Укажите ученых заложивших фундамент космологической модели расширяющейся вселенной

Обновлено: 09.05.2024

Модель Вселенной Эйнштейна стала первой космологической моделью, базирующейся на выводах общей теории относительно сти. Это связано с тем, что именно тяготение определяет взаимо действие масс на больших расстояниях. Поэтому теоретическим ядром современной космологии выступает теория тяготения — общая теория относительности. Эйнштейн допускал в своей космоло гической модели наличие некой гипотетической отталкивающей силы, которая должна была обеспечить стационарность, неизмен ность Вселенной. Однако последующее развитие естествознания внесло существенные коррективы в это представление.

Пять лет спустя, в 1922 г., советский физик и математик А. Фридман на основе строгих расчетов показал, что Вселенная Эйнштейна не может быть стационарной, неизменной. При этом Фридман опирался на сформулированный им космологический принцип, который строится на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной пони мается как отсутствие выделенных направлений, одинаковость Все ленной по всем направлениям. Однородность Вселенной понимает ся как одинаковость всех точек Вселенной: мы можем проводить наблюдения в любой из них и везде увидим изотропную Вселенную.

Фридман на основе космологического принципа доказал, что уравнения Эйнштейна имеют и другие, нестационарные решения, согласно которым Вселенная может либо расширяться, либо сжи маться. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

Первоначально модель расширяющейся Вселенной носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929 г. американский астроном Э. Хаббл обнаружил эф фект «красного смещения» спектральных линий (смещение линий к красному концу спектра). Это было истолковано как следствие эффекта Допплера — изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. «Красное смещение» было объяснено как следствие удале ния галактик друг от друга со скоростью, возрастающей с расстоянием. Согласно последним измерениям увеличение скорости расшире ния составляет примерно 55 км/с на каждый миллион парсек.

В результате своих наблюдений Хаббл обосновал представление, что Вселенная — это мир галактик, что наша Галактика — не един ственная в ней, что существует множество галактик, разделенных между собой огромными расстояниями. Вместе с тем Хаббл пришел к выводу, что межгалактические расстояния не остаются постоянными, а увеличиваются. Таким образом, в естествознании появи лась концепция расширяющейся Вселенной.

Какое же будущее ждет нашу Вселенную? Фридман предложил три модели развития Вселенной.

В первой модели Вселенная расширяется медленно для того, что бы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов пре кращалось. После этого Вселенная начинала сжиматься. В этой мо дели пространство искривляется, замыкаясь на себя, образуя сферу.

Во второй модели Вселенная расширялась бесконечно, а про странство искривлено как поверхность седла и при этом бесконечно.

В третьей модели Фридмана пространство плоское и тоже бес конечное.

По какому из этих трех вариантов идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлетающегося вещества.

Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяго тения не остановят разбегания галактик, и расширение Вселенной будет носить необратимый характер. Этот вариант динамичной мо дели Вселенной называют открытой Вселенной.

Если же преобладает гравитационное взаимодействие, то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной в ис ходное состояние сингулярности (точечный объем с бесконечно большой плотностью). Такой вариант модели назван осциллирую щей, или закрытой, Вселенной.

В граничном случае, когда силы гравитации точно равны энер гии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю. Через несколько десятков миллиардов лет после начала расширения Вселенной наступит со стояние, которое можно назвать квазистационарным. Теоретически возможна и пульсация Вселенной.

Когда Э. Хаббл показал, что далекие галактики разбегаются друг от друга со все возрастающей скоростью, был сделан однозначный вывод о том, что наша Вселенная расширяется. Но расширяющаяся Вселенная — это изменяющаяся Все ленная, мир со всей своей историей, имеющий начало и конец. Постоянная Хаббла позволяет оценить время, в течение которого продолжается процесс расширения Вселенной. Получается, что оно не менее 10 млрд. и не более 19 млрд. лет. Наиболее вероятным вре менем существования расширяющейся Вселенной считают 15 млрд. лет. Таков приблизительный возраст нашей Вселенной.

§ 27. О сновы современной космологии

П о сути дела, существовавшие на каждом этапе развития человеческой цивилизации представления о строении мира можно считать космологическими теориями соответствующей эпохи. Геоцентрическая система Аристотеля—Птолемея стала первой научно обоснованной космологической моделью Вселенной. Спустя 1500 лет её сменила новая космологическая модель — гелиоцентрическая система, предложенная Коперником.

Космология — раздел астрономии, который изучает строение и эволюцию Вселенной в целом, используя при этом методы и достижения физики, математики и философии.

Теоретические модели, описывающие наиболее общие свойства строения и эволюции Вселенной, проверяются астрофизическими методами наблюдений. Очевидно, что выводы космологии имеют важное значение для формирования современной научной картины мира.



Александр Александрович Фридман

Теоретическим фундаментом современной космологии явилась созданная Альбертом Эйнштейном (1879—1955) в начале XX в. общая теория относительности — релятивистская теория тяготения. Наиболее существенным отличием современных космологических моделей, первые из которых были разработаны Александром Александровичем Фридманом (1888—1925) на основе теории Эйнштейна, является их эволюционный характер. Идея глобальной эволюции Вселенной оказалась столь необычной, что первоначально не была принята даже самим создателем теории относительности, таким выдающимся учёным, как Эйнштейн.

Даже позднее, когда стало очевидно, что все объекты во Вселенной изменяются с течением времени, казалось, что процессы, происходящие в её отдельных составных частях, не меняют облика всей Вселенной.

Эта идея была для Эйнштейна настолько очевидной, что для уравнений теории относительности, применённых ко всей Вселенной, он стал искать решения, описывающие её состояние, не меняющееся со временем. Для того чтобы уравновесить силы тяготения, он предположил, что кроме них во Вселенной существует сила отталкивания. Эта сила должна быть универсальной, зависящей только от расстояния между телами и не зависящей от их массы. Ускорение, которое она будет создавать этим телам, должно быть пропорционально расстоянию: a = const • R . Так в уравнениях появилась обусловленная гипотетическими силами отталкивания космологическая постоянная — лямбда-член .

В 1922—1924 гг. российский математик Фридман вывел из общей теории относительности Эйнштейна уравнения, которые описывали общее строение и эволюцию Вселенной. Решения, полученные Фридманом для этих космологических уравнений, означали, что материя в масштабах однородной и изотропной Вселенной не может находиться в покое — Вселенная должна либо сжиматься, либо расширяться. Суть этого вывода, сделанного на основе математически строгого решения уравнений, можно объяснить довольно просто, оперируя только привычными понятиями теории тяготения Ньютона.


Рис. 6.26. Объяснение нестационарности Вселенной

Будем исходить из предположения, что в больших масштабах распределение вещества во Вселенной можно считать однородным. Тогда галактика, которая находится на поверхности шара произвольного радиуса, притягивается к его центру согласно закону всемирного тяготения с силой, прямо пропорциональной массе шара M и обратно пропорциональной квадрату его радиуса R . Все остальные галактики, лежащие вне этого шара, не меняют величины этой силы. Для доказательства этого важного утверждения произвольно выделим во Вселенной шаровой слой толщиной h такого радиуса, чтобы внутри него оказались не только галактика A , но и весь шар радиусом R (рис. 6.26). Рассмотрим силы тяготения, действующие на галактику A со стороны тех галактик, которые расположены в этом слое в противоположных от неё направлениях. Эти силы создаются галактиками, расположенными в объёме элементов слоя V 1 и V 2 . Сравним объём и массу этих элементов. Толщина их одинакова — h , а площади S 1 и S 2 и объёмы пропорциональны квадратам расстояний от галактики до поверхности слоя — r 1 и r 2 :

= = .

Так как распределение галактик во Вселенной считается однородным, отношение масс этих элементов будет таким же:

= .

Силы, с которыми эти массы притягивают галактику A , согласно закону всемирного тяготения равны:


F 1 =


F 2 = ,

где m — масса галактики A .

Запишем отношение этих сил

=

и, подставив в него значение = , получим


= 1,

Таким образом, эти силы, равные по абсолютной величине и направленные в противоположные стороны, уравновешивают друг друга. Значит, галактики, находящиеся вне шара радиусом R , не влияют на величину силы, с которой галактика A притягивается галактиками, находящимися внутри этого шара.

Следовательно, можно написать следующее выражение для ускорения, которое имеет одна из этих галактик по отношению к галактике, расположенной в его центре:


a = – .

Знак «минус» означает, что ускорение соответствует притяжению, а не отталкиванию. Из этой формулы следует, что Вселенная должна быть нестационарной, поскольку в ней действует тяготение. Галактики могут находиться в покое только мгновение. В следующий момент они придут в движение и будут сближаться под действием сил тяготения. Если же в начальный момент галактики будут иметь скорости, направленные так, чтобы они удалялись друг от друга, то в этом случае тяготение будет тормозить расширение Вселенной. Величина и направление скорости, которую имеют галактики в определённый момент, из теории тяготения не выводятся, их можно получить только на основе наблюдений.

Теоретические выводы Фридмана получили важное наблюдательное подтверждение в открытом Хабблом законе пропорциональности скорости удаления галактик их расстоянию:

Этот закон не выполняется только для нескольких ближайших галактик, включая туманность Андромеды.

Удаление галактик, которое происходит во все стороны со скоростями, прямо пропорциональными расстоянию от нас, не означает, однако, что наша Галактика занимает какое-то особое положение во Вселенной. Точно такая же картина «разбегания» галактик будет наблюдаться для любой другой галактики.

Выберем в пространстве, занятом галактиками, произвольно направленную прямую, которая проходит через нашу Галактику (рис. 6.27). На этой прямой окажется несколько галактик, которые удаляются со скоростями, подчиняющимися закону Хаббла, от нашей Галактики A (рис. 6.27, а ). Теперь попробуем представить, какую картину разбегания галактик мы увидим, если перенесёмся на галактику B . Для того чтобы определить скорости всех галактик относительно неё, надо из скоростей, изображённых на рисунке 6.27, а , вычесть скорость галактики B (рис. 6.27, б ). Полученная картина, которая представлена на рисунке 6.27, в , принципиально не отличается от предыдущей: скорости удаления галактик по-прежнему пропорциональны расстояниям.


Рис. 6.27. Расширение Вселенной

Для того чтобы узнать, когда примерно началось наблюдаемое расширение, необходимо воспользоваться постоянной Хаббла H . Галактика, находящаяся от нас на расстоянии R , удаляется со скоростью HR . Следовательно, разделив расстояние, пройденное галактикой с момента начала расширения, на её скорость, мы получим:


Величина, обратная постоянной Хаббла, даёт примерную оценку времени, которое прошло с момента начала расширения Вселенной. Нетрудно подсчитать, что это время составляет примерно 13,5 млрд лет.

Открытие Хабблом «красного смещения» и работы Фридмана, показавшего, что Вселенная не может быть стационарной, явились только началом исследований эволюции Вселенной.

Взаимное удаление галактик означает, что в прошлом они были гораздо ближе друг к другу, чем теперь. В ещё более раннюю эпоху плотность вещества была так велика, что во Вселенной не могло существовать ни галактик, ни звёзд и никаких других наблюдаемых ныне объектов. Расчёты прошлого, проведённые на основе космологических моделей Фридмана, показывают, что в момент начала расширения Вселенной её вещество должно иметь огромную (бесконечно большую) плотность.

Перед наукой встала задача изучения тех физических процессов, которые происходят в расширяющейся Вселенной на разных этапах её эволюции вплоть до современности, а также тех, которые предстоят во Вселенной в будущем.


Георгий Антонович Гамов

В 1948 г. в работах Георгия Антоновича Гамова (1904—1968) и его сотрудников была выдвинута гипотеза о том, что вещество во Вселенной на начальных стадиях расширения имело не только большую плотность, но и высокую температуру. Так, спустя 0,1 с после начала расширения температура была около 3 • 10 10 К. При столь высокой температуре взаимодействие фотонов высокой энергии, которых в горячем веществе было много, приводило к образованию пар всех известных частиц и античастиц: электрон — позитрон, нейтрино — антинейтрино и т. п. При аннигиляции этих пар снова рождались фотоны, а протоны и нейтроны, взаимодействуя с ними, превращались друг в друга.

При очень высокой температуре сложные атомные ядра существовать не могут — они моментально были бы разрушены окружающими энергичными частицами, поэтому не образуются даже ядра дейтерия, хотя нейтроны и протоны существуют.

По мере расширения плотность вещества и его температура уменьшаются. Позднее, когда температура в расширяющейся Вселенной опустится ниже 1 млрд К, станет возможным сохранение некоторого количества ядер дейтерия и, следовательно, образование гелия. Согласно расчётам, к этому моменту нейтроны составят примерно 15% массы всего вещества. Остальное вещество — протоны (ядра атомов водорода). Соединение равного количества протонов и нейтронов приведёт к образованию дейтерия, а в процессе следующих ядерных реакций образуются ядра гелия. Рассматривая ядерные реакции в горячем веществе в начале космологического расширения, удалось рассчитать, что в процессе этих реакций могли образоваться только водород и гелий. Спустя пять минут после начала расширения, когда температура во Вселенной становится недостаточной для термоядерных реакций, вещество состоит из смеси ядер водорода (70% массы) и ядер гелия (30%). Таким его состав остаётся до того времени, пока не происходит образование звёзд и галактик.

Исследования показали, что содержание гелия в звёздах и межзвёздном веществе действительно составляет около 30% по массе. Это достаточно хорошо согласуется с выводами теории, которая основана на предположении о «горячей Вселенной».

Спустя примерно миллион лет после начала расширения, когда температура снижается до 4000 К, ядра атомов водорода и гелия, захватывая электроны, превращаются в нейтральные атомы. Эта эпоха явилась важнейшим этапом в эволюции Вселенной. Во-первых, только с появлением нейтрального вещества становится возможным формирование отдельных небесных тел и их систем. Во-вторых, излучение, которое играло важную роль в процессах, происходивших прежде, практически не взаимодействовало с нейтральным веществом. Иначе говоря, теория «горячей Вселенной» предсказывала существование в настоящее время реликтового электромагнитного излучения, оставшегося от того далёкого прошлого, когда вещество во Вселенной было плотным и горячим. Температура этого излучения, которая в процессе космологического расширения уменьшалась так же, как и температура вещества, должна составлять в нашу эпоху всего несколько кельвинов. Это излучение, получившее название реликтового , было случайно обнаружено на волне 7,35 см американскими инженерами Арно Пензиасом и Робертом Вильсоном . Открытие реликтового излучения явилось одним из важнейших научных открытий XX в., которое подтвердило, что на ранних стадиях расширения Вселенная была горячей. Авторы этого открытия в 1978 г. удостоены Нобелевской премии по физике.

Обнаружение реликтового излучения — очень важное, но не единственное достижение космологии за последние десятилетия. К их числу относится теоретическое исследование крупномасштабной структуры Вселенной, проведённое академиком Я. Б. Зельдовичем и его учениками. В процессе эволюции Вселенной флуктуации плотности вещества под действием гравитации должны постепенно превращаться в объекты, напоминающие по своей форме блины. Наблюдения подтвердили, что именно такие структуры образуют во Вселенной галактики, их скопления и сверхскопления.

Теория горячей расширяющейся Вселенной, которая опирается на работы А. А. Фридмана и Г. А. Гамова, стала общепризнанной, хотя не cмогла дать ответ на два важных вопроса: в чём первопричина взаимного удаления галактик и как в дальнейшем будет происходить расширение Вселенной.

Найти ответы на эти вопросы удалось новому поколению учёных. Оба ответа оказались весьма неожиданными. В 1965 г. российский физик-теоретик Э. Б. Глинер выдвинул гипотезу, согласно которой начальным состоянием Вселенной был вакуум. Дальнейшие исследования показали, что для гравитационных сил вакуума характерно не привычное всем притяжение, а отталкивание.

Чтобы ответить на второй вопрос, необходимо было установить зависимость скорости удаления галактики от расстояния до неё. В первом приближении она выражается законом Хаббла: v = HR . Чтобы проверить, насколько эта зависимость выполняется для наиболее удалённых объектов, необходимо определить скорость галактики и её расстояние независимо друг от друга. Измерения тригонометрического параллакса для определения расстояния до галактик непригодны. Для таких огромных расстояний используется метод фотометрического параллакса. Поток фотонов, приходящих от источника излучения и регистрируемых наблюдателем, обратно пропорционален квадрату расстояния до источника. Если известна мощность излучения (светимость) наблюдаемого объекта, то, измерив поток света, можно вычислить, на каком расстоянии этот объект находится.

Оказалось, что объектами с известной светимостью являются наиболее яркие сверхновые звёзды, светимость которых в момент вспышки сравнима со светимостью целой галактики — сверхновые типа Ia, порождаемые термоядерными взрывами белых карликов. При наблюдениях этих звёзд независимо измерялись две величины. Первая — «красное смещение» линий в спектре. Оно выражается величиной z = ( λ – λ 0 )/ λ 0 , где λ — длина волны регистрируемого излучения, а λ 0 — длина волны испускаемого излучения. Вторая — блеск звезды, который выражается в звёздных величинах — m . По существу, это освещённость, которая создаётся звездой на плоскости, перпендикулярной лучу зрения. Зная величину светимости сверхновой типа Ia, можно вычислить расстояние до каждой из них.

На графике (рис. 6.28) показаны кривые, которые соответствуют двум возможным вариантам зависимости расстояния до звезды от «красного смещения». Кривая A соответствует известному закону Хаббла. Кривая B при малых z практически сливается с кривой A , но при бо́льших значениях z проходит значительно выше. Наблюдаемое отклонение существенно превышает ошибки измерения, что и позволило сделать вывод: Вселенная расширяется с ускорением. Это означает, что расширение Вселенной будет продолжаться неограниченно. Более того, учёные пришли к выводу: наблюдаемое ускорение создаёт неизвестный прежде вид материи, который обладает свойством антигравитации. Он получил название тёмной энергии . За это открытие две группы учёных получили Нобелевскую премию по физике за 2011 г.


Рис. 6.28. Ускоренное расширение Вселенной

Открытие антитяготения, которое оказалось неожиданным для большинства людей, подтвердило предвидение А. Эйнштейна.

В связи с этим выяснился глубокий смысл λ -члена в уравнениях общей теории относительности. А. Эйнштейн, по существу, выдвинул гипотезу о наличии во Вселенной материи, которая создаёт не притяжение, а отталкивание. Наблюдения подтвердили справедливость этой гипотезы. Дальнейшие исследования позволили выяснить, что по своей природе тёмная энергия является практически однородной, в отличие от двух других составляющих Вселенной — «обычной» и тёмной материи, которые распределены в космическом пространстве неоднородно, образуя звёзды, галактики и другие объекты. Можно считать, что тёмная энергия — это свойство самого пространства.

Детальный анализ анизотропии реликтового излучения и крупномасштабной структуры Вселенной позволил определить плотность каждого из трёх видов материи. Было установлено, что «обычная» материя, изучению которой человечество посвятило всю предшествующую историю, составляет всего лишь несколько процентов массы Вселенной. Примерно 26% составляет тёмная материя, а 69%, большая часть массы Вселенной, приходится на долю тёмной энергии — нового вида материи, уникальные свойства которой ещё предстоит изучить.

Развитие современной космологии в очередной раз показало безграничные возможности человеческого разума, способного исследовать сложнейшие процессы, которые происходят во Вселенной на протяжении миллиардов лет.


В опросы 1. Какие факты свидетельствуют о том, что во Вселенной происходит процесс эволюции? 2. Каково соотношение масс «обычной» материи, тёмной материи и тёмной энергии во Вселенной?

Немногим более века тому назад ученые были уверены, что наша Вселенная стабильна. Она не расширяется и не сужается, а вновь появляющиеся звезды приходят на смену погасшим. В общем, по мнению ученых мужей, Вселенная пребывала в состоянии динамического равновесия.

С чего все началось.

Первый гвоздь в гроб статичной Вселенной был вбит астрономом из Соединенных Штатов Весто Слайфером в 1913 году. Он начал изучение Туманности Андромеды и обнаружил, что она движется относительно Солнечной системы с огромной скоростью порядка 1000 км/с.

В течение 1913-1914 гг. ученый обнаружил, что еще несколько десятков объектов имеют подобные скорости. Сам факт подобных скоростей вызывал неподдельное удивление, ведь полагалось, что туманности находятся в нашей Галактике и являются зарождающимися планетными системами. Но высокие скорости означали, что подобные объекты находятся вне нашего звездного скопления.

Весто Слайфер использовал спектрограф, чтобы обнаружить первые свидетельства расширяющейся вселенной. Источник изображения: архив Лоуэллской обсерватории

Весто Слайфер использовал спектрограф, чтобы обнаружить первые свидетельства расширяющейся вселенной. Источник изображения: архив Лоуэллской обсерватории

На своем открытии Слайфер не успокоился. Его заинтересовало куда движутся «быстроходные» объекты. К 1922 году стало ясно, практически все скоростные скопления стремятся прочь от Солнечной системы. К Солнцу приближаются только 3 внегалактических объекта, да и сами они, по-видимому, являются галактиками.

Следующий шаг был совершен британским астрофизиком Артуром Эддингтоном. В 3-м десятилетии прошлого века ученые активно обсуждали общую теорию относительности, выдвинутую Альбертом Эйнштейном. На основании наблюдений Слайфера Эддингтон предположил, что полученные результаты означают верность космологической теории расширяющейся Вселенной. По предположению англичанина, чем дальше объект находится от Солнечной системы, тем выше его относительная скорость «убегания». Этот вариант космологической модели Вселенной экспериментально для галактик подтвердил бельгиец Жорж Леметр в 1927 году.

Открытие Эдвина Хабла, перевернувшее представление ученых о Вселенной

Все проводимые ранее наблюдения и сделанные частные выводы воедино свел американец Эдвин Хаббл, который провел серию наблюдений за Вселенной в 1929 году, используя знаменитый 100-дюймовый телескоп обсерватории Маунт-Вилсон.

Этот телескоп позволял видеть отдельные звезды в соседних галактиках, что позволило сделать определенные измерения. В качестве реперных объектов были избраны так называемые цефеиды (звезды, меняющие свой блеск со строгой периодичностью), именно эти звезды являются своеобразными маяками Вселенной. Было измерен расстояние до них, а затем проведен анализ данных с учетом зависимости «период-светимость» и красного допплеровского смещения.

Используя данные своих наблюдений и вычислений, американский ученый вывел утверждение, которое несколько позднее назвали законом Хаббла.

Сформулировать этот закон можно следующим образом: относительная скорость галактики прямо пропорциональна ее расстоянию до наблюдателя.

Формула выведенная Хабблом имела следующий вид:

где v относительная скорость галактики, r ее расстояние до наблюдателя, а H - это коэффициент пропорциональности позднее названый постоянной Хаббла.

Правда, в вычислениях американского астронома не обошлось без ложки дегтя в бочке меда. Вычисленный Хабблом коэффициент пропорциональности равнялся 500 км/с на 1 мегапарсек (примерно 3,26 миллиона световых лет). Расчеты были верны для своего времени, но Хаббл не мог знать, что зависимость «период-светимость» сама зависит от поглощения, а также трудно было предположить, что собственные скорости вносят существенный вклад в общую скорость местной группы галактик.

Современное значение постоянной Хаббла по разным оценкам находится в рамках 66-78 км/с/Мпк.

Как закон Хаббла повлиял на дальнейшее развитие астрономии

Переоценить значение закона Хаббла для современной астрономии невозможно. Он применяется как для исследований космических объектов, так и для создания новых космологических теорий. Главным значением этого закона является то, что он подтверждает постулат о расширении Вселенной. Заодно, этот закон служит дополнительным подтверждением теории Большого взрыва, ведь, по мнению современных ученых, именно Большой взрыв стал толчком вызвавшим расширение материи.

Еще благодаря закону Хаббла удалось выяснить, что Вселенная расширяется во все стороны одинаково. Это означает, что в какой бы точке не находился наблюдатель, ему будет казаться, что все космические объекты вокруг него одинаково удаляются. Здесь можно вспомнить философа 15 века Николая Кузанского, утверждавшего, что любая точка есть центр безграничной Вселенной. Также именно благодаря закону Хаббла с высокой точностью можно определять истинное положение галактик и иных космических объектов в настоящий момент и их местоположение в будущем.

Именно благодаря закону Хаббла можно вычислить сколько лет назад образовалась наша Вселенная. Если взять величину обратную постоянной Хаббла, то получится примерно 13,78 миллиардов лет. А это и есть время, прошедшее от Большого взрыва.

Следует заметить, что закон Хаббла верно работает только на относительно больших расстояниях до космических объектов. Если же взять ближайшие к нам галактики, то следует учитывать и их собственную скорость. А это может существенно сказаться на результатах. Именно благодаря собственной скорости туманность Андромеды постепенно приближается к нашей Галактике.

Наверное, первые философские и даже научные вопросы о мире и самой жизни появились у человека очень давно. К слову сказать, еще тогда, когда он эволюционировал до Homo Sapiens. Уже в то далёкое время его интересовало, что находится за пределами видимости и как это выглядит.

Что такое
геоцентрическая модель Вселенной?

Собственно говоря, это космологическая модель вселенной, в центре которой расположена шарообразная Земля. А вокруг неё вращаются все остальные планеты.

Как оказалось, данное представление о мире поддерживали многие древние учёные. Большой вклад в развитие и поддержание геоцентрической модели вселенной внесли работы Аристотеля и Птолемея.

Модель вселенной по Аристотелю

Более целостное представление о мире, его форме и развитии предложил Аристотель.

Стоит отметить, что в своих работах Аристотель объединил свои знания по физике и философские идеи.

По мнению учёного, вселенная представляла собой материю. В её состав входили земля, вода, огонь и воздух. То есть четыре стихии.

Между прочим, он верил, что присутствует пятый элемент эфир. Все части движутся. Для каждого движения существует конечная цель.

В понимании Аристотеля космос не пустое пространство. Он утверждал, что пустоты не существует в природе. Передвижение есть, а пустоты нет. Стало быть, само пространство состоит из мест и тел. А граница это край, которое имеет только тело.

По его представлениям, вселенная не подвластна времени. Хотя он не отрицал связь между ним и движением.

Само время определяет движение, а оно, в свою очередь, определяет время. В этом противоречии заключен «круг времени».

На основе наблюдений Аристотель сделал вывод, что Земля неподвижно находится в центре вселенной. А вокруг неё движутся небесные тела.

Учёный был противником представления о том, что кто-то поддерживал планеты. Типа сказок про Атлантов и трёх китов.

Модель вселенной Птолемея

В Теорию Аристотеля поддержал и обосновал Платон. Именно поэтому её еще называют моделью вселенной Аристотеля-Птолемея.

Его картина вселенной была построена на математических расчётах. В её основе также лежала шарообразная Земля и ее движение во вселенной.

Модель вселенной Птолемея также подразумевала неподвижность нашей планеты, но описывала движение тел вокруг Земли.

Безусловно, модель вселенной Аристотеля-Птолемея стала важным шагом в изучении и понимании Вселенной. Такая космологическая картина была актуальна до 16 века.

Модели вселенной

Космологические модели вселенной это представления о её формировании и развитии.

Впрочем, выделяют три основные идеи.

Теория Большого Взрыва

Описывает начальное зарождение вселенной. Её появление связывают со взрывом материи и образовании сингулярного состояния. Считается, что взрыв породил пространство. А его расширение привело к появлению Вселенной.


Список вопросов теста

Вопрос 1

Как называется раздел астрономии, изучающий свойства, строение и эволюцию Вселенной в целом?

Вопрос 2
  • совокупность наблюдаемых галактик всех типов.
  • совокупность наблюдаемых скоплений галактик всех типов.
  • межгалактическая среда.
  • совокупность наблюдаемых галактик всех типов и их скоплений, а также межгалактической среды.
Вопрос 3

Первая научно обоснованная космологическая модель Вселенной.

  • Геоцентрическая система мира Аристотеля - Птолемея.
  • Геоцентрическая система мира Коперника.
  • Космологическая модель древних индийцев, в которой земля покоится на трёх слонах, которые стоят на спине черепахи, плывущей в безграничном космосе.
  • Модель горячей Вселенной.
  • ΛCDM модель.
Вопрос 4

О чём свидетельствует красное смещение в спектрах галактик?

  • Вселенная расширяется
  • Вселенная стационарна
  • Вселенная нестационарна
  • Вселенная сжимается
  • Вселенная расширяется с ускорением
Вопрос 5

Укажите учёных, заложивших фундамент космологической модели расширяющейся Вселенной.

  • А. Эйнштей
  • А. Фридман
  • Г. Гамов
  • Ж. Леметр
  • Э. Хаббл
Вопрос 6

Сравнение смещений спектральных линий в различных частях одной и той же галактики показывает, что эти смещения неодинаковы по величине. Что из этого следует?

  • Различные части галактики имеют разные скорости.
  • Галактика вращается.
  • Галактика удаляется от нас с некоторым постоянным ускорением.
  • распределение вещества в галактике является неоднородным.
Вопрос 7

Как называется состояние Вселенной в определённый момент времени в прошлом, продолжавшееся от 0 до 10-43 секунд?


Вопрос 8

Современная космологическая модель строения Вселенной предполагает, что она на 68,3 % состоит из . на 26,8 % из . оставшиеся 4,9 % занимает . Вставьте пропущенные слова

  • тёмная энергия
  • тёмная материя
  • барионная материя
  • газа и пыли
  • межзвёздного вещества
Вопрос 9

Как в астрономии называются объекты, светимость которых заранее известна.

Читайте также: