Усиление фундаментов буронабивными сваями

Обновлено: 04.05.2024

Широкое распространение получило усиление фундаментов мелкого заложения выносными буронабивными сваями, которые так же, как и вдавливаемые сваи, передают нагрузку от здания на лежащие ниже прочные грунты. Буронабивные сваи могут использоваться при усилении ленточных и столбчатых фундаментов, при этом располагают их относительно существующего фундамента так же, как и вдавливаемые сваи.

При усилении ленточных фундаментов буронабивными сваями выполняют следующие этапы работ (рис. 4.18):

  • I — вдоль стен разрабатывают шурфы или траншеи и устанавливают крепления; в стене над обрезом фундамента пробивают продольную борозду (штрабу), которая промывается, и в нее на растворе укладывают металлическую разгрузочную балку. Балку перед установкой обматывают проволокой. После установки балка может быть забетонирована;
  • II — производят бурение скважин, монтируют арматурные каркасы и бетонируют сваи. Бурение выполняют ручным или механизированным способом в зависимости от стесненности площадки и габаритов оборудования;
  • III — пробивают сквозные отверстия в существующем фундаменте, устанавливают металлические поперечные балки, необходимые для задавливания свай в грунт и включения их в работу. Поперечные балки необходимы также для более надежного сопряжения ростверка с существующим фундаментом;
  • IV — производят задавливание свай в грунт домкратами и заклинивание балок;
  • V — устанавливают опалубку и бетонируют ростверк, который выполняется прерывистым или сплошным по всей длине фундамента; в последнем случае достигается более жесткое сопряжение. После схватывания бетона крепление и опалубку снимают, а траншею засыпают грунтом с тщательным трамбованием.

Этапы работ по усилению ленточных фундаментов набивными сваями

1 — фундамент; 2 — шурф; 3 — крепление шурфа; 4 — разгрузочная балка; 5 — стена; 6 — слабый грунт; 7 — прочный грунт; 8 — скважина для сваи; 9 — буронабивная свая; 10 — продольная балка; 11 — поперечная балка; 12 — отверстия в усиливаемом фундаменте; 13 — домкрат; 14 — железобетонный ростверк

При усилении столбчатых фундаментов по периметру существующего фундамента пробуривают скважины, устанавливают арматурные каркасы и бетонируют сваи. Головы свай с арматурными выпусками связывают железобетонной обоймой, выполняемой вокруг существующего фундамента. Конструкции железобетонных обойм аналогичные ранее описанным конструкциям. Концы свай заглубляют в прочный слой грунта.

Усиление столбчатого фундамента рассмотрим на примере усиления фундаментов промышленного здания в г. Асбесте. В основании фундаментов залегали глинистые грунты твердой консистенции. В ходе производства монтажных работ посредине здания была обнаружена линза ранее насыпного грунта с 20%-ным содержанием органических включений. После монтажа основных несущих конструкций фундаменты над этим участком получили значительные деформации (от 100 до 300 мм). Деформации были неравномерными, в результате чего одна из колонн сместилась на 100 мм от проектной оси. Деформации привели к образованию трещин в железобетонной колонне, искривлению подкрановых балок и связей между фермами. Было принято решение демонтировать все конструкции здания на участке, где наблюдались аварийные деформации основания, и выполнить новые фундаменты с устройством буронабивных свай, опирающихся на прочные грунты природного сложения (рис. 4.19). Объединение старого и нового фундамента достигалось устройством железобетонной обоймы. По расчету каждый фундамент усиливали восемью буронабивными сваями диаметром 400—800 мм. В расчете работа старого фундамента не учитывалась, вся нагрузка передавалась только через буронабивные сваи. Обоймы выполняли из бетона марки М200. Последовательность выполнения работ описана в работе [63]. Эксплуатация здания показала надежность выполненного усиления.

Бураев М. Опыт усиления деформированных фундаментов и оснований промышленных зданий. Реферативный сборник. Технология строительного производства. Вып. № 2 (35). ЦБНТИ Минтяжстроя СССР: М.: 1975, с. 8—9

Схема усиления столбчатого фундамента промышленного здания набивными сваями

1 — набивная свая; 2 — железобетонная обойма; 3 — деформированная колонна; 4 — насыпной грунт; 5 — прочный грунт

В особо сложных случаях усиления фундаментов мелкого заложения, когда нагрузку от здания надо передать на глубоко залегающие прочные грунты, особенно при наличии высокого уровня грунтовых вод, используют вдавливаемые сваи. Усиление фундаментов сваями (сборными железобетонными или из отдельных сплошных или трубчатых элементов) производится двумя способами: пересадкой фундаментов на выносные сваи или подведением свай под подошву фундамента.

Для усиления ленточных фундаментов выносные сваи могут устраиваться как с каждой стороны ленточного фундамента (рис. 4.15, а) так и с одной его стороны в один или два ряда (консольные и рычажные системы) (рис. 4.15, б). Для пересадки столбчатых фундаментов сваи могут располагаться с двух противоположных сторон подошвы (рис. 4.15, в) или вокруг нее (рис. 4.15, г). Сваи, подводимые под подошву фундамента, можно также располагать в один или несколько рядов в зависимости от конструкции существующего фундамента.

Выносные сваи применяют при высоком уровне грунтовых вод, а сваи, подводимые под подошву фундамента, — при низком. Сваи располагают одну от другой на расстоянии не менее 3 d .

Схемы размещения выносных свай при усилении ленточных и столбчатых фундаментов

1 — усиливаемый фундамент; 2 — свая; 3 — железобетонный пояс; 4 — рандбалки; 5 — поперечная балка; 6 — рычажный ростверк; 7 — железобетонная обойма

Головы свай с усиливаемым фундаментом соединяются ростверками, выполняемыми в виде железобетонных поясов (для ленточных фундаментов) или железобетонных обойм (для столбчатых фундаментов). Если усиливаемые фундаменты не имеют достаточной прочности, то их укрепляют обвязочными балками. Для лучшей передачи нагрузки от усиливаемого фундамента на сваи применяют проходящие через него поперечные металлические и железобетонные балки. Длина свай устанавливается в зависимости от характеристики грунтов, размеров поперечного сечения свай и нагрузок на фундамент.

При проектировании усиления работа старого фундамента, как правило, в расчетах не учитывается. Вся нагрузка от существующего здания, а также и дополнительная должны быть восприняты свайным фундаментом. Для предварительных соображений несущую способность свай определяют по расчету, уточнение ее производится путем испытания пробных свай статической нагрузкой непосредственно на строительной площадке, где производится усиление.

При усилении фундамента выносными сваями добиваются надежного сопряжения старого фундамента со сваями. В фундаменте или при необходимости в стене устанавливают в продольных штрабах рандбалки. Кроме того, в фундаменте или стене пробивают сквозные гнезда, в которые заводятся поперечные металлические балки. В качестве поперечных могут применяться железобетонные балки. Балки связываются монолитным железобетонным ростверком, который соединяет головы свай (см. рис. 4.15). Сваи выводят до верха нижней ступени фундамента, а затем бетонируют раздельные ростверки. Домкраты устанавливают непосредственно над сваями, чтобы исключить работу ростверка на изгиб. На участке, расположенном между домкратами, фундамент разбирают и бетонируют ступень фундамента, объединяющую оба ряда ростверков. Эта ступень должна быть выполнена так, чтобы смогла работать как жесткий фундамент. Через сутки домкраты снимают. Инвентарные ригели удаляют, старую кладку на этих участках разбирают и заменяют бетоном.

Для столбчатых фундаментов поперечные передаточные балки делают парными и между ними зажимают колонну или фундамент. Для синхронной работы домкраты присоединяют к общему насосу. Давление в домкратах увеличивают ступенями. После каждой ступени делают перерыв для наблюдения за осадкой свай под нагрузкой. Перерыв продолжается до тех пор, пока осадка свай не прекратится. Обжатие свай должно прекращаться, как только прибор, установленный на колонне, отметит малейший ее подъем. При этом давлении сваи получают ту нагрузку, которая будет передаваться от сооружения. После стабилизации осадки сваи производится подклинка между рандбалками и поперечными балками, затем устраивают железобетонный пояс.

В практике строительства накоплен большой опыт усиления фундаментов мелкого заложения вдавливаемыми, в том числе составными, сваями. Кратко рассмотрим характерные случаи из отечественного и зарубежного опыта.

Способ усиления составными трубчатыми металлическими сваями фундаментов аварийного пятиэтажного жилого дома в Сумгаите был применен по предложению проф. Э.М. Генделя. Вертикальные деформации фундаментов продольных несущих стен составили от 790 до 1315 мм; величина крена в сторону наибольшей деформации достигала 450 мм. Технология производства работ по вдавливанию отдельных звеньев труб длиной 0,5 м освещена в работах [7, 61].

Большой опыт применения составных впрессованных свай для усиления фундаментов существующих зданий накоплен в Венгрии. Эти сваи изготовляют из сборных железобетонных элементов длиной 60—80 см с размерами сечений 25×25 и 30×30 см. Для полов применяют элементы больших размеров 120×60×25 см. Элементы располагаются один над другим, соприкасаясь торцовыми поверхностями. Для сопряжения элементов используют вертикальные металлические штыри диаметром 37,5—50 мм, которые вставляются в гнезда в центральной части сборных элементов и этим препятствуют их взаимному смещению. Последовательность подводки свай "Мега" детально рассмотрена в работах [4, 48].

Гендель Э.М. Приостановка наклона и выпрямление здания в Сумгаите. — Основания, фундаменты и механика грунтов, 1971, № 6, с. 26—28

Одним из оригинальных способов усиления фундаментов с помощью буронабивных свай является использование их в качестве своего рода рычажных опор. Так, при выяснении причин обрушения кирпичной стены в производственном корпусе сортировочного цеха бумажной фабрики в г. Сухом Логу было установлено, что под ленточными бетонными фундаментами по оси Е в рядах 5—6 на глубине около 1 м проходила сквозная штольня шириной 6 и глубиной 2 м (рис. 4.20). При восстановлении кирпичной стены по проекту Уральского политехнического института (О.А. Лисовой) рекомендовалось выключить на указанном участке длиной 21 м из работы ленточный фундамент, а нагрузку передать на 15 рычажных металлических балок, размещаемых в неглубоких траншеях с шагом 1,5 м.

Схема исключения из работы ленточного фундамента путем передачи нагрузки на рычажную систему из буронабивных свай

Рис.4.20. Схема исключения из работы ленточного фундамента, расположенного над горной выработкой, путем передачи нагрузки на рычажную систему из буронабивных свай

1 — существующий фундамент; 2 — прогон из швеллера; 3 — стена здания; 4 — балка БР-1; 5 — балласт; 6 — плита ПБ-1; 7 — штольня; 8 — буронабивная свая; 9 — бетон; 10 — шпунт; 11 — воздушный зазор

Рычажные балки (см. рис. 4.20) длиной 7,4 м из двутавра № 50 опирались на буронабивные сваи-стойки диаметром 500 мм и длиной 7 м (общее их число 15), которые располагались в непосредственной близости к фундаменту и опирались на слой известняка с временным сопротивлением одноосному сжатию 15 МПа. В качестве противовеса использовалась железобетонная плита высотой 0,2, шириной 1,2 и длиной 22,5 м (на всем участке усиления). Соединение балки БР-1 с плитой осуществлялось рабочим болтом (диаметром 50 мм и длиной 2,1 м) с помощью гайки. Для балластного слоя рекомендовался любой материал с плотностью более 1,8 т/м 3 . Наличие воздушного зазора в 0,15 м под балкой БР-1 обеспечивало надежную работу всей рычажной системы. Узлы сопряжения балки БР-1 и прогонов из швеллеров № 10, закладываемых в кирпичную стену, тщательно замоноличивали бетоном марки М200 на мелком щебне до передачи нагрузки на рычажную систему. Балка БР-1 включалась в работу только после уплотнения балластного слоя путем предварительного обжатия опорного узла рычажной системы с обеспечением расчетного (рабочего) прогиба балки в 50 мм. Это достигалось завинчиванием гаек на рабочем болте с последующей постановкой контргайки. После этого балку БР-1 бетонировали бетоном марки М200.

Аналогичный способ усиления ленточных фундаментов буронабивными сваями, используемыми в качестве рычажных опор, выполнен в 1973 г. трестом Гипроспецфундаментстрой по чертежам Гипролесхима в соответствии с рекомендацией НИИ оснований и подземных сооружений [7, с.41—42]. Усилению подвергались фундаменты пятиэтажной башни и примыкающей к ней трехэтажной части производственного корпуса химкомбината в связи с развитием недопустимых осадок и возможного их обрушения. Для этого на расстоянии 2,5 м от наружной стены здания были выполнены два ряда цилиндрических буронабивных свай-стоек (расстояние между рядами 5 м, шаг в ряду 3 м) диаметром 1,2 и длиной 16 м. Головы свай в каждом продольном ряду объединялись жесткими железобетонными балками, расположенными одна относительно другой на разных уровнях.

В качестве рычажных балок использовали металлические двутавровые консольные балки № 50 с шагом 2,5 м, рассчитанные на условия передачи на свайный фундамент соответствующих усилий от стен здания. Балки заделывали в кирпичные стены так, как показано на рис. 4.20, на железобетонных балках их размещали таким образом, чтобы в первом ряду сваи работали на вдавливание, во втором — на выдергивание. Осуществленное усиление исключило дальнейшее развитие осадок на аварийном участке корпуса.

Обычно при усилении ленточных фундаментов нагрузки от старого фундамента на сваи передают с помощью поперечных балок, проходящих через стену старого фундамента. Основными недостатками данного способа усиления являются сложность выполнения работ, связанных с пробивкой отверстий для поперечных балок в фундаментной стене, ослабление стены и трудоемкость создания плотного контакта между поперечными балками и фундаментной стеной.

Под руководством Ю.И. Лозового [54] разработан способ усиления ленточных фундаментов из бетонных блоков путем передачи части нагрузки от фундамента на вновь возводимые свайные или иные опоры без нарушения структуры грунта под подошвой фундамента и ослабления фундаментной стены отверстиями, пробиваемыми для введения в работу поперечных балок усиления (рис. 4.21). При этом способе отверстия в стене для пропуска поперечных балок не пробивают, а сверху фундамента в горизонтальном шве со стеновым блоком пропускают только арматурные стержни. Как показали результаты исследований, блоки фундаментов надежно включаются в работу поперечных балок усиления, бетонируемых на месте. Силы трения и сцепления обеспечивают восприятие поперечной силы в местах контакта нового бетона балок со старым бетоном фундаментных блоков. Балки усиления бетонируют с расчетным шагом по длине фундамента, нижнюю арматуру подбирают, как в обычных изгибаемых железобетонных элементах на заданные нагрузки.

Воробьев М.С. Деформация здания насосной станции на заторфованных грунтах. — В кн.: Основания и фундаменты в сложных инженерно-геологических условиях. Меж. вуз. сб. научлр. /Каз. инж-строит. ин-т. Казань, 1980, с. 56—59

Схема усиления сборного ленточного фундамента дополнительными опорами без ослабления стены отверстиями

Рис. 4.21. Схема усиления сборного, ленточного фундамента дополнительными опорами без ослабления стены отверстиями

1 — фундаментная подушка; 2 — рабочая арматура балок; 3 — стеновые блоки; 4 — железобетонная балка; 5 — дополнительные опоры

Технология устройства буронабивных свай

Мы выполняем монтаж фундаментов по технологии буронабивных свай в Москве, Подмосковье и других регионах Российской Федерации.

Применение буронабивных свай

Принципиально технология буронабивной сваи заключается в том, что предварительно пробуренную скважину заполняют армированным (обычно) либо неармированным (редко) бетоном. После набора бетоном прочности на сваях устанавливают ростверк и продолжают строительство.


Особенность такого фундамента – при его устройстве динамические нагрузки на грунт минимальны в сравнении с большинством существующих технологий. Отсюда главное применение буронабивных свай – строительство на участках, где эти нагрузки разрушительны:

  • в черте города, рядом с промышленными комплексами – вибрации передаются на соседний грунт, что опасно для уже построенных сооружений;
  • поблизости от речных дельт и берегов водоемов – динамические нагрузки могут привести к обрушению береговых склонов;
  • на крутом рельефе вибрации чреваты оползнями.

Поскольку несущая способность буронабивного фундамента очень высокая, его целесообразно проектировать под тяжелые постройки и нецелесообразно под деревянные или каркасные дома.


Кроме фундаментов тех же условиях может использоваться подпорная стена из буронабивных свай – для ограждения котлована при возведении сооружений в черте города, для усиления склона при риске оползня, крутого берега и т.д. Ж/б конструкция устанавливается стационарно, демонтажу по окончании строительства не подлежит.

Мы располагаем всеми необходимыми ресурсами для монтажа буронабивных фундаментов и стенок, а также для закладки оснований и возведения защитных ограждений других типов.

Технология устройства буронабивных свай

Основной параметр, определяющий расчеты – несущая способность. Она зависит от характеристик грунта, от диаметра буронабивных свай и их длины, общей нагрузки от будущего сооружения.

Тип грунта определяется в ходе предварительных геологических изысканий, характеристики грунтов в зависимости от типа есть в СНиП.

При определении нагрузки со стороны сооружения нужно сложить массы всех составляющих конструкции: стен, кровли, инженерных сооружений и добавить временные нагрузки – снеговую (зависит от региона, коэффициенты есть в 2.01.07.85 СП) и полезную (дополнительная нагрузка, зависящая от назначения кровли).

При расчете самих свай учитываются несколько факторов:

  • диаметр буронабивной сваи;
  • длина (глубина погружения);
  • марка раствора;
  • количество и параметры арматуры.


Например, буронабивные сваи диаметром 300 мм (грунт – твердая глина):

  • высота – 2 метра;
  • бетон М100;
  • арматура вертикальная ребристая – 6 прутков по 1,2 см;
  • гладкая горизонтальная – 0,6 см;
  • шаг между сваями – 1 метр;
  • несущая способность – 4,242 тонны.

Буронабивные сваи 500 мм при тех же остальных параметрах будут обладать несущей способностью 11,775 тонн.

Буронабивные сваи диаметром 800 мм, буронабивные сваи диаметром 1000 мм и более используются для строительства тяжелых промышленных конструкций и многоэтажных городских домов. Несущая способность ж/б свай с большим сечением может доходить до 600 тонн.

У нас большой опыт монтажа конструкций из буронабивных свай с любой допустимой нагрузкой. А также собственный проектный отдел, который возьмет на себя все расчеты по вашему объекту, начиная с проектирования свайного поля и заканчивая оперативным (один день) составлением сметы.

Мы монтируем буронабивные фундаменты более 10 лет.

Мы располагаем всеми необходимыми ресурсами для монтажа буронабивных фундаментов и стенок, а также для закладки оснований и возведения защитных ограждений других типов. Звоните: 8 (495) 411-27-36

Фундамент буронабивной ленточный

В сфере строительства все более популярным становится возведение буронабивного ленточного фундамента. Он способен стать надежным основанием для последующей постройки и обойтись значительно дешевле в финансовом плане.


Строительная компания «ПСК Основания и Фундаменты» предоставляет различные услуги в сфере проектирования и строительства.

Мы поможем возвести ленточный фундамент с буронабивными сваями, наши специалисты обладают большим опытом и навыками подобной работы. В наличии имеется все необходимое оборудование и строительный инвентарь. И самое главное – мы знаем всю специфику, технологию работы для создания долговечной конструкции.

Характеристика буронабивного ленточного фундамента

Основная особенность буронабивного фундамента – его свайная конструкция. Каждая свая имеет круглое сечение, укреплена арматурой и эффективно распределяет вес здания, и его нагрузка передается на грунт.

Сваи делаются на месте, путем заливки скважины цементным раствором. Сами скважины можно проделать с помощью бурового аппарата. То есть при возведении буронабивного фундамента не происходит значительного повреждения грунта – земля аккуратно обрабатывается буром, делаются скважины нужной глубины, готовые для дальнейшей работы.


При определении глубины нужно учесть, какие свойства почвы на месте строительства. Задача – пройти начальный слой земли и дойти до грунта несущего типа, обладающий высокой устойчивостью.

Буронабивной фундамент хорошо подходит для частного домостроительства, хотя в стандартном исполнении не предполагает создания цоколя.

Сейчас строители научились соединять свайную конструкцию с ленточным основанием. В таком случае выкапываются траншеи (стандартная высота – 40 см), где будет создаваться лента. Сваи в этом случае делаются с учетом ее высоты. При необходимости есть возможность сделать небольшое цокольное пространство.

Буронабивной ленточный фундамент делает здание более устойчивым и надежным. Здание будет опираться не на сваи и подушку из песка и щебня, а на сваи, соединенные крепкой бетонной лентой. Кроме того, лента позволит равномернее распределить массу постройки на сваи, повышая износостойкость конструкции.

Создание такого типа основания целесообразно заказывать у профильных специалистов. Только в этом случае удастся построить действительно надежный дом, который прослужит много лет.

Мы предоставляем заказчикам любые услуги по устройству буронабивных свай

Наш опыт работы - более 10 лет.

Мы выполняем все работы, связанные с основаниями: проектирование начиная с оценки грунта, закладку фундаментов, все необходимые меры по защите, усиление уже существующих оснований, усиление стен в запущенных случаях.

Технология возведения фундамента

Процесс возведения буронабивного ленточного фундамента состоит из нескольких этапов.

Подготовка

Производится очистка строительного участка от загрязнений. Почва на месте строительства выравнивается. Затем производится разметка; необходимо отметить точное месторасположение:

  • указать места бурения скважин с шагом – не более 2 м;
  • рассчитать ширину ленты, местоположение осей и др.

Для наглядности используются шнуры и обноска.

Проведение земляных работ

На этом этапе требуется создать траншеи и пробурить скважины. Их размеры зависят от особенностей грунта, глубины залегания более твердых пород и особенностей будущей постройки.

Траншея должна соответствовать ширине будущей ленты, в глубину порядка 40-60 см. По периметру основания производится бурение скважин. Они охватывают всю коробку будущей постройки, также находятся под будущими стенами, как несущими, так и ненесущими. Особое внимание необходимо уделить местам пересечения стен. Все это позволит равномерно распределить вес постройки.

При бурении скважины имеет значение ее диаметр и высота. Обыкновенно размер диаметра находится в диапазоне от 15 до 45 см, занимая 2/3 ширины траншеи. Следует помнить о том, что диаметр скважины должен быть шире примерно на 7-10 см, нежели будущая свая – это пространство необходимо для создания опалубки.

Говоря о длине, то есть глубине бурения, то она должен быть не меньше глубины промерзания почвы (для надежности постройки). Этот показатель зависит от региона, в среднем от 1 м до 2 м.

Читайте также: