Усадка и ползучесть бетона

Обновлено: 01.05.2024

Рекомендации
по учету ползучести и усадки бетона при расчете бетонных и железобетонных конструкций

Рекомендованы к изданию решением секции конструкций Ученого совета НИИЖБа.

Содержат методику расчета железобетонных конструкций с учетом ползучести и усадки бетона, условий изготовления, а также сроков нагружения конструкций.

Изложены основные положения расчета, приведены значения деформаций ползучести и усадки тяжелых бетонов и другие характеристики, необходимые для расчета. Даны методики определения потерь предварительного напряжения от усадки и ползучести бетона, жесткостей и перемещений изгибаемых и сжатых элементов, величин критических сил для сжатых стержней, а также методика расчета статически неопределимых систем.

Для инженерно-технических работников проектных и производственных организаций, научных работников, а также студентов строительных вузов.

ПРЕДИСЛОВИЕ

Настоящие Рекомендации содержат положения по учету ползучести и усадки бетона при проектировании бетонных и железобетонных стержневых элементов и составленных из них систем, изготовленных из тяжелого бетона и применяемых в промышленном, гражданском, гидротехническом, транспортном и других областях строительства.

Целью Рекомендаций является внедрение в практику проектирования методов расчета, позволяющих более точно учитывать влияние деформаций ползучести и усадки бетона на напряженно-деформированное состояние бетонных и железобетонных конструкций. Использование в расчетном аппарате статистически обоснованных характеристик бетона, принимаемых в зависимости от состава бетона, его возраста в момент нагружения, длительности действия нагрузки, условий окружающей среды в стадии эксплуатации конструкции и других факторов, позволяет более правильно проектировать бетонные и железобетонные конструкции.

Рекомендации предусматривают возможность применения расчетного аппарата также и при отсутствии в полном объеме исходных данных о составе бетона и некоторых других факторах.

Основными характеристиками бетона, учитываемыми в расчетах, являются прочность и модуль упругости бетона в момент приложения силового или температурно-влажностного воздействия, мера ползучести (характеристика ползучести) бетона, деформация усадки бетона и др.

Рекомендации состоят из 12-ти разделов: в разделах 1-3 излагаются основные положения и предпосылки методик расчета, а также приводятся значения прочностных и деформационных характеристик бетона; в разделах 4-9 содержится изложение методов расчета бетонных и железобетонных конструкций с учетом ползучести и усадки в предположении линейной зависимости между напряжениями и деформациями; в разделах 10-12 приведены методики расчета с учетом нелинейного деформирования бетона при кратковременном и длительном действии нагрузки.

Рекомендации составлены на основе результатов исследований, проведенных в СССР и за рубежом.

Рекомендации разработаны НИИЖБ Госстроя СССР (д-р техн. наук Р.Л.Серых, канд. техн. наук А.В.Яшин), ЦНИИС Минтрансстроя (кандидаты техн. наук Е.Н.Щербаков, Н.Г.Хубова), ВЗИСИ Минвуза РСФСР (д-р техн. наук В.М.Бондаренко, кандидаты техн. наук В.Г.Назаренко, И.М.Сперанский), ОИСИ Минвуза УССР (д-р техн. наук И.Е.Прокопович, кандидаты техн. наук М.В.Штейнберг, А.Н.Орлов), ЛПИ имени М.И.Калинина Минвуза РСФСР (д-р техн. наук П.И.Васильев); НИИСК Госстроя СССР (д-р техн. наук А.Б.Голышев, кандидаты техн. наук В.Я.Бачинский, В.А.Критов).

В разработке отдельных положений Рекомендаций приняли также участие ИСМиС АН ГССР (д-ра техн. наук З.Н.Цилосани, Г.В.Кизирия); ВЗПИ Минвуза СССР (д-р техн. наук Ю.В.Зайцев), ЦНИИС Минтрансстроя (инж. В.Л.Хасин); ДИСИ Минвуза УССР (канд. техн. наук В.А.Пахомов), КАДИ Минвуза УССР (д-р техн. наук Я.Д.Лившиц, ОИСИ Минвуза УССР (кандидаты техн. наук В.И.Барановский, М.М.Застава, инж. М.М.Бакирова), КПИ Минвуза МССР (д-р техн. наук Е.Н.Львовский, инж. Ф.П.Сырбу), ВЗИСИ Минвуза РСФСР (кандидаты техн. наук В.В.Костюков, А.Н.Курбанов, Е.П.Михлин); Ленинградский ИСИ Минвуза РСФСР (канд. техн. наук А.И.Филиппов); ЦНИИпроект Госстроя СССР (канд. техн. наук С.В.Бондаренко).

1. ОСНОВНЫЕ РАСЧЕТНЫЕ ПОЛОЖЕНИЯ

1.1. Настоящие Рекомендации содержат указания по учету влияния деформаций ползучести и усадки при расчете бетонных и железобетонных конструкций из тяжелого бетона на цементном вяжущем, выполняемых как без предварительного натяжения арматуры, так и с предварительным натяжением, и предназначенных для эксплуатации в условиях воздействия температур не выше плюс 50 °С и не ниже минус 40 °С и относительной влажности воздуха в пределах от 30 до 100%.

1.2. Материалы Рекомендаций основаны на обширных результатах статистической обработки опытных данных о кратковременном и длительном деформировании бетона, а также экспериментально проверенных теоретических решениях задач теории ползучести. Рекомендации позволяют более точно оценивать влияние ползучести и усадки бетона на несущую способность и перемещения, создают возможности для проектирования более рациональных и экономичных бетонных и железобетонных конструкций.

Для упрощения расчетов помещены таблицы, в которых промежуточные значения определяют по линейной интерполяции.

1.3. Рекомендации распространяются на расчет стержневых элементов бетонных и железобетонных конструкций, а также конструкций, рассчитываемых аналогичными способами, при действии нагрузок и (или) вынужденных деформаций (температурные и влажностные воздействия, смещения опор и т.д.).

Рекомендации не распространяются на расчет массивных конструкций гидротехнических и других сооружений. При наличии данных о величинах деформации ползучести и усадки рекомендации могут применяться и для расчета конструкций из других видов бетона (на пористых заполнителях, на специальных вяжущих и т.п.).

1.4. При определении внутренних усилий и перемещений расчетные температура и влажность среды устанавливаются заданием на проектирование. При отсутствии в задании необходимых указаний температура и влажность среды определяются по отраслевым техническим условиям.

1.6. Численные значения характеристик бетона, приведенные в настоящих Рекомендациях, предназначены только для проектирования. Характеристики арматуры, а также другие данные, не нашедшие отражения в Рекомендациях, следует принимать по соответствующим нормативным документам.

1.7. Усилия в статически неопределимых железобетонных конструкциях от нагрузок и вынужденных деформаций при расчете по предельным состояниям первой и второй групп следует, как правило, определять с учетом неупругих деформаций бетона и арматуры, с учетом в необходимых случаях нелинейности деформаций при кратковременном нагружении и деформаций ползучести, наличия трещин, а также деформированного состояния как отдельных элементов, так и конструкций в целом.

1.8. Усилия, возникающие при любом изменении температуры, определяют в предположении однократного и стационарного во времени характера этих температурных воздействий.

1.9. Вынужденные деформации, связанные с неравномерной осадкой опор в статически неопределимых системах, считаются мгновенно зафиксированными или монотонно изменяющимися по законам, регламентированным соответствующими документами или полученным по результатам экспериментальных или натурных наблюдений.

1.10. При расчете конструкций, возводимых методом последовательного наложения связей после частичного или полного загружения, перемещения в направлении этих связей, сформировавшиеся при работе по разрезной схеме, рассматривают как вынужденные перемещения в неразрезной системе, сохраняющиеся после замыкания связей.

1.11. Если статически неопределимая система состоит из конструктивных элементов, бетон которых существенно различается по возрасту, составу или другим показателям, то в расчет системы следует вводить элементы с соответствующими жесткостями, а также параметрами ползучести и усадки.

2. ПРОЧНОСТНЫЕ И ДЕФОРМАЦИОННЫЕ ХАРАКТЕРИСТИКИ БЕТОНА

2.1. Вводимые в расчет класс бетона по прочности на сжатие и нормативное значение призменной прочности имеют обеспеченность, равную 0,95, и принимаются согласно СНиП 2.03.01-84 для возраста бетона =28 сут. Значения модуля упругости , предельные значения меры ползучести и деформации усадки , определяемые по формулам (1), (3) и (4) или по табл.2 и 4, принимаются среднестатистическими с обеспеченностью 0,5 и соответствуют базовым условиям, принятым по ГОСТ 24452-80 и ГОСТ 24544-81 с изм.

2.2. Для учета в расчетах влияния отклонений фактических условий изготовления, загружения и эксплуатации железобетонных элементов от базовых условий (возраста бетона в момент загружения или же начала его высыхания, размеров поперечного сечения элемента, температурно-влажностного режима окружающей среды, тепловлажностной обработки) числовые значения деформационных характеристик , , , полученные согласно п.2.1, умножают на коэффициенты, приведенные в табл.5-7 и в примечаниях к табл.2 и 4.

2.3. Значение начального модуля упругости бетона при известных характеристиках состава бетонной смеси и ее составляющих определяют по формуле

Усадка – свойство бетона уменьшаться в объеме при твердении в обычной воздушной среде. Усадка бетона зависит:

1.количества и вида цемента - чем больше цемента на единицу объема бетона, тем больше усадка

2.количество воды - чем больше отношение вода/цемент, тем больше усадка.

3.крупности заполнителя-при мелкозернистых песках и пористом щебне усадка больше

4.присутствие различных гидравлических добавок и ускорителей твердения - они, как правило, увеличивают усадку

Ползучесть – это свойства бетона, характеризующиеся нарастанием неупругих деформаций с течением времени при постоянных напряжениях. Природа ползучести бетона объясняется его структурой , длительным процессом кристаллизации и уменьшением количества геля при твердении цементного камня. Под нагрузкой происходит перераспределение напряжений с испытывающей вязкое течение гелевой структурной составляющей на кристаллический сросток и зерна заполнителей. Одновременно развитию деформаций ползучести способствуют капиллярные явления, связанные с перемещением в микропорах и капиллярах избыточной воды под нагрузкой .

Влияние ползучести на работу ж/б элементов:

”─” в изгибающих элементах ползучесть приводит к увеличению прогибов; в гибких сжатых элементах ползучесть вызывает увеличение начальных эксцентриситетов и снижение несущей способности ;в преднапряженных конструкциях ползучесть приводит к потерям предварительного напряжения

“+”в статически неопределимых системах ползучесть смягчает концентрацию напряжений ; в коротких центрально сжатых элементах ползучесть способствует более полному использованию прочности арматуры.

Влияние усадки на работу ж/б элементов:Начальные растягивающие напряжения в бетоне от усадке способствуют более раннему образованию трещин в тех зонах ж/б элементов ,которые испытывают растяжение от нагрузки. Однако с появлением трещин влияние усадки уменьшается. В стадии разрушения усадка не влияет на несущую способность статически определяемой ж/б конструкции. Влияние усадки эквивалентно понижению температуры на определенное число градусов.

20.Pасчет внецентренно сжатых ж/б эл-ов с отн-но малыми эксцентриситетами

Случай с относительно малыми эксцентриситетами : x > xR, x= x/h0 –относительная высота сжатой зоны бетона, xR-граничная величина относительной высоты сжатой зоны.В этом случае sss

ss=(2*(1-x/1-xR)/1)* Rs- формула для бетона класса В30 и ниже, арматуры А-Ι,А-II,А-III.

N-продольная сила от нагрузки,

b, ho -ширина и рабочая высота сечения,

χ-высота сжатой зоны ,

s -площадь сечения арматуры на сжатие,

Rb-расчетное сопротивление бетона осевому сжатию,

Rs-расчетное сопротивление арматуры растяжению,

е-расстояние от линии действия продольной силы N до растянутой арматуры S.

В железобетонных конструкциях стальная арматура вследствие ее сцепления с бетоном становиться внутренней связью, препятствующей свободной усадке бетона. Согласно опытным данным, усадка и набухание железобетона в ряде случаев вдвое меньше, чем усадка и набухание бетона. Стесненная деформация усадки бетона приводит к появлению в железобетонном элементе начальных, внутренне уравновешенных напряжений - растягивающих в бетоне и сжимающих в арматуре. Под влиянием разности деформаций свободной усадки бетонного элемента и стесненной усадки армированного элемента возникают средние растягивающие напряжения в бетоне. Наибольшие значения этих напряжений находятся в зоне контакта с арматурой.

При усадке железобетона растягивающие напряжения в бетоне зависят от свободной усадки бетона, коэффициента армирования, класса бетона. С увеличением содержания арматуры в бетоне растягивающие напряжения увеличиваются.

В статически неопределимых железобетонных конструкциях лишние связи препятствуют усадке железобетона и поэтому усадка вызывает появление дополнительных внутренних усилий. Влияние усадки эквивалентно понижению температуры на определенное число градусов. Для того чтобы уменьшить дополнительные усилия от усадки, железобетонные конструкции промышленных и гражданских зданий большой протяженности делят усадочными швами на блоки.

Ползучесть железобетона является следствием ползучести бетона. Стальная арматура, как и при усадке, становиться внутренней связью, препятствующей свободным деформациям ползучести. В железобетонном элементе под нагрузкой стесненная ползучесть приводит к перераспределению усилий между арматурой и бетоном. Этот процесс интенсивно протекает в течение первых нескольких месяцев, а затем в течение длительного времени (более года) постепенно затухает.

На работу коротких сжатых железобетонных элементов ползучесть бетона оказывает положительное влияние, обеспечивая полное использование прочности бетона и арматуры; в гибких сжатых элементах ползучесть вызывает увеличение начальных эксцентриситетов, что может снижать их несущую способность; в изгибаемых элементах ползучесть вызывает увеличение прогибов; в предварительно напряженных конструкциях ползучесть приводит к потере предварительного напряжения.

Ползучесть и усадка железобетона протекают одновременно и совместно влияют на работу конструкции.

Вопросы для самоконтроля

Каковы условия совместной работы и факторы, обеспечивающие прочность сцепления арматуры и бетона?

От чего зависит длина анкеровки арматурных стержней в бетоне?

Как отражается усадка и ползучесть бетона на работе железобетонных конструкций?

В чем назначение защитного слоя бетона в конструкциях и как определяется его толщина?

Как воздействует окружающая среда эксплуатации на железобетонные конструкции?

Лекция 6. Стадии напряженно-деформированного состояния сечений, нормальных к продольной оси железобетонного элемента

Экспериментальными исследованиями железобетонных элементов, подвергнутых действию изгибающих моментов и продольных сил (растягивающих или сжимающих), установлено, что все они в процессе нагружения имея двузначную (или неравномерную) эпюру распределения относительных деформаций по высоте нормального сечения проходят характерные стадии напряженно-деформированного состояния.

В качестве иллюстрации рассмотрим последовательность изменения напряженно-деформированного состояния нормального сечения однопролетной свободно опертой балки, загруженной двумя сосредоточенными силами в третях пролета (рис. 6.1). Принятая классическая схема нагружения позволяет получить при испытаниях т.н. «зону чистого изгиба» на участке между сосредоточенными силами в пролете (MSd = const; VSd = 0).

Пусть до начала испытаний нагрузкой опытная балка была оснащена следующими приборами:

для измерения продольных относительных деформаций (Dlb) в разных уровнях по высоте сечения, что необходимо для построения эпюры распределения относительных деформаций, величина которых может быть легко вычислена

где Dlb, Dlb,s – абсолютные приращения базовой длины Dlb, на которой выполняют измерения прибором удлинения (укорочения) соответственно бетона и арматуры;

lb – база измерения;

Относительные продольные деформации бетона и арматуры могут быть измерены непосредственно тензометрами, а вертикальные перемещения балки – прогибомерами.

Для анализа напряженно-деформированного состояния нормального сечения балки на очередном этапе нагружения необходимо привлечь диаграммы деформирования бетона и арматуры.



Рис. 6.1. Эпюры распределения усилий (а), схема испытания опытной балки (б) и схема определения напряжений в нормальном сечении

Пользуясь диаграммами деформирования для бетона и арматуры осуществляют переход от зафиксированных в опыте деформаций к относительным деформациям и, далее, к напряжениям в каждом из уровней по высоте сечения балки, для которых выполняются измерения.

Последовательное нагружение элемента позволило выявить ряд стадий напряженно-деформированного состояния в нормальном сечении.

Стадия 1 напряженно-деформированного состояния нормального сечения характеризует сопротивление железобетонного элемента, работающего без трещин. При этом удобно рассматривать два промежуточных состояния (стадия 1а и ) нормального сечения в зависимости от величины относительных деформаций наиболее растянутой грани сечения.

Стадия 1а имеет место на начальных этапах нагружения, когда величина изгибающего момента в зоне чистого изгиба невелика, бетон как в сжатой, так и в растянутой зонах сечения работает в области упругих деформаций (линейная зависимость между напряжениями и деформациями) (рис. 6.2).


Рис. 6.2. Распределение деформаций и напряжений по высоте нормального сечения в стадии 1 напряженно-деформированного состояния

При этом сохраняется практически линейная зависимость между моментом, действующим в нормальном сечении, (М) и прогибом (f), фиксируемым по прогибомерам (рис. 6.2а). Нейтральная ось сечения, разделяющая сжатую и растянутую зоны, располагается примерно на уровне центра тяжести приведенного сечения (рис. 6.2б). Относительные деформации наиболее растянутой грани бетона не превышают упругих, а модуль деформаций как для сжатого, так и для растянутого бетона равен начальному модулю упругости Ec0.

Если бетон в сжатой зоне все еще продолжает работать в области упругого деформирования (участок ОА1 диаграммы рис. 6.2в), то в бетоне растянутой зоны развиваются значительные пластические деформации. Связь между напряжениями и деформациями становится нелинейной и в пределах растянутой зоны сечения практически полностью реализуется диаграмма деформирования бетона при растяжении (участок ОB рис. 6.2в).

При приближении к предельным деформациям ect,u (участок BC рис. 6.2г) наступает стадия 1б, предшествующая образованию нормальных трещин в растянутой зоне сечения.

Стадия 1 считается завершенной, когда при достижении наиболее растянутой гранью сечения предельных деформаций ectu образуются нормальные трещины и происходит перераспределение внутренних усилий между арматурой и бетоном. Момент образования нормальных трещин будет отмечен изменением угла наклона графика зависимости «M–а» (рис. 6.3) в результате снижения изгибной жесткости сечения и возрастания деформаций растянутой арматуры из-за перераспределения усилий в растянутой зоне сечения.


Рис. 6.3. Зависимость «M–а»

Таким образом характерными чертами стадии 1 напряженно-деформирован­ного состояния сечения являются:

отсутствие нормальных трещин в растянутой зоне сечения;

линейное распределение относительных деформаций по высоте сечения, т.е. практически строгое выполнение гипотезы плоских сечений до момента появления трещин;

совместная работа арматуры и окружающего ее бетона без нарушения сцепления.

Стадия 2 характеризует сопротивление нормального сечения железобетонной конструкции, имеющей нормальные трещины. После образования нормальных трещин в сечении с трещиной нейтральная ось смещается по направлению к наиболее сжатой грани, уменьшая высоту сжатой зоны (х). В то же время на участках между трещинами, где арматура продолжает сопротивляться совместно с бетоном и сцепление не нарушено, положение нейтральной оси в меньшей степени отклоняется от начального, соответствующего упругой работе материала. Таким образом нейтральная ось по длине зоны чистого изгиба занимает некоторое волнообразное положение. При этом деформации и напряжения в растянутой арматуре и сжатом бетоне по длине элемента распределяются неравномерно. Так, для растянутой арматуры напряжения в сечении с трещиной достигают максимальных значений ss,max убывая по мере приближения к середине участка между трещинами lcrc/2 (рис. 6.4). Для бетона растянутой зоны наблюдается обратная картина.


Рис. 6.4. Распределение напряжений в растянутой арматуре и растянутом бетоне для железобетонной конструкции в стадии 2

Распределение деформаций и напряжений по высоте нормального сечения в стадии 2 показано на рис. 6.5.

Таким образом, в сечении с трещиной существенно возрастает роль арматуры, в основном воспринимающей растягивающее усилие (Fst), которое уравновешивает усилие в сжатой зоне бетона Fcc, а при наличии арматуры Asс – и дополнительное усилие в сжатой арматуре Fsc.

Рис. 6.5. Распределение напряжений и деформаций по высоте нормального сечения в стадии 2 напряженно-деформированного состояния

Учитывая то, что связь между напряжениями и относительными деформациями бетона в сжатой зоне сечения становится нелинейной, изменяется и модуль деформаций бетона. Увеличение количества нормальных трещин по длине зоны чистого изгиба, их развитие по высоте растянутой зоны сечения, уменьшение модуля деформаций бетона сжатой зоны приводят к тому, что зависимость между моментом и прогибом становится нелинейной (см. рис. 6.3).

Таким образом, для стадии 2 характерными являются следующие признаки:

В растянутой зоне сечения развиваются нормальные трещины, имеющие ширину раскрытия, зависящую от уровня нагружения конструкции, т.е. средних деформаций растянутой арматуры.

Относительные продольные деформации и напряжения в бетоне и арматуре по длине элемента распределены неравномерно. В сечении с трещиной растягивающие усилия в основном воспринимает арматура, а на участке между трещинами – совместно бетон и арматура. В середине участка между трещинами обеспечена совместная работа бетона и арматуры, а по мере приближения к берегам трещины может наблюдаться проскальзывание арматуры относительно бетона.

Гипотеза плоских сечений остается справедливой для некоторого среднего сечения по длине зоны чистого изгиба. В отдельном сечении, проходящем через трещину в виду депланации ее краев, гипотеза плоских сечений может нарушаться.

Дальнейшее увеличение нагрузки приводит к переходу испытываемой балки в стадию 3, характеризующую наступление в нормальном сечении предельного состояния по прочности – разрушения. При этом возможны два случая разрушения железобетонного элемента по нормальному сечению.

В первом случае относительные деформации растянутой арматуры достигают предельных значений esy, соответствующих напряжениям, равным физическому или условному пределу текучести. При этом относительные деформации наиболее сжатой грани бетона к этому моменту не достигают предельной сжимаемости ecu. В этом случае прогибы элемента развиваются без прироста нагрузки, трещины раскрываются и развиваются в глубь по высоте сечения, сокращая высоту сжатой зоны (рис. 6.6).

Разрушение, начинающееся по растянутой арматуре с увеличением деформаций арматуры es > esy может завершаться по сжатому бетоне, когда его относительные деформации достигают предельных значений ecu.

Во втором случае относительные деформации сжатого бетона достигают предельных значений ecu прежде, чем растянутая арматура. Разрушение по сжатому бетону происходит хрупко с раздроблением бетона сжатой зоны. Арматура, применяемая для армирования растянутой зоны сечения, полностью не используется. Этот случай является опасным, т.к. разрушение может произойти даже без чрезмерного раскрытия нормальных трещин в растянутой зоне сечения. При проектировании конструкция должна быть гарантирована от наступления разрушения по сжатой зоне сечения.

В стадии 3 следует отдельно остановиться на работе арматуры, располагаемой в сжатой зоне сечения. На этом этапе арматура Asс играет важную роль, воспринимая часть усилия, действующего в сжатой зоне сечения. Наличие арматуры в сжатой зоне позволяет изменить случай, по которому происходит разрушение нормального сечения, что обусловлено дополнительным усилением, воспринимаемым сжатой зоной сечения. Необходимое минимальное количество арматуры Asс, располагаемой в сжатой зоне сечения, назначают расчетом.


Рис. 6.6. Распределение деформаций и напряжений по высоте

нормального сечения в стадии 3 напряженно-деформированного

состояния (а), зависимость «M–f» (б) и текущие значения

напряжений в бетоне и арматуре (в)

Таким образом, характеризуя стадию 3 напряженно-деформи­ро­ванного состояния следует подчеркнуть:

Данная стадия определяет предельное состояние сечения по прочности. При этом в зависимости от характера распределения по сечению продольных деформаций возможно два характерных случая разрушения нормального сечения. Если относительные деформации растянутой арматуры достигают предельных значений, соответствующих напряжениям, равным условному или физическому пределу текучести раньше, чем бетон наиболее сжатой грани достигает предельной сжимаемости ecu, разрушение начинается по растянутой зоне. В противном случае разрушение происходит по бетону сжатой зоны сечения при достижении предельных деформаций бетона при сжатии ecu. Оптимальным является случай, когда в стадии разрушения одновременно наступает текучесть арматуры (esu) и бетон сжатой зоны достигает предельных значений относительных деформаций сжатия (ece).

Для среднего сечения по длине элемента с определенным допущением выполняется гипотеза плоских сечений.

По длине пролета рассмотренной железобетонной балки одновременно при одном уровне нагружения имеют место все рассмотренные стадии напряженно-деформированного состояния для нормального сечения в зависимости от изменения величины изгибающего момента (рис. 6.7).


Рис. 6.7. Изменение по длине балки характерных стадий напряженно-деформированного состояния

Если пренебречь влиянием поперечной силы VSd в приопорной зоне, где изгибающий момент М1 незначителен, сечение работает в стадии 1. По мере приближения к линии, по которой действует сила F, приложенная в пролете, наблюдается переход из стадии 1 в стадию 2, а далее и в стадию 3.

Упругие деформации бетона зависят от его вида и технологических особенностей приготовления. Настоящие нормы устанавливают следующие базовые показатели, характеризующие упругие деформации бетонов:

— модуль упругости бетона Ecm (определяемый как тангенс угла наклона секущей между точками sс = 0 и sс = 0,4fcm), значения которого для тяжелых и мелкозернистых бетонов следует принимать по таблице 6.2, а для модифицированных самоуплотняющихся бетонов — по таблице 6.2а.

зменение модуля упругости бетона во времениEcm(t) может быть определено по формуле


,(6.5)

где fcm(t)  средняя прочность бетона на сжатие к моменту времени t, определяемая по формулам (6.1а, б);

cm  средняя прочность бетона в возрасте 28 сут, определяемая по таблице 6.1;

Есm — модуль упругости бетона в возрасте 28 сут, определяемый по таблице 6.2 или 6.2а;

 коэффициент Пуассона с = 0,20;

 коэффициент линейного температурного расширения t = 110 –5 (1/С).

6.1.4 Ползучесть и усадка бетона

6.1.4.1 При расчетах бетонных, железобетонных и предварительно напряженных конструкций следует учитывать изменение свойств бетона во времени, а также усилия, напряжения и перемещения, связанные с развитием длительных процессов (усадки и ползучести). Точные значения параметров длительных процессов могут быть рассчитаны по методикам, изложенным в приложении Б к настоящим нормам. Допускается использовать в расчетах предельные значения характеристики (коэффициента) ползучести и усадки.

асчет параметров ползучести напрягающего бетона следует определять в соответствии с требованиями, изложенными в приложении Б.


6.1.4.2 Предельн ые значения коэффициента ползучести для бетона допускается принимать по графикам, приведенным на рисунке 6.1.

СНБ 5.03.01-02

Таблица 6.1 — Прочностные и деформационные характеристики тяжелых и мелкозернистых бетонов

Класс бетона по прочности на сжатие

fctm , МПа

Примечание  Для мелкозернистых бетонов, приготовленных с применением песков, имеющих модуль крупности Мк = 2,0 и менее (группа Б), значения прочностных характеристик fctm , fctk,0,05 , fctk,0,95 следует умножать на поправочный коэффициент kt = 0,65 + 610 –3  fc, G cube .

СНБ 5.03.01-02

аблица 6.2 — Модуль упругости тяжелых и мелкозернистых бетонов(кроме модифицированных самоуплотняющихся бетонов)

Марка бетонной смеси по удобоукладываемости

Модуль упругости бетона Ecm , ГПа, для классов по прочности на сжатие

При назначении модуля упругости бетона марка бетонной смеси по удобоукладываемости принимается в соответст­вии с рекомендациями СНиП 3.09.01 с учетом СТБ 1035 и ИСО 1920-2.2

Значения модуля упругости приведены для бетонов естественного твердения. Для бетонов, подвергнутых тепловой обработке, приведенные значения следует умножать на коэффициент 0,9.

Приведенные значения модуля упругости действительны для бетонов, приготовленных с применением гравия и гранитного щебня с крупностью зерен до 40 мм. Для мелкозернистых бетонов приведенные значения модуля упругости следует умножать на коэффициент 0,85.

Для бетонов, подвергающихся попеременному замораживанию и оттаиванию, значения Ecm, указанные в таблице 6.2, следует умножать на поправочный коэффициент, принимаемый равным при эксплуатации конструкции в водонасыщенном состоянии при температуре:

ниже минус 20 до минус 40 С включ.  0,85;

ниже минус 5 до минус 20 С включ.  0,90;

минус 5 С и выше  0,95.

ри повышении марки бетона по морозостойкости по сравнению с требуемой согласно таблице 5.3 приведенные выше коэффициенты могут быть увеличены на0,05 соответственно каждой ступени превышения, однако, не могут быть больше единицы.

аблица 6.2а — Модуль упругости модифицированных самоуплотняющихся бетонов

Марка бетонной смеси по растеканию конуса

Модуль упругости бетона Ecm, ГПа, для классов по прочности на сжатие

1 При назначении модуля упругости бетона марка бетонной смеси по удобоукладываемости принимается в соответствии с СТБ 1545.

2 Приведенные модули упругости самоуплотняющегося бетона действительны для бетонов, приготовленных с применением химических модификаторов, обеспечивающих снижение коэффициента нормальной густоты цемента не менее чем на 20 %.

3 Значения модуля упругости приведены для бетонов естественного твердения. Для бетонов, подвергнутых тепловой обработке, приведенные значения следует умножать на коэффициент 0,9.

4 Приведенные значения модуля упругости действительны для бетонов, приготовленных с применением гранитного щебня с крупностью зерен до 20 мм.

5 Для бетонов, подвергающихся попеременному замораживанию и оттаиванию, значения Ecm, указанные в настоящей таблице, следует умножать на поправочный коэффициент, принимаемый равным при эксплуатации конструкции в водонасыщенном состоянии при температуре:

— ниже минус 20 °С до минус 40 °С включ. — 0,85;

— ниже минус 5 °С до минус 20 °С включ. — 0,90;

— минус 5 °С и выше — 0,95.

6 При превышении марки бетона по морозостойкости по сравнению с требуемой согласно таблице 5.3, значения поправочного коэффициента, приведенные выше, допускается увеличивать на 0,05 соответственно каждой ступени превышения, но не должны превышать 1».


СНБ 5.03.01-02

Рисунок 6.1 — Номограммы для определения предельных значений

коэффициента ползучести бетона (, t0):

а — при RH = 50 %;

б — при RH = 80 %

СНБ 5.03.01-02

Предельные значения коэффициента ползучести бетона Ф(∞, t0), полученные по графикам, приве­денным на рисунке 6.1, применимы для расчетных ситуаций, когда уровень сжимающих напряжений в бетоне при первом загружении в момент времени t0 не превышает 0,45fcm(t0). Если сжимающие напряжения в момент времени t0 превышают 0,45fcm(t0), следует выполнять модификацию значений коэффициента ползучести Ф(∞, t0), полученных по графикам, приведенным на рисунке 6.1, с учетом нелинейной ползучести по формуле


где Фк(∞, t0) —предельное значение модифицированного (нелинейного) коэффициента нели­нейной ползучести;

σс — сжимающие напряжения в бетоне в момент времени to;

cm(t0) — средняя прочность бетона на сжатие в возрасте t0, определяемая согласно 6.1.2.8

6.1.4.3 Предельные значения коэффициента ползучести бетона Ф(∞, t0), полученные по графикам, приведенным на рисунке 6.1, применимы при расчетах конструкций в условиях сезонных колебаний тем­пературы от минус 25 до 40 °С и относительной влажности RH от 20 до 100 %.

.1.4.4Предельные значения коэффициента ползучести бетона Ф(∞, t0), полученные по графи­кам, приведенным на рисунке 6.1, применимы для бетонов классов по прочности на сжатие не более С 55 /67 из смесей, имеющих марки по удобоукладываемости П2 и П3. Для бетонных смесей других ма­рок по удобоукладываемости значения коэффициентов ползучести Ф(∞, t0), полученные по графи­кам, приведенным на рисунке 6.1, следует умножать на поправочные коэффициенты:

при СЖ3, СЖ2, СЖ1, Ж4, Ж3, Ж2 — не более 0,70;

при Ж1, П1, П2 — 0,80;

при П4, П5, РК-1, РК-2 — 1,20;

при РК-3, РК-4, РК-5, РК-6 — 1,30.

Для бетонов классов по прочности на сжатие более С 55 /67 независимо от марки бетонной смеси по удо­боукладываемости предельные значения коэффициентов ползучести Ф(∞, t0), полученные по графикам, приведенным на рисунке 6.1, следует умножать на поправочный коэффициент, равный 1,2.

6.1.4.5 Величину усадки бетона cs следует определять по формуле

где cs,d ¾ часть усадки бетона, обусловленная испарением из него влаги;

cs,а ¾ часть усадки бетона, обусловленная процессами твердения бетона.

Величину усадки бетона ecs,d следует определять по формуле


(6.8)

где сs,d, — предельные значения величины части усадки, которые допускаются для бетонов, приготовленных на портландцементе ПЦ 500-Д0 без применения химических добавок, принимают по таблице 6.3;

ds — функция развития усадки бетона во времени, определяемая по формуле


здесь t — возраст бетона, для которого рассчитывается величина части усадки, сут;

ts — возраст бетона к моменту окончания влажного хранения бетона, сут;

h0 = 2Ac/u — приведенный размер поперечного сечения образца, мм,

Ac — площадь поперечного сечения образца, мм 2 ;

u — периметр поперечного сечения образца, мм.

Предельные значения величины части усадки бетона сs,d,, приведенные в таблице 6.3, применимы для бетонных смесей с маркой по удобоукладываемости П3 (ОК = 10–15 см). Для других марок и видов цемента, модифицированного химическими добавками, сs,d, следует определять в соответствии с приложением Б.

В случае применения тонкомолотого инертного наполнителя, в количестве от 10 % до 30 % от массы вяжущего, значение функции ds следует определять путем умножения значения ds, полученного по формуле (6.9), на коэффициент KДн = 1,1

СНБ 5.03.01-02

ри определении промежуточных значений части усадки бетонаεсs,d,∞ по таблице 6.3 допускается линейная интерполяция.

Величину усадки бетонов с компенсированной усадкой, cs,k, следует определять в соответствии с требованиями, изложенными в приложении Б

аблица 6.3 — Предельные значения части усадки бетона cs,d, , ‰

fck /fc, G cube

cs,d, при относительной влажности RH, %

Методы определения деформаций усадки и ползучести

Concretes. Methods of shrinkage and creep flow determination

Дата введения 2021-06-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Структурным подразделением АО "НИЦ "Строительство" Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ им.А.А.Гвоздева) при участии АО "ВНИИГ им.Б.Е.Веденеева"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 октября 2020 г. N 134-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

ЗАО "Национальный орган по стандартизации и метрологии" Республики Армения

Госстандарт Республики Беларусь

4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 декабря 2020 г. N 1347-ст межгосударственный стандарт ГОСТ 24544-2020 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2021 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

Настоящий стандарт распространяется на все виды цементных, а также силикатных бетонов, применяемых во всех областях строительства, и устанавливает методы определения деформаций усадки и ползучести.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 310.2 Цементы. Методы определения тонкости помола

ГОСТ 310.4 Цементы. Методы определения предела прочности при изгибе и сжатии

ГОСТ 5382 Цементы и материалы цементного производства. Методы химического анализа

ГОСТ 5632 Нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки

ГОСТ 8269.0 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний

ГОСТ 8735 Песок для строительных работ. Методы испытаний

ГОСТ 9758 Заполнители пористые неорганические для строительных работ. Методы испытаний

ГОСТ 10180 Методы определения прочности по контрольным образцам

ГОСТ 10181 Смеси бетонные. Методы испытаний

ГОСТ 10354 Пленка полиэтиленовая. Технические условия

ГОСТ 12730.1 Бетоны. Методы определения плотности

ГОСТ 12730.2 Бетоны. Метод определения влажности

ГОСТ 23683 Парафины нефтяные твердые. Технические условия

ГОСТ 24452 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона

ГОСТ 31108 Цементы общестроительные. Технические условия

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:


3.1 линейная относительная деформация усадки : Относительное уменьшение линейных размеров ненагруженного образца во времени, вызванное гидратацией цемента (контракцией), уменьшением влажности цементного камня и его карбонизацией.


3.2 линейная относительная деформация усадки при нагреве : Относительное уменьшение линейных размеров ненагруженного образца, вызванное испарением из него влаги при нагреве.


3.3 линейная относительная деформация температурного расширения : Относительное увеличение размеров образца, вызванное температурным расширением при нагреве.


3.4 линейная относительная температурно-усадочная деформация : Относительное изменение линейных размеров образца, вызванное совместным действием температуры и усадки бетона.


3.5 линейная относительная деформация ползучести : Относительное изменение линейных размеров образца во времени, вызванное действием постоянной внешней нагрузки за вычетом деформаций усадки.

4 Методы определения деформаций усадки и ползучести при сжатии

В настоящем разделе и приложениях А, Б, В и Г приведены методы испытаний при стандартном температурном режиме для определения деформаций усадки и ползучести путем измерения их в направлении продольной и поперечной осей (при необходимости такой задачи) незагруженного образца и образца, загруженного постоянной по величине осевой сжимающей нагрузкой.

Методы определения деформаций температурной усадки и ползучести бетона при нагреве приведены в приложении Д.

Методика определения деформаций ползучести при изгибе (упрощенная методика испытания на ползучесть) и вычисление основных деформационных характеристик приведены в приложении Е.

4.1 Испытательные стенды, приборы, измерительное оборудование и материалы

4.1.1 Оборудование и приборы для проведения испытаний должны соответствовать требованиям настоящего стандарта, быть повереными* и аттестоваными* в установленном порядке.

* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

4.1.2 Для определения деформаций усадки применяют устройства, схемы которых показаны на рисунках 1 и 2. Устройство, схема которого приведена на рисунке 1, предназначено для измерения деформаций усадки образцов с поперечным сечением размерами 40х40 мм.

Образцы с размерами поперечного сечения более 40х40 мм испытывают с приклеенными по торцам металлическими пластинами согласно 4.3.2 (рисунок 2) без дополнительных испытательных стендов.

4.1.3 Для определения деформаций ползучести применяют пневмогидравлические, пружинно-гидравлические, рычажные или пружинные испытательные устройства. В установку допускается устанавливать одновременно до трех образцов вертикально друг на друга (в виде колонны), как показано на рисунке 3.



1 - стойка; 2 - кронштейн; 3 - конусообразный выступ; 4 - нижняя опора; 5 - индикатор; 6 - образец; 7 - репер; а - размер стороны поперечного сечения образца; H - высота образца; - база измерений.

Рисунок 1 - Схема устройства для определения деформаций усадки образцов с размерами поперечного сечения 40х40 мм



1 - индикатор часового типа; 2 - рамка для крепления индикаторов; 3 - качающаяся штанга; 4 - образец; 5 - металлические пластинки; - база измерения

Рисунок 2 - Схема устройства для определения деформаций усадки образцов с размерами поперечного сечения более 40х40 мм

4.1.4 При установке нескольких образцов в колонну соосность передачи нагрузки обеспечивается через металлические шарики, устанавливаемые в специальные центрированные выточки в стальных пластинах в соответствии с 4.1.7. Для предотвращения потери устойчивости колонны необходимо использовать дополнительные страховочные устройства от выстреливания шарика. Схема такого устройства приведена на рисунке 3 (справа). Страховочные устройства не должны препятствовать свободному деформированию образцов.



1 - динамометр; 2 - гидравлический домкрат; 3 - стоика (стержень с резьбой); 4 - стальной шар; 5 - стальная пластина, приклеиваемая к образцу; 6 - бетонные образцы; 7 - пружины; 8 - стальная опорная плита; 9 - гайки; 10 - стальные страховочные элементы; - база измерения

Рисунок 3 - Схема устройства установки для определения деформаций ползучести при испытании нескольких образцов в колонне

4.1.5 Принципиальная схема устройства пружинной установки на три образца приведена на рисунке 3 (слева). Схемы пневмогидравлических, пружинно-гидравлических установок и схема пружинной установки на один образец, а также порядок установки в них образцов принимают в соответствии с приложением А. Схема рычажного устройства для определения ползучести при нагреве приведена на рисунке Д.2 (приложение Д).

4.1.6 Для измерения деформаций следует использовать измерительные приборы и приспособления для их крепления, применяемые для определения призменной прочности, модуля упругости и коэффициента Пуассона по ГОСТ 24452 (на рисунке 2 показано оборудование для измерения продольных деформаций; при определении поперечных деформаций устанавливаются дополнительные рамки и индикаторы). Допускается использовать другое поверенное измерительное оборудование - стационарно смонтированное (тензодатчики) или съемное (точки для снятия показаний при использовании такого оборудования показаны на рисунке 3 слева), позволяющее определять деформации ползучести с необходимой точностью и достоверностью.

4.1.7 При определении деформаций ползучести сжимающее усилие на образец следует передавать через металлические прокладки толщиной 35-37 мм, размеры которых в плане должны быть не менее размеров поперечного сечения образца. Твердость прокладок и шероховатость их рабочих поверхностей должны удовлетворять требованиям ГОСТ 10180.

4.1.8 Для определения линейных размеров, массы образцов и плотности бетона следует применять средства измерений и оборудование по ГОСТ 10180 и ГОСТ 12730.1, а для определения влажности бетона - по ГОСТ 12730.2.

4.1.9 Насыщение образцов водой или нефтепродуктами следует производить с применением оборудования по ГОСТ 24452.

4.1.10 Для измерения температуры и определения влажности окружающей среды в процессе испытаний следует применять термометры (термографы) и психрометры (гигрографы).

Читайте также: