадратного (20 х 20, 30 х 30) или круглого (со сквозным каналом) поперечного сечения длиной 80… 100 см. Эти звенья последовательно вдавливаются в грунт с помощью домкратов (рис. 14.15).)

Рис. 14.15. Последовательность работ по устройству свай Мега: а — г — этапы выполнения работ; 1 — несущая стена; 2 — домкрат; 3 — насосная станчи; 4 — нижний элемент; 5 — рядовой элемент сваи; б — стойка; 7 — распределитель вал балка; 8 — головной элемент

Рис. 14.16. Изготовление свай в грунте с помощью высоконапорной струи: 1,2 — образование скважин струей; 3,4 — заполнение скважин раствором твердеющего материала

Рис. 14.17. Подведение свайных фундаментов под реконструируемое здание

Наиболее эффективной при усилении фундаментов является струйная технология., позволяющая создавать несущие конструкции в грунте. Она основывается на использовании энергии водяной струи для прорезки в грунте полостей, заполняемых бетонной смесью.

Главным элементом устройства для образования щелей, скважин или полости является струйный гидромонитор, имеющий на боковой поверхности водяные сопла, в нижней — отверстия для подачи бетона, в верхней — подводящие трубопроводы и пггангу для опускания монитора в скважину. Высоконапорная струя воды под большим давлением способна разрезать грунты и другие твердые материалы, а при добавке в струю абразивного материала даже железобетон. Для увеличения разрушающего воздействия струя поступает под защитой воздушного потока или подаваемых одновременно водяного и воздушного потоков.

При опускании монитора в лидерную скважину можно выполнять вертикальные разрезы, разрушая и удаляя грунт высоконапорными струями с последующим заполнением полостей раствором вяжущего материала, получая в грунте плоские элементы (типа щелевых фундаментов). Вращая монитор в грунте с одновременным подъемом, можно получить цилиндрические элементы — сваи (рис. 14.16). Часто струйную технологию используют при реконструкции для устройства цементно-грунтовых свай.

Струйная технология имеет большие преимущества: не вызывает динамических воздействий, может применяться при работе в стесненных условиях, так как не имеет громоздкого оборудования (рис. 14.17) при высокой производительности, и может оказаться незаменимой при укреплении грунтов оснований деформирующихся зданий, устранении кренов, ликвидации неравномерных осадок и т. д.


При возведении объекта капитального строительства фундамент является основополагающим элементом. Он воспринимает все нагрузки от конструкций, которые находятся на нем, а также распределяет их на грунтовое основание. При реконструкции зданий и сооружений важным считается целесообразный и рациональный выбор способа усиления фундамента. В данной статье рассматриваются особенности проведения реконструкции и усиления фундаментов, описаны причины, приводящие к реконструкции, приводится анализ существующих технологий для проведения соответствующих работ.

Ключевые слова: усиление фундаментов и оснований, реконструкция зданий, несущая способность, основание, фундамент, усиление фундамента, укрепление фундамента, свайные технологии, инъекционные технологии.

В последнее время наряду с вопросами о строительстве, актуальными стали вопросы о реконструкции и капитальном ремонте фонда, поскольку данное направление является одним из приоритетных для обеспечения граждан комфортным и доступным жильем. Реконструкция зданий направлена на рост и улучшение свойств объекта во время эксплуатации. Так внимание уделяется конструктивным, функциональным и эстетическим свойствам. И поскольку фундамент является важнейшим элементом конструктива здания — усиление фундаментов является не менее важной задачей.

К причинам, по которым фундаменты теряют свою несущую способность, можно отнести:

  1. Моральное устаревание, которое приводит к отсутствию возможности выполнять несущие функции;
  2. Перепады уровня грунтовых вод, чрезвычайное увлажнение фундамента;
  3. Большое количество циклов переменного замораживания и оттаивания;
  4. Разработка земли вблизи существующего здания;
  5. Воздействия динамического или вибрационного характера;
  6. Некачественно выполненная гидроизоляция фундамента.

Примеры причин, которые негативно влияют на основание и фундаменты представлены на рисунке 1 и 2.

Деформация и трещина фундамента

Рис. 1. Деформация и трещина фундамента

Формы и виды деформаций

Рис. 2. Формы и виды деформаций

Работы, проводимые для усиления фундаментов, связаны с изменением геометрических размеров зданий, увеличением нагрузок, как временных, так и постоянных, усилением фундаментов после суффозии, нестабильности уровня грунтовых вод и т. д.

Прежде чем начинать работы по реконструкции, необходимо провести инженерные изыскания. Целью проведения работ является: определение причины полученных дефектов, характер возникших деформаций, разработка мер по реконструкции фундаментов. В результате обследования, составляется технический отчет, в котором приведены результаты обследования, а также техническое заключение о возможности использования конструктива фундамента при их реконструкции.

Эффективные технологии, применяемые для усиления фундаментов: укрепление фундаментов, усиление фундаментов, усиление фундаментов с помощью свай, укрепление грунтов.

Рассмотрим первую методику — укрепление фундаментов:

  1. при помощи цементации — для устройства цементации в теле фундамента бурят шурфы или пробивают отверстия для инъекторов и в трещины и пустоты подается раствор под давлением;
  2. при помощи торкретирования — по периметру фундамента отрывается траншея, и на поверхность устраиваются насечки для подачи бетонной смеси.
  3. при помощи железобетонных обойм — технология заключается в отрывке по периметру участков, в которых уплотняют грунт и устанавливают арматурный каркас, куда в последствии заливают бетон.

Традиционным способом усиления фундамента является увеличение ширины подошвы фундамента для снижения давления на грунт. Элементами могут служить плиты, столбы, сплошные стены. Под фундаментом длиной 1–2 м удаляют грунт, и на месте изготавливают железобетонную плиту или устанавливают железобетонные элементы. Далее промежутки между плитой и фундаментом заполнят пластичным бетоном тщательно уплотняют.

Далее метод применения свай — подведение их под фундамент. Используют буровые, буронабивные сваи и сваи вдавливания. Особенностью данной технологии является использование малогабаритной техники. Для укрепления фундаментных конструкций буронабивными сваями обычно пробуривают скважину, затем устанавливают арматурный каркас и после заливают бетоном. При устройстве же буроинъекционных свай по периметру под углом бурят скважины, в которые помещают каркас из арматуры и под давлением заполняют бетоном.

Проанализировав методы усиления фундаментов, были выделены достоинства и недостатки каждого метода и представлены в таблице 1.

Достоинства и недостатки методов усиления фундаментов

Название

Достоинства

Недостатки

Низкие затраты труда; Улучшенные физико-механические свойства, а именно морозо\жаростойкость, прочность, сцепление с поверхностью.

Присутствует потеря материала на 10–15 %, ограниченная маневренность рабочих и установки, из-за чего возникает явление отскока рабочей смеси.

Высокая производительность работ, отсутствие динамических воздействий, возможность проведения работ в стесненных условиях.

Тяжело контролировать полученный результат — риск попадания раствора в подземные коммуникации.

Метод идеально подходит для фундаментов с неглубоким заложением.

При забивке штырей в тело фундамента есть риск нанести вред ветхим фундаментам. Высокая стоимость работ.

Используются при большой толщине слабых грунтов в основании, уменьшают объемы земляных и бетонных работ

Большой расход бетона, сложно контролировать монтажные работы при неустойчивых грунтах, сложно рассчитать несущую способность фундамента на буронабивных сваях.

Возможно проведение работ в холодное время года, в сложных условиях реконструкции в стесненных условиях работ. минимизируют время монтажа, минимум влияние на окружающие здания.

Работы должны вести слаженно. нежелательно использование метода на участках, расположение которых на склонах.

Рассмотрев несколько методов по усилению фундаментов, можно подытожить, что каждый метод является эффективным в определенных условиях. Приведенные и рассмотренные выше методы являются наиболее экономичными и представляют собой эффективные решения по увеличению надежности реконструируемого здания.

Методы позволяют решать поставленные задачи по повышению прочности фундаментов и снижению деформаций при реконструкции. Таким образом, реконструкция фундаментов зданий — это процесс, который требует максимальной ответственности и наличия нужных навыков, опыта и знаний.

Основные термины (генерируются автоматически): усиление фундаментов, реконструкция зданий, фундамент, арматурный каркас, грунт, несущая способность, работа, результат обследования, реконструкция, укрепление фундаментов.

Ключевые слова

основание, несущая способность, фундамент, реконструкция зданий, усиление фундаментов и оснований, усиление фундамента, укрепление фундамента, свайные технологии, инъекционные технологии

усиление фундаментов и оснований, реконструкция зданий, несущая способность, основание, фундамент, усиление фундамента, укрепление фундамента, свайные технологии, инъекционные технологии


Статья посвящена ремонту и усилению фундаментов, рассматриваются методы укрепления и усиления фундаментов.

Ключевые слова: усиление, укрепление, фундамент, ремонт.

Сколько прослужит жилое здание и будет ли оно соответствовать назначению зависит от основания и фундамента. Иногда возникает необходимость для его переустройства. Например, если возрастает нагрузка на существующий фундамент или изменяется его функциональное назначение.

Фундамент — это несущая строительная конструкция, которая является частью здания или сооружения, выполняет функцию распределения всей нагрузки по основанию.

Фундамент — это система, которая считается более трудной в проектировании и прогнозировании ее функционирования в процессе эксплуатации.

На практике выяснилось, что укрепить готовый фундамент гораздо сложнее чем спроектировать новый. Происходит это потому, что необходимо учитывать условия эксплуатации. Ремонтируя и укрепляя фундамент необходимо учитывать разнообразие проявлений деформации зданий и сооружений. Этот процесс трудоемкий, тяжелый и ответственный.

Причины, вызывающие повреждение или разрушение фундаментов:

– Природные (грунтовые воды, низкие температуры, размягчение грунта)

– Техногенные (нагрузка на фундамент неравномерна, структура грунта подверглась изменению, почва подверглась загрязнению).

Для того, чтобы предотвратить аварийную деформацию зданий, чаще всего приходится увеличивать площадь подошвы фундаментов.

Основные работы при ремонте и усилении фундамента:

– усиление оснований и фундаментов;

– уширение подошвы фундаментов;

– увеличение глубины заложения;

– полная или частичная их замена.

Методы усиления фундаментов

  1. При незначительном износе применяется метод устройства защитных растворных рубашек. В уже существующую кладку заделывают металлические анкеры соблюдая шахматный порядок через 0,5 м. Далее к ним крепят арматурную сетку и наносят раствор.

На рисунке 4 представлены два варианта устройства железобетонной обоймы — двусторонней (рис.4, а) и односторонней (рис. 4, б).


Рис. 1. Усиление бутовых фундаментов путем устройства железобетонной обоймы: а-двусторонней, б-односторонней:1-бутовый фундамент, 2-анкер, 3-арматурная сетка, 4-опалубка, 5-бетонная смесь.

  1. При усилении фундаментов эффективно применять корневидные сваи (буроинъекционными) — это позволяет работать без разработки котлована, обнажения фундамента, а также не нарушая структуру грунта у основания. При этом способе усиления здания используется так называемый подпорок — жестких корней в грунте, который переносит большую часть нагрузки на плотный слой грунта.


Рис. 2. Усиление фундаментов буроинъекционными сваями: 1-фундамент, 2-буроинъекционные сваи, 3-стена

  1. Так же можно использовать способ «стена в грунте». Он хорошо подойдет если работы производятся недалеко от зданий и в сложных грунтовых условиях. Если условия строительства вызывают сложности, то при усилении фундамента можно комбинировать два способа «стена в грунте» и устройство набивных и корневидных свай.
  2. При необходимости углубления фундамента применяют монолитный бетон. Сначала фундамент необходимо разгрузить, далее отрывают шурфы на 0,7. 1 м ниже, чем подошва фундамента, а затем стенки закрепляют щитами. К передней стенке устанавливают раму. В колодец заливают бетон, с дальнейшим обжатием основания. Далее зазор бетонируется.


Рис. 3. Углубление фундамента отдельными блоками: 1-стена, 2-фундамент, 3-забирки, 4-домкрат, 5-бетонный блок, 6-деревянная рама, 7-инвентарные щиты

  1. Усиление с помощью железобетонных опускных колодцев. Этот способ не требует разгрузки фундамента и может иметь любые габариты. Размер колодца должен быть больше подошвы фундамента (15–20 см.). Его опускают по наружному периметру стен, не нарушая фундамент и заключают в обойму. После этого траншея послойно засыпается песком или грунтом.


Рис. 4. Усиление фундаментов с помощью опускного колодца: а-установка колодца в приямке на опоры, б-колодец в проектном положении:1-фундамент, 2-опускной колодец, 3-обжимаемое основание, 4-котлован.

Ремонтируя фундамент иногда необходимо его заменить. Так как существующие методы усиления не могут обеспечить требуемую несущую способность или выполнить работы не предоставляется возможности. Когда необходимо заменить фундамент:

– Если нагрузка возрастает (предстоит надстройка здания, осадка здания);

– Если необходимо проложить ниже подошвы заложения фундамента существующего здания в непосредственной близости от него подземных коммуникаций типа коллектора и т. д.

Замена фундаментов делится на два этапа:

– Первый этап (подготовительный). В него входят мероприятия, которые обеспечат зданиям устойчивость при выполнении работ на втором этапе.

– Второй этап заключается в устройстве котлованов и траншей, разработке старого и устройстве нового фундамента, а также сопутствующие работы. Перекладка чаще всего происходит на отдельных участках длиной 1,5…2 м. Выполняется не раньше 7 суток, после окончания работы на предыдущих смежных участках. Сначала выполняются работы по перекладке самых слабых участков.

При необходимости заменить фундамент производят отрывку шурфов и одновременно надежно закрепляют их стенки. Используя отбойные молотки разбирают буровой фундамент. Но если кладка расслоилась приходится работать вручную. Далее выкладывается новый фундамент. После этого прокладывается гидроизоляционный слой, который будет сопрягаться с гидроизоляцией соседних участков фундамента. Место между новым фундаментом и кладкой стены, закладывают кирпичом и плотной заклинкой горизонтального шва полусухим цементным раствором, далее делают обратную засыпку шурфа, которую в дальнейшем послойно трамбуют грунтом.

  1. Берлинов М. В. Основания и фундаменты / М. В. Берлинов. — СПб: Издательство «Лань», 2011. — 320 с.
  2. Леденев В. И. Усиление конструкций при реконструкции / В. И. Леденев В. В. Леденев. — Тамбов: ТИХМ, 1991. — 104 с.
  3. Мурсалова Д. Р. Усиление фундаментов и грунтов оснований зданий // Молодежный научный форум: Технические и математические науки: электр. сб. ст. по мат. XLI междунар. студ. науч.-практ. конф. № 1(41).
  4. Швец В. Б. Усиление и реконструкция фундаментов / В. Б. Швец, В. И. Феклин, Л. К. Гинзбург. — М.: Стройиздат, 1985. — 240 с.

Основные термины (генерируются автоматически): усиление фундаментов, фундамент, грунт, железобетонная обойма, подошва фундамента, работа, структура грунта, усиление фундамента.


Данная работа затрагивает одну из основных разновидностей строительства — реконструкцию. В частности, статья касается мероприятий по усилению фундаментов существующих зданий. В работе рассмотрены основные методы по усилению оснований и фундаментов зданий, изучены их организационно-технологические особенности, проанализированы достоинства и недостатки каждого из методов производства работ, а также выявлены основные сложности в организации рассмотренных методов.

Следует отметить степень важности поднимаемой темы в данный период. В рамках современного мегаполиса эта тема имеет особую актуальность. В быстроразвивающемся городе имеет место быть колоссальное количество факторов, влияющих на несущую способность грунтов оснований, а также являющихся причиной высокого износа фундаментов существующих зданий: строительство новых станций метрополитена, возведение зданий в условиях плотной городской застройки, увеличение эксплуатационных нагрузок на существующие здания, ошибки, допущенные на стадии проектирования и производства работ по возведению здания, изменение геологических условий грунтов основания. Эти факторы так или иначе приводят к необходимости своевременно выполнить работы по усилению фундаментов существующих зданий. Вследствие этого появляется необходимость выбора наиболее оптимального метода, требующего наименьших затрат материально-технических и финансовых ресурсов, обеспечивающего возможность проведения работ в условиях плотной городской застройки в эксплуатируемых зданиях, а также, несомненно, обеспечивающий фундаменты здания необходимыми прочностными характеристиками. Исходя из описанного выше, можно сделать вывод, что данная тема особо актуальна в рамках города с высокими темпами развития.

Манжетная цементация

Главной составляющей технологии манжетной цементации является манжетная колонна, погружаемая в предварительно пробуренную скважину. Эта колонна оборудована специальными клапанами, позволяющими производить цементацию грунтов позонно, с применением избыточного давления. Также существенным преимуществом является возможность использовать манжетную колонну для многократных повторов инъекции.

Традиционно манжетная колонна погружается в скважину, заполненную малопрочным цементно-бентонитовым или специализированным составом — обойменным раствором, который не позволяет инъецируемому раствору свободно распространяться вдоль скважины, а направляет его непосредственно в инъектируемый горизонт грунта.

В зависимости от консистенции, состава раствора и давления инъекции манжетная цементация может производиться в режиме пропитки, в режиме заполнения полостей, в режиме уплотнения грунта и в режиме гидроразрывов. Применение манжетной цементации возможно в песчаных, суглинистых, глинистых, насыпных грунтах, лёссах и других грунтах. Метод манжетной цементации позволяет исключить трудоемкие работы по устройству котлованов.

Недостатком данной технологии является невозможность проконтролировать полученный результат, а также выдавливание раствора на поверхность через соседние манжетные колонны или в цокольный этаж здания через каменную кладку фундамента, что является причиной загрязнения окружающей среды, а также является риском попадания цементного раствора в подземные коммуникации. При производстве работ данным методом необходимо предусмотреть мероприятия по предотвращению распространения вытекающего раствора на близлежащие территории.

Частичная иполная разгрузка фундаментов

Частичную разгрузку выполняют путем установки временных деревянных опор и деревянных и металлических подкосов. С этой целью в подвале или на первом этаже укладывают опорные подушки, на которые укладывают опорный брус с последующей установкой на него деревянных стойках. С помощью скоб на стойках закрепляют деревянные прогоны. После между стойками и нижним опорным брусом забивают клинья, таким образом стойки включаются в работу. Тем самым нагрузка от перекрытий частично перераспределяется на временные опоры, снимаясь со стен здания. Чтобы стойки максимально включались в работу, их необходимо устанавливать строго друг над другом на каждом этаже.

Полную разгрузку осуществляют путем заделывания поперечных металлических или железобетонных балок в каменную кладку стены. Для этого в нижней части стены вблизи верхнего обреза фундамента через 2–3 м пробивают сквозные отверстия, в которые заводят поперечные балки. Под каждой поперечной балкой устраивают две опорные подушки на уплотненном основании. Передача нагрузки на опорные подушки осуществляется через продольные балки с помощью клиньев или домкратов. При неудовлетворительном состоянии стены ее предварительно усиливают путем установки рандбалок, которые располагаются выше пробиваемых отверстий.

Достоинством метода частичной или полной разгрузки фундаментов является отсутствие необходимости в специализированных механизмах и относительная простота производства работ. Однако недостаток затронутого метода в том, что он не повышает несущую способность грунтов основания, а соответственно, не обеспечивает прочность здания при осадке грунтов. Недостатком данного метода также является затрудненность производства работ в стесненных условиях при малой высоте цокольного этажа, либо при наличии в нем различных коммуникаций.

Метод укрепления вдавливаемыми сваями

Укрепление фундамента данным методом производится путем вдавливания составных свай под основание фундамента с помощью домкрата. Так как работы проводятся частично в подвале здания, ввиду стесненности помещений используют многосекционные сваи. Применение вдавливаемых свай позволяет существенно упростить работу и ускорить процесс. Данный метод позволяет снизить вибрации, динамическое воздействие, шум при производстве работ, а также уменьшает трудозатраты. На сваи передается нагрузка от стены посредством анкеров, заведенных через отверстие в стене. При использовании свай вдавливания необходимы надежные упоры, в качестве которых может служить железобетонная балка. Наращивание сборных стыковых элементов производят до тех пор, пока острие не достигнет плотных грунтов, что обеспечит необходимую несущую способность системы в целом.

Недостатком технологических приемов усиления оснований фундаментов вдавливаемыми сваями является большой объем земляных работ. При этом вскрытие шурфом или траншеей перегруженного фундамента до его подошвы опасно. Кроме этого, вдавливание свай может привести к расструктуриванию (перемятию) слабого глинистого грунта.

Было проанализировано несколько основных методов усиления фундаментов существующих зданий и определены недостатки каждого из них. Производство данного вида работ существенно затрудняется стесненностью условий и опасностью дальнейшего разрушения здания во время производства работ. Соответственно, в дальнейшем необходимо разработать мероприятия, снижающие стесненность производства работ, и в то же время обеспечивающие надежность проводимых мероприятий.

  1. Колесник Г. С., Каранаева Р. З. Усиление несущих конструкций жилого 5-этажного кирпичного дома, получившего значительные деформации на слабых просадочных грунтах / Г. С. Колесник, Р. З. Каранаева // Предотвращение аварий зданий и сооружений. — 2009–09–21.
  2. Антонова Ю. В., Раенко А. В., Борчев К. С., Саралиндзе З. У., Соколов С. В., Гудовичев В. В. К вопросу оценки старых зданий при их реконструкции (на примере малоэтажной застройки 1930–50-х гг. г. Магнитогорска) / Ю. В. Антонова, А. В. Раенко, К. С. Борчев, З. У. Саралиндзе, С. В. Соколов, В. В. Гудовичев // Предотвращение аварий зданий и сооружений. — 2016–1-27.
  3. Нагаева З. Реконструкция и реставрация объектов культурного наследия / З. Нагаева, В. Сидорова, В. Живица — М.: Бук, 2018. — 160 с.
  4. Радионов Т. В. Стратегическая реконструкция объектов типовой застройки в крупных городах / Т. В. Радионов // Предотвращение аварий зданий и сооружений. — 2014–02–10.

Основные термины (генерируются автоматически): манжетная цементация, производство работ, работа, здание, недостаток, плотная городская застройка, свая, усиление фундаментов.

Читайте также: